ON NONNEGATIVE MATRICES

MORDECHAI LEWIN
ON NONNEGATIVE MATRICES

M. Lewin

The following characterisation of totally indecomposable nonnegative \(n \)-square matrices is introduced: A nonnegative \(n \)-square matrix is totally indecomposable if and only if it diminishes the number of zeros of every \(n \)-dimensional nonnegative vector which is neither positive nor zero. From this characterisation it follows quite easily that:

I. The class of totally indecomposable nonnegative \(n \)-square matrices is closed with respect to matrix multiplication.

II. The \((n - 1)\)-st power of a matrix of that class is positive.

A very short proof of two equivalent versions of the König-Frobenius duality theorem on \((0,1)\)-matrices is supplied at the end.

A matrix is called nonnegative or positive according as all its elements are nonnegative or positive respectively. An \(n \)-square matrix \(A \) is said to be decomposable if there exists a permutation matrix \(P \) such that \(PAP^T = \begin{bmatrix} B & 0 \\ C & D \end{bmatrix} \), where \(B \) and \(D \) are square matrices; otherwise it is indecomposable. \(A \) is said to be partly decomposable if there exist permutation matrices \(P, Q \) such that

\[PAQ = \begin{bmatrix} B & 0 \\ C & D \end{bmatrix}, \]

where \(B \) and \(D \) are square matrices; otherwise it is totally indecomposable.

Whereas the notion of indecomposable matrices first appeared in 1912 in a paper by Frobenius [2] dealing with the spectral properties of nonnegative matrices, totally indecomposable matrices were introduced fairly recently apparently by Marcus and Minc [10]. Their properties have been studied in several papers on inequalities for the permanent function.

In [11] Minc gives the following characterisation of totally indecomposable matrices:

A nonnegative \(n \)-square matrix \(A, n \geq 2 \), is totally indecomposable if and only if every \((n - 1)\)-square submatrix of \(A \) has a positive permanent.

A well-known theorem states:

Theorem 1. If \(A \) is an indecomposable nonnegative \(n \)-square matrix then...
An indecomposable matrix is primitive if its characteristic value of maximum modulus is unique.

Wielandt [15] states (without proof) that for primitive n-square matrices we have

$$A^{n^2-2n+2} > 0.$$ \(^1\)

By using solely the properties of total indecomposability we establish a different characterisation for totally indecomposable matrices from the one given by Minc. Using part of the characterisation we show that if A is a totally indecomposable nonnegative n-square matrix then $A^{n-1} > 0$. This result is best possible as for every n there exist totally indecomposable n-square matrices A for which $A^{n^2} \geq 0$. Theorem 1 then follows as a corollary of the latter result.

We should like to point out that Theorem 2 is by no means essential for the proof of Theorem 3. Two independent proofs of Theorem 3 are given in § 4. It seems justified however to present Theorem 2 on its own merit.

We conclude with a very short proof of two equivalent versions of König's theorem on matrices.

2. Preliminaries. $|S|$ denotes the number of elements of a given set S. Let M_n be the set of all nonnegative n-square matrices, let D_n be the subset of M_n of indecomposable matrices and let T_n be the subset of D_n of totally indecomposable matrices. Let $A \in M_n$ and let p and q be nonempty subsets of $N = \{1, \cdots, n\}$. Then $A[p \mid q]$, $A(p \mid q)$ is the $|p| \times |q|$ submatrix of A consisting precisely of those elements a_{ij} of A for which $i \in p$ and $j \in q$, $i \in p$ and $j \in q$ respectively. $A[p \mid q]$ and $A(p \mid q)$ are defined accordingly. We can now formulate equivalent definitions for matrices in D_n and T_n:

D. 1. $A \in D_n$ if $A[p \mid N - p] \neq 0$ for every nonempty $p \subset N$.

D. 2. $A \in T_n$ if $A[p \mid q] \neq 0$ for any nonempty subsets p and q of N such that $|p| + |q| = n$.

Let us now establish some connections between indecomposable and totally indecomposable matrices.

Lemma 1. If $A \in (D_n - T_n)$ then A has a zero on its main diagonal. \(^2\)

Proof. Since $A \notin T_n$ there exists a zero-submatrix $A[p \mid q]$ with $|p| + |q| = n$; but since $A \in D_n$, $p \cap q \neq \emptyset$, which means that A has

\(^1\) A proof is supplied in [5].

\(^2\) Lemma 1 is part of Lemma 2.3 in [1] but the shortness of our proof seems to justify its presentation.
a zero on its main diagonal.

Corollary 1. If \(A \in D_n \) then \(A + I \in T_n \).

Proof obvious.

3. The main results. Let \(A = (a_{ij}) \in M_n \) and let \(v \) denote an \(n \)-dimensional vector with \(a_i(v) \) its \(i \)th entry.

Define: \(J_k = \{ j : a_{kj} = 0 \} \), \(I_k = \{ i : a_{ik} = 0 \} \),

\[
I_0(v) = \{ i : a_i(v) = 0 \}, \quad I_+(v) = \{ i : a_i(v) > 0 \}.
\]

Let \(R_n \) denote the space of \(n \)-tuples of real numbers.

Let \(X_n \) be the set of all nonnegative vectors in \(R_n \) which are neither positive nor zero. We then have the following

Theorem 2. A nonnegative \(n \)-square matrix \(A \) is totally indecomposable if and only if \(|I_0(Ax)| < |I_0(x)| \) for every \(x \in X_n \).

Proof. Let \(A \in T_n \) and \(x \in X_n \). A necessary and sufficient condition for \(a_{i_0}(Ax) = 0 \) for some \(i_0 \) is

(1) \(I_+(x) \subseteq J_{i_0} \).

If \(I_0(Ax) = \emptyset \), then there is nothing to prove, so we may assume

(2) \(I_0(Ax) \neq \emptyset \).

\(x \in X_n \) implies

(3) \(I_+(x) \neq \emptyset \).

(1), (2) and (3) imply that \(A[I_0(Ax) \mid I_+(x)] \) is a zero-submatrix of \(A \). Since \(A \in T_n \) by assumption, we have (by D. 2.)

\[
|I_0(Ax)| + |I_+(x)| < n = |I_0(x)| + |I_+(x)|
\]

and hence \(|I_0(Ax)| < |I_0(x)| \) which proves the first part of the theorem. (It is not generally true however that \(I_0(Ax) \subseteq I_0(x) \) as it may happen that \(a_i(x) > 0 \) and \(a_i(Ax) = 0 \), a situation which differs somewhat from that in the similar case for indecomposable matrices (5.2.2 in [9])).

Let now \(A \in T_n \). Then \(A \) contains a zero-submatrix \(A[I \mid J] \) such that \(I, J \neq \emptyset \) and \(|I| + |J| = n \). Choose now \(x \in R_n \) such that

(4) \(I_+(x) = J \).

Then clearly \(x \in X_n \). We have \(I_0(x) = N - I_+(x) = N - J \), and hence \(|I_0(x)| = |I| \). For \(i \in I \) we have \(J_i \supseteq J \), and hence by (4) \(I_+(x) \subseteq J_i \),
so that for \(i \in I \) according to (1) \(a_i(Ax) = 0 \) and hence \(I_0(Ax) \supseteq I \). Then \(|I_0(Ax)| \geq |I| = |I_0(x)| \). This completes the proof.

\(X_n \) in Theorem 2 may of course be replaced by its subset \(Y_n \) consisting of the \(2^n - 2 \) zero-one vectors.

Theorem 2 admits of two simple corollaries which we present as Theorems 3 and 4.

THEOREM 3. If \(A \) is a totally indecomposable nonnegative \(n \)-square matrix then

\[A^{n-1} > 0. \]

Proof. If for some \(j_0 \) we had \(|I_{j_0}| \geq n - 1 \) then \(A \) would be partly decomposable and hence \(|I_{j_0}| \leq n - 2 \) for \(j \in N \) and the rest follows.

Theorem 1 follows from Theorem 3 as an immediate consequence of Corollary 1. For \(A = I + P \) where \(P \) is the \(n \)-square permutation matrix with ones in the superdiagonal, so that \(a_{ij} = 1 \) if \(i = j \) or \(i = j - 1 \), \(a_{ii} = 1 \) and \(a_{ij} = 0 \) otherwise, it is easy to show that \(A^{n-2} > 0 \), which shows that our result is best possible.

THEOREM 4. The product of any finite number of totally indecomposable nonnegative \(n \)-square matrices is totally indecomposable.

Proof. It is clearly sufficient to prove the statement for two matrices. Let therefore \(A, B \in T_n \). Choose an arbitrary element \(x \) of \(X_n \). We then have

\[|I_0(ABx)| \leq |I_0(Bx)| < |I_0(x)| \quad (5) \]

by Theorem 2. Since \(x \) was arbitrary, (5) applies to all elements of \(X_n \). Again by Theorem 2 it follows that \(AB \) is totally indecomposable, which proves the theorem.

4. **Independent proofs of Theorem 3.** A lemma of Gantmacher [3] states that if \(A \in D_n \) and \(x \in X_n \), then \(I_0((A + I)x) \subseteq I_0(x) \).

The following proof of Theorem 3 assuming the lemma has been suggested by London: Let \(A \in T_n \). Using the fact that a matrix in \(T_n \) possesses a positive diagonal \(d \), put

\[A_1 = \frac{1}{\alpha} P^r(A - \alpha P) = \frac{1}{\alpha} P^r A - I \] where \(0 < \alpha < \min a_{ij} (a_{ij} \in d) \)

\[^3 D. London, oral communication. \]
and \(P = (p_{ij}) \) is an \(n \)-square permutation matrix such that \(p_{ij} = 1 \) if and only if \(a_{ij} \in d \). Then \(A \in T_n \) implies \(A_1 \in T_n \).

We have \(A = \alpha P(A_1 + I) \); since \(A_1 \in D_n \) we obtain
\[
I_0(Ax) = I_0(P(A_1 + I)x) = I_0((A_1 + I)x) \subset I_0(x),
\]
for \(x \in X_n \). Then \(I_0(A^{n-1}x) = \emptyset \), and \(A^{n-1} > 0 \).

Another proof has been kindly suggested by the referee of this paper: We show that if \(A \) is totally indecomposable, then if \(x \in X_n \), then
\[
|I_0(Ax)| < |I_0(x)|.
\]
The theorem then follows immediately.

Suppose \(|I_0(Ay)| \geq |I_0(y)| \) for some \(y \in X_n \).

Put \(|I_0(y)| = s \). There are permutation matrices \(P \) and \(Q \) such that
\[
PAy = \begin{bmatrix} 0 \\ u \end{bmatrix} \quad \text{and} \quad Q^ty = \begin{bmatrix} 0 \\ v \end{bmatrix}
\]
where \(u \) is an \((n - s)\)-dimensional nonnegative vector and \(v \) is an \((n - s)\)-dimensional positive vector: The 0’s represent \(s \) zero components in each case.

We now write \(PAQ = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \) where \(A_1 \) is \(s \times s \), \(A_2 \) is \(s \times (n - s) \), \(A_3 \) is \((n - s) \times s \) and \(A_4 \) is \((n - s) \times (n - s) \). Then \(\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} 0 \\ V \end{bmatrix} = \begin{bmatrix} 0 \\ u \end{bmatrix} \)
and so \(A_2 V = 0 \). Thus \(A_2 = 0 \) and hence \(A \not\in T_n \), a contradiction.

5. König’s Theorem. Let \(A \) be an \(m \times n \) matrix. A covering of \(A \) is a set of lines (rows or columns) containing all the positive elements of \(A \). A covering of \(A \) is a minimal covering of \(A \) if there does not exist a covering of \(A \) consisting of fewer lines. Let \(M(A) \) denote the number of lines in a minimal covering of \(A \). A basis of \(A \) is a positive subdiagonal of \(A \) of maximal length. \(m(A) \) denotes the length of a basis of \(A \). The \(j \)th column of \(A \) is essential to \(A \) if \(M(A(\{j\})) < M(A) \).

We now give the two versions of König’s Theorem and their proofs:

K. T. 1. If \(A \) is an \(m \times n \) matrix, then \(m(A) = M(A) \).

K. T. 2. If \(A \) is an \(n \)-square matrix, then \(A \) has \(k \) zeros on every diagonal \((k > 0)\) if and only if \(A \) contains an \(s \times t \) zero-submatrix with \(s + t = n + k \).

This is a generalized version of a theorem of Frobenius. The following theorem appears in [8] (we reproduce it here in a hypothetical form).
E. T.: If A is an $m \times n$ matrix and K.T.I. holds for A, then there exists a minimal covering of A (called essential covering) containing precisely the essential columns of A (and may be some rows).

Proof of K. T. 1. $m(A) \leq M(A)$ holds trivially. The theorem is clearly true for $1 \times n$ matrices for all n. Assume that the theorem is true for all $\mu \times n$ matrices, $\mu < m$ and all n. Let A be an $m \times n$ matrix. Consider $A' = A({m}\setminus N]$. A' is an $(m - 1) \times n$ matrix so that K.T.1, holds for A' and hence E.T. holds for A'. Let Q be the essential covering of A'.

Case 1. Q is a covering of A. Then $m(A) \geq m(A') = M(A') \geq M(A)$.

Case 2. Q is not a covering of A. Then there exists $j_0 \in N$ for which $a_{m,j_0} > 0$ which is not covered by Q and hence the j_0th column is not essential to A'. Then clearly there exists a basis b' of A' without elements in the j_0th column. Then $b = b' \cup \{a_{m,j_0}\}$ is a sub-diagonal of A and hence $M(A) \leq M(A') + 1 = m(A') + 1 \leq m(A)$. This proves K. T. 1.

Proof of K. T. 2. Necessity. If A has k zeros on every diagonal then $m(A) \leq n - k$. By K.T.1, $M(A) \leq n - k$. Apply a minimal covering to A. Then there remains an $s \times t$ zero-matrix of A which is not covered, with $s + t \geq 2n - M(A) \geq n + k$.

Sufficiency. Let A contain an $s \times t$ zero-submatrix with $s + t = n + k$. Then there are positive elements on at most $2n - (n + k) = n - k$ lines, meaning that there are at least k zero-rows, which proves the sufficiency.

References

Received January 27, 1970.

Technion, Israel Institute of Technology
Haifa, Israel.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLE
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *

AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial “we” must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
E. M. Alfsen and B. Hirsberg, *On dominated extensions in linear subspaces of $C(X)$* ... 567

Joby Milo Anthony, *Topologies for quotient fields of commutative integral domains* .. 585

V. Balakrishnan, G. Sankaranarayanan and C. Suyambulingom, *Ordered cycle lengths in a random permutation* 603

Victor Allen Belfi, *Nontangential homotopy equivalences* ... 615

Jane Maxwell Day, *Compact semigroups with square roots* .. 623

Norman Henry Eggert, Jr., *Quasi regular groups of finite commutative nilpotent algebras* .. 631

Paul Erdős and Ernst Gabor Straus, *Some number theoretic results* .. 635

George Rudolph Gordh, Jr., *Monotone decompositions of irreducible Hausdorff continua* .. 647

Darald Joe Hartfiel, *The matrix equation $AXB = X$* ... 659

James Howard Hedlund, *Expansive automorphisms of Banach spaces. II* .. 671

I. Martin (Irving) Isaacs, *The p-parts of character degrees in p-solvable groups* .. 677

Donald Glen Johnson, *Rings of quotients of Φ-algebras* .. 693

Norman Lloyd Johnson, *Transition planes constructed from semifield planes* .. 701

Anne Bramble Searle Koehler, *Quasi-projective and quasi-injective modules* .. 713

James J. Kuzmanovich, *Completions of Dedekind prime rings as second endomorphism rings* .. 721

B. T. Y. Kwee, *On generalized translated quasi-Cesàro summability* .. 731

Yves A. Lequain, *Differential simplicity and complete integral closure* .. 741

Mordechai Lewin, *On nonnegative matrices* ... 753

Kevin Mor McCrimmon, *Speciality of quadratic Jordan algebras* .. 761

Hussain Sayid Nur, *Singular perturbations of differential equations in abstract spaces* .. 775

Lavon Barry Page, *Operators that commute with a unilateral shift on an invariant subspace* .. 787

Helga Schirmer, *Properties of fixed point sets on dendrites* .. 795

Saharon Shelah, *On the number of non-almost isomorphic models of T in a power* .. 811

Robert Moffatt Stephenson Jr., *Minimal first countable Hausdorff spaces* .. 819

Masamichi Takesaki, *The quotient algebra of a finite von Neumann algebra* .. 827

Benjamin Baxter Wells, Jr., *Interpolation in $C(\Omega)$* .. 833