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Here we show that Ramsey numbers M(ki,---,k,) give
sharp upper bounds for the independence numbers of product
graphs, in terms of the independence numbers of the factors.

The Ramsey number M(k, ---, k,) is the smallest integer m with
the property that no matter how the <ZL> edges of the complete

graph on m nodes are partitioned into 7 colors, there will be at least
one index % for which a complete subgraph on k; nodes has all of its
edges in the ith color. Ramsey’s Theorem tells that these numbers
exist but only a few exact values are known.

The complement graph G has the same nodes as G and the
complementary set of edges.

The independence number «(G) of a graph @, is the largest
number of nodes in any complete subgraph of G.

The product G, x --- x G, of graphs G, ---,G, is the graph
whose nodes are all the ordered n-tuples (a,, +--, a,) in which qa; is a
node of G; for each ¢ from 1 to %, and whose edges are as follows.
A set of two nodes {(a, +--,a,), (b, --+,b,)} will be an edge of
G, X «++- X G, if and only if the nodes are distinct and for each 7 from
1 to n, a; = b; or {a;, b;} is an edge of G,.

THEOREM 1. For arbitrary graphs G, -+, G,
a(Gl X ees X Gn) < M(a(Gl) + 1) MY a(G‘n) + l) .

Proof. We have a complete subgraph of G, X --+ XG, on
a(G, X -++ X G,) nodes. Its edges can be n colored by the following
rule: give {(a,, +-+, a,), (@, *++, 2,)} color 7 if 4 is the first index for
which {a;, «;} is an edge of G..

With this coloration any case where all the edges on % nodes
have color 4 requires a complete & subgraph of G, and so requires
k < a(G;) + 1. With the definition of the Ramsey number this ensures
that

Gy % v X Go) < M((G) + 1, +++, a(Gy) + 1) .

THEOREM 2. If k, +--, k, are given, there exist graphs Gy, ++-, G,
such that for each index i from 1 to n, a(G;) = k; and

G, X vos XG) =Mk, + 1, o+ b, +1) — 1.
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Proof. From the definition of the Ramsey number there must
exist an n color partition of the edges of the complete graph on
Mk, +1, -+, k, + 1) — 1 = m modes such that for every ¢ from 1 to
n the largest complete subgraph in the ith color is on k; nodes. For
each 7 let G; be the graph on the same m nodes having all the edges
not of color 4. Thus for each ¢, a(G;) = k;. These G; make the

diagonal a complete m subgraph of G, X .-+ X G,, and so
a(G, X +++ xXG,)=m.

Applying Theorem 1 we have
a(G, X «ooxG,) =Mk +1,-- k,+1) -1

THEOREM 3. If n and k are given, there exists a graph G such
that a(G) = k and putting k;, = k for every 1,

a(G") = M(ke, + 1, -~ k, +1) — 1.

Proof. With m = Mk, +1, «+-+, k, + 1) — 1 and every k; =k,
refer to the graphs G, --., G, as specified for Theorem 2. Now con-
struct G as follows. Let the nodes of G be all the ordered pairs
(a, %) such that 1 <7 <% and a is a node of G;. Let {(a, 7), (b, )} be
an edge of G if and only if 7 = j or {a, b} is an edge of G,.

Thus constructed a(G) = k because each a(G;) = k. G" will have

a subgraph isomorphic to G, X --- x G, and consequently
a(G") = a(G, X +++ X G,) =m .
So again with Theorem 1 we have
alGy=m= Mk, + 1, k, +1)—1.
A question remains whether for every k, n with
BP=n<Mk+1k+1)

there exists G such that a(G) = k£ and «(G*) = n. It is known that
M(4, 4) = 18, and for each % between 9 and 17 we have found a graph
G such that a(G) = 3 and a{G*) = n. However it is only known that
37 < M(5, 5) < 58 and for example we have no proof that there exists
a graph G such that «(G) = 4 and a(G*) = M(5, 5) — 2.
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