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In the two dimensional case, as in the one dimensional
case, the Hausdorff summability method is generated by a
Hausdorff weight function. In this paper, we investigate the
conditions which must be imposed on this weight function in
order that the resulting means of a double Fourier series
will display the principle of localization.

In this article we examine the conditions under which the
Hausdorff means of double Fourier series exhibit the principle of
localization. As is well known, these means are a generalization of
a number of other well known means, including those of Cesaro and
Euler. Our results are summarized in Theorems 1 to 4, together
with the appropriate corollaries.

Let [c, d; a, b] denote a rectangle with vertices at (α, 6), (a, d), (c, b)
and (c, d), a ^ c, b ^ d. For 0 < δ < π, let R(δ) = [δ, δ; -δ, -δ],
N(δ) = [π, δ; -π,-δ]\J [δ, τr; -δ, -π], C(δ) = [π, π; -π, -π] ~ N(δ),
and E(δ) = N(δ) ~ R(δ). For 0 < τ ^ 1/2, let Δ(τ) = [1 - r, 1 - τ; r, τ],
and let θ{τ) = [1,1; 0, 0] - A{τ). Then N(δ) is a cross-neighborhood
of the origin, E(δ) is the deleted cross-neighborhood, and θ(τ) is the
r-neighborhood of the boundary of the unit square [1, 1; 0, 0].

Let f(x, y) be a 2τr-periodic function, Lebesgue integrable in the
period square, and let {smn(x, y)} be the corresponding sequence of
partial sums of the Fourier series of f(x, y). In the sequel we relate
all such calculations to the origin, so that we will be examining the
sequence {smn(0, 0)}, which we denote simply by {smn}. As is easily
shown,

t t)
 s i n ^ m + ^ s i n ^ + W ds dt

si /2 sin t/2
P /(,t t)

Aπ2 I-*,-* sin s/2 sin t/2

E(δ) JC(δ)

'mn i @mn I

Now suppose that a regular linear summability method H ([6],
Vol. 1, p. 74) is applied to the sequence {smn} and let {hmn} denote the
corresponding sequence of transforms under the method H. Then

hmn = H{smn}

(2) = H{rmn] + H{emn} + H{cmn}
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We will say that the principle of localization holds for the
sequence {smn} if for arbitrary, fixed δ, smn = rmn + o(l), m, n -* oo, and
that it holds restrictedly if smn — rmn + o(l), m, n~-+ °o, under certain
specified restrictions on the subscripts m and n. Similarly, we will
say that the principle of localization holds for the sequence {hmn} if
hmn = amn + o(l), m, π —> ex), and that it holds restrictedly if

hmn = amn + o(l), m, n-+ oo ,

under certain specified restrictions on the subscripts m and n.
It follows that a necessary and sufficient condition for the

principle of localization to hold in the first case is that

emn + cmn = o( l) , ra, π —• oo ,

and in the second case the necessary and sufficient condition is that
βmn + Ίm% = o(l), m, w —> oo. Since /(&, #) is assumed to be Lebesgue
integrable, the sequence {cmn} is a null sequence. Since the method
H is assumed to be regular, it follows that the sequence {Ύmn} is also
a null sequence. Thus to prove that the principle of localization holds
for an arbitrary, Lebesgue integrable function, it is necessary and
sufficient to prove that, for an arbitrary fixed δ, δ > 0, emn = o(l) and
βmn = o(l), m, τ& —• oo, in the respective cases.

Now let H be a regular Hausdorff summability method. This
method has been investigated in detail by Hallenbach [2]. From the
foregoing, it follows that to prove that the principle of localization
holds for this method, it is necessary and sufficient to prove that the
sequence {βmn} is a null sequence, where

^ ί 1 - ^Γ~V(1 - v)*~ιdg(u, v) ,

where the Hausdorff weight function g(u, v) is of bounded variation
in the unit square [1, 1; 0, 0], g(u, 0) = g(u, 0+) = #(0, v)'= g(0+, v) = 0,
and flf(l, 1) = 1.

We will say that g(u, v) satisfies a Lipschitz condition of order
one and Lipschitz constant M on a region R cz [1, 1; 0, 0] if g(u, v) is
continuous on R and if

\g{u", v") - g(u', v") - g{u'f, v') + g(u', v')\ £ M\{u" - u'){v" - v')\

whenever the rectangle \v/\ v"\ u', vf\ contains only points of R. It is
easily seen that in such a case, the absolute value of the measure
dg(u, v) is majorized by Mdudv on R.

Summary of the main results* We assume that g(u, v) is a
regular Hausdorff weight function, so that the corresponding Hausdorff
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method is regular. From (3), we have

(4) βmn = Σ ( 7 ) ( ? W ( + ( I"**1 - «)"-^'(l - vY-ldg(u, v)
0,0 V k I V I I ljΛ{τ) J !{z))

THEOREM 1. If a 2π-periodic function is Lebesgue integrable in
the period square, then dmn = o(l), m, n —> ©o, provided that for some
fixed but otherwise arbitrary ε, 0 < ε ^ 1, and fc = r ( l — τ)<?2/12, we

m ^ ε"1^*1 and w <i ε~Vm, α fortiori provided that

for an arbitrary, fixed positive integer k, as m, n —> ^ .

COROLLARY 1. // {/̂ mw} is a sequence of regular Hausdorff trans-
forms of the sequence {smn}, corresponding to a 2π-periodic function
which is Lebesgue integrable on the period square, then the question
of whether the sequence {hmn: εm~k <Ξ m/n ^ e~ιnk} exhibits the principle
of localization depends entirely on the behavior of the Hausdorff weight
function in an arbitrarily small τ-neighborhood of the boundary of
the unit square [1, 1; 0, 0]β

COROLLARY 2. //, in Corollary 1, the sequence {hmn} corresponds
to a Hausdorff weight function g(u, v) such that for some τ > 0, the
measure dg(u, v) is identically zero in a τ-neighborhood of the boundary
of the unit square, then the sequence {hmn: εm~k <̂  m/n ^ s~xnk} exhibits
the principle of localization. In particular, if 0 < a < 1 and 0 < β < 1,
and if {εmn} is the sequence of the Euler (ε; a, β) transforms of the
sequence {smn}, corresponding to a 2π-periodic function Lebesgue
integrable on the period square, then the sequence

{εmn: εm~k ^ m/n ^ ε~ιnk}

exhibits the principle of localization.

Corollary 1 is an obvious consequence of Theorem 1. This is also
the case with the first part of Corollary 2. The second part of
Corollary 2 then follows by observing that the Euler (ε; a, β) means
are Hausdorff means corresponding to a function g{u, v) such that the
measure dg(u, v) is identically zero except at the point (a, β), where
dg{u, v) = 1.

THEOREM 2. Let σ be any subset of θ(τ) such that on every simply
connected subset of σ, the Hausdorff weight function g(u, v) satisfies
a Lipschitz condition of order one with Lipschitz constant M. Let
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σmn = Σ

( a ) if f(x, y) e Lp(N(δ)), 1 < p < oo, £/^π σm% = o(l), m, w — oo,
εm"* ^ m/w ^ ε-1?^, where ε and λ are fixed but arbitrary, 0 < ε rg 1,
cmcϋ 0 < λ < p — 1.

(b ) ^ / /(a, 7/) e B(iV(δ)), then σmn = o(l),m, n - oo, m ^ ε"Vx,
n ^ ε " 1 ^ , wfcere now ε and λ are fixed, 0 < ε ^ 1 and 0 < λ < 1.

Iw particular, the contribution to the mnth term of the sequence {βmn},
due to integration with respect to g(u, v) over any subset of the unit
square on which g(u, v) satisfies a Lipschitz condition of order one
with Lipschitz constant M, is o(l), m, n-+ oo, εm~ι ^ m/n ^ ε~xnλ,
0 <X < p — 1, if f(x, y) e Lp(N(δ)); and this contribution is

(l) m,n-*oofm^ ε~ιen\ n ^ ε^e^O < λ < 1 ,

if f{x, y) e B(N(δ)).

COROLLARY. Let {cmn} denote the sequence of the Cesίro (C; a, β)
means of {smn}, corresponding to a 2π-periodic function f(x, y). If
1 <J a, β, and if f(x, y) e B{N{δ)), then for arbitrary fixed ε, λ, 0 < ε ̂  1,

0 < λ < 1, the sequence {cmn: m ^ ε~~ιen , n g ε~ιem } exhibits the principle
of localization. If 1 ^ a, β, and if f(x, y) e Lp(N(δ)), 1 < p < <>o, ^ β ^
/ o r arbitrary, fixed ε, λ, 0 < ε ^ 1, 0 < λ < p — 1, ί/̂ β sequence

{cmn; εm~λ ^ m/w ̂  ε" 1^}

exhibits the principle of localization.

The corollary follows from the theorem by taking σ — [1, 1; 0, 0]
and observing that the (C; a, β) means are Hausdorff means correspond-
ing to the function g(u, v) = {1 - (1 - u)a} {1 - (1 - vf). Then
1 dg(u, v) I = I αβ(l — u)a~ι(l — v)β~ι \ dudv ^ Mdudv for some constant
M^ aβ iί 1 ^ a, β.

Since it is already known ([6], Vol. II, p. 304) that for bounded
f(x, y), the sequence {cmn} exhibits the principle of localization without
the restrictions imposed on the subscripts m, n in the above corollary,
it would seem that our estimates in Theorem 2 can be improved or a
new proof devised to give a better result. Attempts to achieve this
have been unsuccessful so far.

THEOREM 3. Suppose that the Hausdorff weight function g(u, v)
is discontinuous along finitely many lines

ω = { u = u { , i = 1 , 2 , , k; v = v3; j = 1, 2 , • • • , £ } ,
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such that for some τ > 0, τ <̂  u{ ^ 1 — τ, τ ^ v, ^ 1 — τ for all i, j .
LetQiiv) = g(ut,v) - g{uj,v) and g3{u) = g(u, vj) — g(u, vj), and suppose
that the functions {Qi(v)9 g3-{u)} all satisfy a Lipschitz condition of
order one and Lipschitz constant M. Let

?)eu\ , v)

be the contribution to βmn due to integration with respect to g(u, v)
along these lines. Then we have

( a ) if f{x, y) G L[π, π; -π, -π], then ωmn = oil), m,n-+co,
provided ε ^ m/n rg ε"1, where 0 < ε g 1 is fixed but otherwise arbitrary.

(b ) if fix, y) e Lp(N(δ)), then

<£>mn = o(l), m, n—* oo, em~λ ̂  m/n ^ ε~W ,

where 0 < ε ^ 1, α%d 0 < λ < #> — 1 are fixed but otherwise arbitrary.
( c ) if fix, y) G B(N(δ)), then ωmn = oil), m,n-+co,m^ ε^en\

n ^ ε~~ιem , tvhere ε is as before, and λ is again fixed, 0 < λ < 1.

From Theorems 1, 2 and 3, a number of general statements
pertaining to the principle of localization for the sequence {hmn} of
regular Hausdorff transforms of the sequence {smn} can be made
immediately. We give one example. From Theorems 1 and 3, we get

THEOREM 4. Suppose that fix, y)eL[π, π; — π, —π], that fix, y)
is periodic of period 2ττ, and that {smn} is the sequence of partial sums
of the Fourier series of fix, y). If the Hausdorff weight function
g(u9 v) is such that for some τ > 0 the measure dgiu, v) is identically
zero in the τ-neighborhood of the boundary of the unit square, except
along finitely many lines u — uu v = v3 , τ <̂  u{ < 1 — τ, τ ^ v3- ^ 1 — r
for all i,j, along which the difference functions g^v), g3{u), as defined
in Theorem 3, all satisfy a Lipschitz condition of order one and
Lipschitz constant M, then the corresponding sequence of Hausdorff
transforms {h,nn} exhibits the principle of localization restrictedly, tvith
the restriction that for arbitrary fixed ε, 0 < ε ^ 1, we have

ε fg m/n fg ε"1 .

Preliminary Lemmas* We collect here a few lemmas to facilitate
the proofs of our results.

LEMMA 1. Let

|θi sin a — u sin s, pt cos a = 1 — u + u cos s

p2 sin β — v sin t, ρ2 cos β = 1 — v + v cos t .
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Then

sin(/c + 1/2)8 si
, ^ α M v ( 1

sins/2 sin ί/2

= PTP2 Φ(m; a, s) φ (n; β, t)

vjhere

Φ(m; a, s) = sin ma cot s/2 + cos ma

φ(n; β, t) = sin nβ cot ί/2 + cos nβ .

Proof. The proof is essentially due to Szasz [3, p. 443].

(™) sin(fc + l/2)s ufc(l - u)m~k

= Im{(l-u + ueis)meisl2}

— Im {{ft(cos α: + i sin ̂ )}w(cos s/2 + i sin s/2)}

= pT Im {(cos M + i sin mα:)(cos s/2 + i sin s/2)}

= pT (sin mcr cos s/2 + cos ma sin s/2) .

Dividing through by sin s/2 and noting that (7) is a product of two
sums of the type (8) completes the proof.

LEMMA 2. For small values of t, say\t\ ^ δ, and 0 fg v ^ 1,

( 9 ) sin nβ = sin ntv + 2 cos w(ta + J rv(l — v)ί3) sin nrv(l — v)f/2 ,

I r I = I r(ί, v) | ^ δ' .

Proof. This result is due to Szasz [3, p. 449], taking into account
that sin (— x) = — sin x.

LEMMA 3. \Φ(m; a, s) | <Ξ cot s/2 + 1, 0 < s <£ TΓ, SO ίfcαί for
0 < δ ̂  s ^ 7Γ, I ^(m; αr, s) | ^ 7 < °° uniformly in m, a and s.

Proof. The lemma is obvious.

LEMMA 4.

<*(ra; /5, ί) = 2 s i n n β + ^ ' (n ί, v)

where γ\n\ t, v) is bounded absolutely and uniformly, 0 :£ 1; ̂  1,
0 < I ί I g 7Γ, n = 1, 2, .

Proof. From Lemma 1, we have
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φ(n; β, t) = 2 s m n@ + sin nβ {cot t/2 - 2/t} + cos nβ

= 2 s i n " * + ψ'(n; t, v) .

LEMMA 5. For small values of t, say \t\ ^ δ, and 0 ^ v ^ 1,

+ r { n - 1 , v){nv(l - vW/12} ,

where \ψ"(n\t,v)\ ^ 123'.

Proof. The lemma follows immediately from Lemma 2 on division
by t since | cos x | ^ 1 and | sin x | ^ | a; |. Thus the second term on the
right in (9) is bounded absolutely by the absolute value of nrv(l — v)t\
Thus

sin nβ = sin ntv + ψ"(n; t, v){nv(l — v)f/12} ,

where |ψ"{n\ t,v)\<*\ 12r(ί, v)\ ^ 12δ'.

LEMMA 6. For \s\ ^ π and O ^ w g l ,

Proof. From the definition in Lemma 1, we have

pl = 1 - 2u(l - u)(l - cos s)

^ 1 - 2u{l - u){(s2/2l - s4/4!) + (s6/6! - s.8/8!) + ...}

^ 1 - 2u(l - u)s2(l/2l - s2/4!)

^ 1 - u/6(l - u)s2

since under the restrictions on s and u, u(l — u), and each of the
paired terms in s, is nonnegative, and 1/2! — s2/4! > 1/12.

REMARK. It is clear that under similar restrictions on t and v?
we have

LEMMA 7. /^ ί/̂ e interval 0 ^ v ^ 1 αmZ |ί

ft" ^(^ β, t) = 2ί>? s m ^ + t ( ^ ; *, v)

where ψ(n; t, v) is bounded absolutely and uniformly in n, t and vf
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say \f(n;t,v)\ ^ δ".

Proof. By Lemmas 4 and 5,

(10) φ(n; β,t) = 2 s m n t v + 2f"{n; t, v)nv(l - v)f/12 + ψ'(n; t, v) .

Then

P!Φ(n; β, t) = 2plsin n t v + 2f"(n; t, v)ρϊ(n/l2)v(l - v)f

+ pW\n; t, v)

; t, v) ,

where ψ(n; t, v) is bounded absolutely and uniformly, since ψ'in; t, v)
and ψ"(n) t, v) are so bounded, and

ρζ(n/12)v(l ~ v)f ^ {nll2)v{l - v)t2

e-
nvil-vn2/12 ^ e~ι

for all values of n, v and t, since ze~z ̂  e'1 for z ^ 0.

LEMMA 8. For n and k large enough, 0 ^ v ^ 1 and \t\ ^ <5,

\p;Φ(n;β,t)\ <±n

and

Iφ{n\ β,t)\^ Akn .

Proof. The first part follows immediately from Lemma 7 since
ρl <̂  1, ψ(n; t, v) is bounded, and \sin ntv/t\ ^ nv ^ n. The second
part follows from (10) since ψ\n\ t, v) and ψ"{n\ t, v) are bounded, and
nv(l - v)f/12 < n for 0 ^ ί ^ TΓ.

LEMMA 9. // iΓ α^d Λ: are any fixed, positive numbers, however,
large or small, then

K{me~κn + ne~κm) = o(l), m, w —> oo ,

provided that for some fixed λ, 0 < λ < tc, and fixed ε, 0 < ε ^ 1, we
/̂ αve m ^ ε"1^^ α^d n ^ ε"1^77* as m, %—> oo, a fortiori, provided that
ε ^ m/n ̂  ε"1 as m, ̂  —> oo.

Proof. We prove only that under these conditions, Kme~κn = o(l),
m,n-+^, the proof of the other part being the same. But then

Kme~κn ^

—> 0,
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LEMMA 10. For 0 < δ ^ s ^ π,

243

1 ρ™du < cm"1 ,
Jo

where c = 48/δ2.

Proof. By Lemma 6,

e~
muil-u)s2112 du

Now since the integrand on the right is symmetric in u and 1 — u,
and ^(1 - u) ^ u/2, 0 ^ % <: 1/2, we get

S I f

o J

l/2

o

l/2

< 48/mS2 = cm~ι .

LEMMA 11. For O ^ i g l and 0 < δ <; π,

dί < 2 log w, w ̂  10 .sin ntv
ί

Proof. If i; = 0, the lemma is obvious. If v Φ 0, set wti; = t'.
Then

sin wta
t

IIΛ

<̂

<

<

0

0

sm t
t

sin t
t

d

dt

f1 s inί ,.
Jo t

{1 + log π

2 log w, n \

t

Cπn

4- 1+ Ji

+ log

s 10 .

dt

T

L E M M A 12. F o r O ^ t ^ l ,

1 < p < O3, we have
^ π and l/p + 1/g = 1,

sin 1/?) log n,n^

Proof. Again, if v — 0, the result is obvious. Otherwise set
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ntv = V. Then

sin dt} l/9 f f w

nv-
sin

nv)

sinί

< nίlp{l + log 7Γ + log n}119

< 2nllp log n, n ^ 10 .

LEMMA 13, Given an arbitrary fixed number K <
ε and λ, 0 < ε ĝ 1, 0 < λ < #> — 1, where 1 < #> < °°

ιllp log m ι1/J) log % \ _

m
} = o(l), m, n

provided that n/m ^ ε"1?^ ατιcί m/w ^ ε"1^'1 as m, ^ —> °o .

Proof. Again we satisfy ourselves by proving that under these
restrictions, K(mιlv log m)jn — o(l), m, ^—* °o, the proof of the other
part being the same. But thenm < ε"1^^^, and so, taking ε = 1 for
convenience,

m1/p log m

n n

log n

= 0(1),

provided that λ < ^ — 1.

Proof of the main results* By the earlier remarks, to establish,
the conditions under which the sequence {hmn} will exhibit the principle
of localization, it is necessary and sufficient to establish the conditions
under which the sequence {βmn} is a null sequence. By (1) and (3),

Pmn
4π2 0,0

/vyj

f(s,t)
s ί n s ί n

sins/2 sinί/2

X uk(l - u)m-kvι(l - vf-ιdg{u, v) .

Interchanging the order of summation and integration, which is
permissible in this case since the sum is finite, and applying Lemma.
1, we get
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x 1 pTpt
Jo,o

> t)dsdt['1 pTpt Φ(m; a, s)φ(n; β, t)dg(u, v)
Jθ,O

+ + \f(s,t)dsdt
,~δ J—5,5 J-δ,-z)

\ a, s)φ(n; /3, t)dg(u, v)

We assume that the mass points of dg(u, v) are all bounded
uniformly from the boundary of the unit square, and that τ is small
enough so that θ(τ) contains no mass points of dg(u, v). We also
assume that g(u, v) satisfies a Lipschitz condition of order one and
Lipschitz constant M in every simply connected region of θ(τ) over
which g(u, v) is continuous, and we let σ denote the union of all such
regions. Finally, we assume that in θ(τ), g(u, v) has finitely many
lines of discontinuity, u = uif i = 1, 2, , k, v = vjf j = 1, 2, , I,
such that τ <i* ui9 vj t£ 1 — τ for all ί, j , and that the difference
functions {gt(v), gj(u)}, where g^v) = g{uf, v) — g(uΐ, v) and

Qs{u) = g(u, vf) - g(u, vj) ,

all satisfy a Lipschitz condition of order one and Lipschitz constant
M on θ(τ). We denote the set of these lines by o).

Thus, Xtm i — 1, 2, 3, 4, has three components, namely, due to
integration over Δ(τ), then due to integration over σ, and finally due
to integration over ω. We denote these components by 8*mn, σι

m% and
ωinJ so that

(12) λί,. - δi
n
 + σl

n
 + a)i

n
 ,

and by (4), (5) and (6), we have

i = 1, 2, 3, 4,

(13) σ
mn
 =

Proof of Theorem 1. From (11) and (12), we get

4TΓ

4TΓ

π2

, v)

*.-*.



246 FRED USTINA

where we have applied Lemmas 3, 6 and 8, and set tt = τ(l — τ)<52/12,
Kγ = kyV(g)/π2, where V(g) denotes the total variation of g(u, v) in
the unit square, and

^-wr(l-r)ί2/12 I f(Q / \ I ΛQrlf

e \ J \"> v) I Us^U/i, *

and used the observation that in Δ(τ), pi is bounded by e-^ 1 -^ 2 /^
Now e~WΓ(1~Γ)ί2/12|/(s, £)| j 0, w—> co, except on a set of measure zero,
so that I^n) j 0, n —• oo.

That IS2™I <̂  K2ne~κmI2{n), where K2 and J2(n) have the correspond-
ing relation to the rectangle [— δ, δ; — π, — δ], is proved in the same
manner. To show that \δB

mn\ ̂  Kzme~κnI3{m) and \&mΛ ^ Kime"κnIi(nή9

we interchange the roles of s and ί, and thus of m and w. Here, Λ:
has the same meaning throughout, and the constants Ki9 i = 1, 2, 3, 4,
are all finite. Thus

(14) \δmn\ ^ \δι

mn\ + \δ2

mn\ + \δln\ + \δ*mn\

^ K{ne-κmmn) + I2{n)) + me-™(I3(m) + I4(m))}

where if = max {Ku K2, K3, K4}. By the same argument as used to
prove that I^n) [ 0, n —> oo, we have that /2(w) j 0, w —• oo, and
(I3(m) + /4(m)) i 0, m—* oo. Applying this to the right hand side of
(14), we get δmn = o(l), m, ^—> oo, provided that m ̂  e~ιeκn and
n ^ ε"1^^ as m. ^—> oo. This completes the proof of the theorem.

Proof of Theorem 2. Taking τ = 1/2, we may assume that the
Lebesgue measure of σ is unity, that is, the measure of [1, 1; 0, 0] ~ σ
is zero. As before, we have

I/(s, t) I dsdt \ pTplI φ(m; a, s) \\φ(n; β, t)\\dg(u, v) \ ,

and since on σ the measure \dg(u,v)\ is majorized by Mdudv, we
have by Lemmas 3 and 7,

|/(β,ί)|ώdίΓV —

4π2

Now

2TΓ 2 J * , - V x " 7 " 7 Jo,o

My I /(s, ί) I dsdί I p? I i/r(π; ί, v) \ dudv .
δ,—δ Jθ,O

PT\ ψ(n\ t, v) I dudv = \ p? du\ | ψ(w; ί, v) \ dv
o,o Jo Jo
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uniformly in t, m and n, 0 < δ <̂  s ^ π, by Lemmas 7 and 10. Thus
the last term on the right in (15) is bounded by (Mτ/cδ")/(4π2m) = o(l),
m —> oo, where we have set

1 = \f(s,t)\dsdt .

Next, applying Lemma 10 and changing the order of integration in
the first term on the right in (15), we get

(16)
£!rr2τrm

+ o(l),

\Λ*,t)\ sin ntv
t

dsdt >dv

Now suppose that f(8,t)eB(N(δ)), that is, \f(s, t)\ ^ B <
almost everywhere in N(δ). Then

Jo U-δ
+ o(l)

BMΎC

< 2

πm

BMΎC

sin dίjdi; + o(l)

πm
log n + o(l)

7V- log?

m
+ o(l), m • 10

by Lemma 11. Thus σι

mn = o(l), m, w—* oo, provided that for some
fixed but otherwise arbitrary ε and λ, 0 < ε ̂  1,0 < λ < 1, we have
n ^ e~ιem a s m , ̂  —> oo.

That σ2

mn = o(l), m, n—> oo; n <k e~ιemλ, is proved in a similar
manner. To prove that σ\n + αΐ,n = o(l), m, ^—> oo, m ^ ε"1^ , we
again reverse the roles of s and ί, and so of m and t̂ . This completes
the proof of Theorem 2 for the case where f(s, t) e B(N(δ)).

If f(8, t) e Lp(N(δ)), l<p<oo, t h e n in (16),

,—δ

sin

(17)
δ,-δ

sin

< 2Inίlp log

10 ,

where we equated the first integral to /, and applied Lemma 12 to
the second integral. Then by (16),
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m

m

the o(l) term being absorbed in the first term.

Proceeding as in the first part of the proof with respect to σι

mni

i — 2, 3, 4, and combining the results, we get
71 i O g n + m l 0 g m k m, n ^ 10

m n J

= o(l), m, n — oo

by Lemma 13, provided that m/n ̂  ε " 1 ^ and n/m ^ ε"xm^, or equiva-
lently provided that εm"A ̂  m/n ^ ε"1^^, 0 < ε ^ l , 0 < λ < p — 1.
This completes the proof of Theorem 2.

Proof of Theorem 3. Let ω^i be the contribution to ωι

mn due to
integration along the line u — ui9 and let col^i be the contribution to
o)ι

mn due to integration along the line v = Vj. Then

α, s)φ(n; β, t)dg(u, v) .

By Lemma 6, p? ^ e~κm, where again K — τ(l — r)δ2/12. Then by
Lemmas 3 and 8,

π2
[tδ i /(S,«) i dsdt

n e

π 2

= K[ ne-κm

where It and Kl have the obvious meanings, K[ being an absolute
constant independent of i. Since there are at most k < oo such lines,
the total contribution of these k lines to ωι

mn does not exceed

(18) kKl ne-κm = K'ne-κm .

Next, we have

(19) ω\ά = -^-[^ f(s, t)dsdt ['"' p?pϊφ(m; a, s)φ(n; β, t)dg(u, v) ,
47Γ2 Js,-δ Jo,vJ

and so, by Lemmas 3, 6 and 8,
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π,δ f* l

I / ( s , t) I e~nτ{1~τ)t2/12dsdt \ p? du
δ,-δ Joπ2

kΊMc ±
π2 m

)
m

where k now is the constant of Lemma 8, and Un) is the same as
in the proof of Theorem 1. Here again K" is an absolute constant
independent of j , and Un) \ 0, n—+ oo. Since there are at most I < oo
such lines, the total contribution of these to ωι

mn is bounded absolutely

by

(20) IKr — Un) = K" *L
m m

Thus by (18) and (20),

^ K' ne~<m + ίΓ" — Ix(n)
m

+ — U
m

By similar reasoning, we get

m

Taking i ί = 2. max {Jξ, if2, K3, K4} and combining the results, we
have

( ) )
n

— o(l), m, tι —• 0, ε ^

Um))V

where the first part goes to zero by Lemma 9, and the second part
because of the convergence of the integrals Un), Un), J3(m) and I4(m)
to zero. This completes the proof for /(s, t)eL[π, π; —π, — π].

If f(s, t) e Lp(N(δ)), 1 < p < oo, then-
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Mye~κ

4τr2 Jδ,-δ

Mierκm

'δ I /(β, ί)! & * Γ I PZΦ(n; β, t) \ dv
,-δ JO

2π2

sin ntv dsdt [dvS I ( Γπ,δ

o Oδ,-δ

ί,-ί Jθ

by Lemma 7. By (17), the integral in brackets in the first term on
the right is bounded by K{nllplogn. Thus the first term on the
right is bounded MΊK[ e~κm nιlp log n/2π\ Since ψ(n; t, v) is bounded
absolutely and uniformly, the second term is o(l) as m —> oo. Since
there are at most k such lines, their total contribution to ωι

mn is
bounded by

(21)

On the other hand, by (19),

ιip log7?,,

2τr2ra Js,-δ

sin ntvΊ

t
dsdt

m Js.s
\f(s,W\Ήn;t,vi)\dsdt

m

m
, m

The contribution of finitely many, say I, such lines is then bounded

by

(22) ,, n-'Mogn
-, m

the o(l) term being absorbed in the first term. Combining (21) and
(22), and setting K, = max {K', K"), we have

m~^ oo... + 11

= o(l), m, ̂  —• oo f n/m ^ r V , 0 < λ < p — 1

by Lemma 13, since for m sufficiently large, e~κm < m"1.
Proceeding as before with regard to α>ϊw, i = 2, 3, 4, and combin-

ing the results, we get

), m,
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where 0 < λ < p — 1 is arbitrary but fixed.
If f(s, t) e B(N(δ)), then a similar calculation yields the result

, m, n —> oo t m ^ ε^e*2, w ^ ε " 1 ^ ,

where ε and λ are arbitrary but fixed, 0 < ε ^ 1, and now 0 < λ < 1.
Since the calculations are rather obvious, we avoid the details. This
completes the proof of Theorem 3.
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