RAMSEY BOUNDS FOR GRAPH PRODUCTS

PAUL ERDŐS, ROBERT JAMES McELIECE AND HERBERT TAYLOR
RAMSEY BOUNDS FOR GRAPH PRODUCTS

PAUL ERDÖS, ROBERT J. McELIECE AND HERBERT TAYLOR

Here we show that Ramsey numbers $M(k_1, \ldots, k_n)$ give sharp upper bounds for the independence numbers of product graphs, in terms of the independence numbers of the factors.

The Ramsey number $M(k_1, \ldots, k_n)$ is the smallest integer m with the property that no matter how the $m \choose 2$ edges of the complete graph on m nodes are partitioned into n colors, there will be at least one index i for which a complete subgraph on k_i nodes has all of its edges in the ith color. Ramsey's Theorem tells that these numbers exist but only a few exact values are known.

The complement graph \bar{G} has the same nodes as G and the complementary set of edges.

The independence number $\alpha(G)$ of a graph G, is the largest number of nodes in any complete subgraph of G.

The product $G_1 \times \cdots \times G_n$ of graphs G_1, \ldots, G_n is the graph whose nodes are all the ordered n-tuples (a_1, \ldots, a_n) in which a_i is a node of G_i for each i from 1 to n, and whose edges are as follows. A set of two nodes $\{(a_1, \ldots, a_n), (b_1, \ldots, b_n)\}$ will be an edge of $G_1 \times \cdots \times G_n$ if and only if the nodes are distinct and for each i from 1 to n, $a_i = b_i$ or $\{a_i, b_i\}$ is an edge of G_i.

Theorem 1. For arbitrary graphs G_1, \ldots, G_n

$$\alpha(G_1 \times \cdots \times G_n) < M(\alpha(G_1) + 1, \ldots, \alpha(G_n) + 1).$$

Proof. We have a complete subgraph of $\bar{G}_1 \times \cdots \times \bar{G}_n$ on $\alpha(G_1) \times \cdots \times \alpha(G_n)$ nodes. Its edges can be n colored by the following rule: give $\{(a_1, \ldots, a_n), (x_1, \ldots, x_n)\}$ color i if i is the first index for which $\{a_i, x_i\}$ is an edge of \bar{G}_i.

With this coloration any case where all the edges on k nodes have color i requires a complete k subgraph of \bar{G}_i and so requires $k < \alpha(G_i) + 1$. With the definition of the Ramsey number this ensures that

$$\alpha(G_1 \times \cdots \times G_n) < M(\alpha(G_1) + 1, \ldots, \alpha(G_n) + 1).$$

Theorem 2. If k_1, \ldots, k_n are given, there exist graphs G_1, \ldots, G_n such that for each index i from 1 to n, $\alpha(G_i) = k_i$ and

$$\alpha(G_1 \times \cdots \times G_n) = M(k_1 + 1, \ldots, k_n + 1) - 1.$$
Proof. From the definition of the Ramsey number there must exist an n color partition of the edges of the complete graph on $M(k_1, 1, \ldots, k_n, 1) - 1 = m$ modes such that for every i from 1 to n the largest complete subgraph in the ith color is on k_i nodes. For each i let G_i be the graph on the same m nodes having all the edges not of color i. Thus for each i, $\alpha(G_i) = k_i$. These G_i make the diagonal a complete m subgraph of $G_1 \times \cdots \times G_n$, and so

$$\alpha(G_1 \times \cdots \times G_n) \geq m.$$

Applying Theorem 1 we have

$$\alpha(G_1 \times \cdots \times G_n) = M(k_1, 1, \ldots, k_n, 1) - 1.$$

Theorem 3. If n and k are given, there exists a graph G such that $\alpha(G) = k$ and putting $k_i = k$ for every i,

$$\alpha(G^n) = M(k_1, 1, \ldots, k_n, 1) - 1.$$

Proof. With $m = M(k_1, 1, \ldots, k_n, 1) - 1$ and every $k_i = k$, refer to the graphs G_1, \cdots, G_n as specified for Theorem 2. Now construct G as follows. Let the nodes of G be all the ordered pairs (a, i) such that $1 \leq i \leq n$ and a is a node of G_i. Let $\{(a, i), (b, j)\}$ be an edge of G if and only if $i \neq j$ or $\{a, b\}$ is an edge of G_i.

Thus constructed $\alpha(G) = k$ because each $\alpha(G_i) = k$. G^n will have a subgraph isomorphic to $G_1 \times \cdots \times G_n$ and consequently

$$\alpha(G^n) \geq \alpha(G_1 \times \cdots \times G_n) = m.$$

So again with Theorem 1 we have

$$\alpha(G^n) = m = M(k_1, 1, \ldots, k_n, 1) - 1.$$

A question remains whether for every k, n with

$$k^2 \leq n < M(k + 1, k + 1)$$

there exists G such that $\alpha(G) = k$ and $\alpha(G^n) = n$. It is known that $M(4, 4) = 18$, and for each n between 9 and 17 we have found a graph G such that $\alpha(G) = 3$ and $\alpha(G^n) = n$. However it is only known that $37 < M(5, 5) < 58$ and for example we have no proof that there exists a graph G such that $\alpha(G) = 4$ and $\alpha(G^n) = M(5, 5) - 2$.

Received May 25, 1970. The work of the latter two authors represents one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.

JET PROPULSION LABORATORY
Gregory Frank Bachelis and Haskell Paul Rosenthal, *On unconditionally converging series and biorthogonal systems in a Banach space* 1
J. Lennart (John) Berggren, *Solvable and supersolvable groups in which every element is conjugate to its inverse* ... 21
Lindsay Nathan Childs, *On covering spaces and Galois extensions* 29
William Jay Davis, David William Dean and Ivan Singer, *Multipliers and unconditional convergence of biorthogonal expansions* 35
Leroy John Derr, *Triangular matrices with the isoclinal property* 41
Paul Erdős, Robert James McEliece and Herbert Taylor, *Ramsey bounds for graph products* ... 45
Edward Graham Evans, Jr., *On epimorphisms to finitely generated modules* .. 47
Hector O. Fattorini, *The abstract Goursat problem* 51
Robert Dutton Fray and David Paul Roselle, *Weighted lattice paths* 85
Thomas L. Goulding and Augusto H. Ortiz, *Structure of semiprime (p, q) radicals* .. 97
E. W. Johnson and J. P. Lediaev, *Structure of Noether lattices with join-principal maximal elements* ... 101
David Samuel Kinderlehrer, *The regularity of minimal surfaces defined over slit domains* ... 109
Alistair H. Lachlan, *The transcendental rank of a theory* 119
Frank David Lesley, *Differentiability of minimal surfaces at the boundary* ... 123
Wolfgang Liebert, *Characterization of the endomorphism rings of divisible torsion modules and reduced complete torsion-free modules over complete discrete valuation rings* ... 141
Lawrence Carlton Moore, *Strictly increasing Riesz norms* 171
Raymond Moos Redheffer, *An inequality for the Hilbert transform* 181
James Ted Rogers Jr., *Mapping solenoids onto strongly self-entwined circle-like continua* ... 213
Sherman K. Stein, *B-sets and planar maps* .. 217
Darrell R. Turnidge, *Torsion theories and rings of quotients of Morita equivalent rings* .. 225
Fred Ustina, *The Hausdorff means of double Fourier series and the principle of localization* ... 235
Stanley Joseph Wertheimer, *Quasi-compactness and decompositions for arbitrary relations* ... 253
Howard Henry Wicke and John Mays Worrell Jr., *On the open continuous images of paracompact Čech complete spaces* 265