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In the two dimensional case, as in the one dimensional
case, the Hausdorff summability method is generated by a
Hausdorff weight function. In this paper, we investigate the
conditions which must be imposed on this weight function in
order that the resulting means of a double Fourier series
will display the principle of localization.

In this article we examine the conditions under which the
Hausdorff means of double Fourier series exhibit the principle of
localization. As is well known, these means are a generalization of
a number of other well known means, including those of Cesiro and
Euler. Our results are summarized in Theorems 1 to 4, together
with the appropriate corollaries.

Let [e, d; a, b] denote a rectangle with vertices at (a, b), (a, d), (¢, b)
and (¢,d),a<¢, b<d. For 0<do<m let R =][s,0d; —d, —0d],
N(@©) =[x, 6; — =, —0] U [8, =; —6, —=x], C() =[x, w; —7w, —7] ~ N(9),
and E(0) = N(©O) ~ R(). For0 <t <1/2,let 4(z) = [l — 7,1 —7;7, 7],
and let 4(z) = [1,1;0, 0] ~ 4(zr). Then N{) is a cross-neighborhood
of the origin, E(0) is the deleted cross-neighborhood, and 6(z) is the
z-neighborhood of the boundary of the unit square [1, 1; 0, 0].

Let f(x, y) be a 2r-periodic function, Lebesgue integrable in the
period square, and let {s,.(%, ¥)} be the corresponding sequence of
partial sums of the Fourier series of f(x, v). In the sequel we relate
all such calculations to the origin, so that we will be examining the
sequence {s,.,(0, 0)}, which we denote simply by {s..}. As is easily

shown,
s = 1 S” f(s, 1) sin(ﬂ.@ + 1/2)s sin(v? + 1/2)¢ ds di
Ar? J—r,—= sin s/2 sin ¢/2
W
4z R(&) E(3) C(3)

- lrmn + emn + Cm'rb .

Now suppose that a regular linear summability method H ([6],
Vol. 1, p. 74) is applied to the sequence {s,.} and let {#,,} denote the
corresponding sequence of transforms under the method H. Then

hmn == H{Smn}
(2) = H{Tw} + Hien} + H{Cpa}
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We will say that the principle of localization holds for the
sequence {s,,} if for arbitrary, fixed 0, 8,., = 7 + 0(1), m, n — oo, and
that it holds restrictedly if s,, = #,. + o(1), m, » — oo, under certain
specified restrictions on the subscripts m and n. Similarly, we will
say that the principle of localization holds for the sequence {A,,} if
Ppn = O + 0(1), m, n — o=, and that it holds restrictedly if

R = QU + 0(1), M, B —> oo ,

under certain specified restrictions on the subscripts m and .
It follows that a necessary and sufficient condition for the
principle of localization to hold in the first case is that

€mn + Cpn = 0(1), M, W — oo ,

and in the second case the necessary and sufficient condition is that
Bamn + Vun = 0(1), m, n — . Since f(x, y) is assumed to be Lebesgue
integrable, the sequence {c,,} is a null sequence. Since the method
H is assumed to be regular, it follows that the sequence {7,.} is also
a null sequence. Thus to prove that the principle of localization holds
for an arbitrary, Lebesgue integrable function, it is necessary and
sufficient to prove that, for an arbitrary fixed 9, > 0, ¢,., = o(1) and
Bmn = 0(1), m, m — oo, in the respective cases.

Now let H be a regular Hausdorff summability method. This
method has been investigated in detail by Hallenbach [2]. From the
foregoing, it follows that to prove that the principle of localization
holds for this method, it is necessary and sufficient to prove that the
sequence {B,..} is a null sequence, where

3

(3) B = U" <7Z><?)ekls WL — wy"rpi(l — vy =tdg(u, v)

<

where the Hausdor{f weight function g(u, v) is of bounded variation
in the unit square [1, 1; 0, 0], g(%, 0) = g(%, 0%) = g(0, v) = g(0*, ») = 0,
and ¢9(1, 1) = 1.

We will say that g(u, v) satisfies a Lipschitz condition of order
one and Lipschitz constant M on a region R [1, 1;0, 0] if g(u, v) is
continuous on R and if

lg(”, v") — g(w', v") — g(u”, v) + g(u, ¥)| = M|(u" — w)(v" — v')]

whenever the rectangle [u”, v”; u’, v'] contains only points of R. It is
easily seen that in such a case, the absolute value of the measure
dg(w, v) is majorized by Mdudv on R.

Summary of the main results. We assume that g¢g(u,v) is a
regular Hausdorff weight function, so that the corresponding Hausdorff



HAUSDORFF MEANS OF DOUBLE FOURIER SERIES 237

method is regular. From (3), we have

= amn + 0m’n .

THEOREM 1. If a 2r-periodic function is Lebesgue tntegrable in
the period square, them 0,, = o(1), m, n — oo, provided that for some
fized but otherwise arbitrary &, 0 <e =<1, and £ = (1 — 7)0*/12, we
have that m < ¢~'¢™ and n < ¢7'¢™, a fortiori provided that

em™ < min < etnt

for an arbitrary, fixed positive integer k, as m, n— .

COROLLARY 1. If {h,.} is a sequence of regular Hausdorff trans-
forms of the sequence {S,.}, corresponding to a 2mw-periodic function
which is Lebesgue tntegrable on the period square, then the question
of whether the sequence {h,,: em™ < m/n < e7'n*} exhibits the principle
of localization depends entirely on the behavior of the Hausdorff weight
Junction tm an arbitrariy small T-neighborhood of the boundary of
the unit sguare [1, 1; 0, 0].

COROLLARY 2. If, in Corollary 1, the sequence {h,.} corresponds
to a Hausdorfl weight function g(w, v) such that for some T > 0, the
measure dg(u, v) s identically zero in a T-neighborhood of the boundary
of the unit square, then the sequence {h,.,: em™™ < m/n < e7'n*} exhibits
the principle of localization. In particular, if 0 < a <land 0 < B <1,
and if {€..} 18 the sequence of the Euler (¢;«, B) transforms of the
sequence {S,.}, corresponding to a 2m-periodic function Lebesgue
integrable on the pertod square, then the sejuence

P —k —lp.k
mn = =
{emn: em™ < m/n < e7'n¥}

exhibits the principle of lozalization.

Corollary 1 is an obvious consequence of Theorem 1. This is also
the case with the first part of Corollary 2. The second part of
Corollary 2 then follows by observing that the Euler (s; @, 8) means
are Hausdorff means corresponding to a function g(%, v) such that the
measure dg(u, v) is identically zero except at the point («, 8), where
dg(u, v) = 1.

THEOREM 2. Let o be any subset of 6(t) such that on every simply
connected subset of o, the Hausdorff weight function g(w, v) satisfies
a Lipschitz condition of order ome with Lipschitz constant M. Let
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(5) =3 (") Jou w1 — WL — 0yt o)
Then we have

(a) of f(z, y)e Ly(N(©)), 1< p < co, then 0,, = o(1), m, n— oo,
em™* < min < e'n?, where ¢ and A are fized but arbitrary, 0 < e <1,
and 0 <A< p— 1.

(b) if f(x,y)e B(N@G)), then 0,,= ol),m, n— o, m=< e,
n < e, where now & and N are fized, 0 <e <1l and 0 <X <1,

In particular, the contribution to the mnth term of the sequence {B,.},
due to integration with respect to g(u, v) over any subset of the unit
square on which g(u, v) satisfies a Lipschitz condition of order one
with Lipschitz constant M, 1is o(l), m, n— o, em™ < m/n < e'n’,
0 <M< p—1,3f f(x,y) e L,(N(0)); and this contribution 1is

2 2
ol)y m,yn—co,m<Zele,m e 0 <AL,

of f(x, y) € BIN()).

COROLLARY. Let {¢,,} denote the sequence of the Cesiro (C; «, B)
means of {Sy.}, corresponding to a 2m-periodic function f(x,y). If
1 Z«a, B, and if f(x,y) € B(N(0)), then for arbitrary fized e, N, 0 <<e <1,
0 <N <1, the sequence{Cp,: m < e“le”x, n < a“e"‘z} exhibits the principle
of localization. If 1 < «, B, and of f(x, y) € L (N(G)), 1 < p < o, then
for arbitrary, fized e, \, 0 <e < 1,0 <A< p— 1, the sequence

{Cwn; em™ < mn < e7'n?}

exhibits the principle of localization.

The corollary follows from the theorem by taking ¢ = [1, 1; 0, 0]
and observing that the (C; @, 8) means are Hausdorff means correspond-
ing to the function g(u,v)={1— 1 —w)}{l - (1 —2)*}. Then
ldg(u, v)| = |l — u)* (1 — v)*|dudv < Mdudv for some constant
Mzapif 1 =<a,p.

Since it is already known ([6], Vol. II, p. 304) that for bounded
f(x, y), the sequence {c,,} exhibits the principle of localization without
the restrictions imposed on the subscripts m, # in the above corollary,
it would seem that our estimates in Theorem 2 can be improved or a
new proof devised to give a better result. Attempts to achieve this
have been unsuccessful so far.

THEOREM 3. Suppose that the Hausdorff weight function g(u, v)
1s discontinuous along finitely many lines

a):{u:ui,izl,z,u-,k;v:vj,jzl,Z,---,l},
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such that for some >0, 7t u, <1 -7, 750, <1 —7 for all 4,7.
Let g;(v) = g(ui,v) — 9(ui,v) and gi(w) = g(u, v7) — g(u, v7), and suppose
that the fumnctions {g;(v), g;(u)} all satisfy a Lipschitz condition of
order one and Lipschitz constant M. Let

(8)  @m =3 (") Jeu| it — wyrroit — oydg(u, 0
be the contribution to B,, due to integration with respect to g(u, v)
along these lines. Then we have
(a) i f(z,y)eLlr, m;, —7, —x], then o,, = o(l), m, n— oo,
provided ¢ < mjn < 7', where 0 < ¢ < 1 1s fized but otherwise arbitrary.
(b) if f(z, y)e L,(N(©)), then

Wpn = 0{1), m, B — o0, em™" < m/n < e7'nt,

where 0 < e =1, and 0 < N < p — 1 are fixed but otherwise arbitrary.
(e¢) f f(z, y)e B(N(©0)), then ®,, = ol), m, n— oo, m= ete,
n< e“lemz, where ¢ 18 as before, and ) is again fized, 0 < N < 1.

From Theorems 1,2 and 3, a number of general statements
pertaining to the principle of localization for the sequence {%,.} of
regular Hausdorfi transforms of the sequence {s,,} can be made
immediately. We give one example. From Theorems 1 and 3, we get

THEOREM 4. Suppose that f(x,y)e L|r, n; — 7, —7x], that f(z, y)
is periodic of period 2w, and that {s,.} ts the sequence of partial sums
of the Fourier series of f(x,y). If the Hausdorff weight fumnction
g(u, v) is such that for some T > 0 the measure dg{w, v) is identically
zero 1m the T-neighborhood of the boundary of the wwnit syuare, except
along finitely many lines w = u;, v =0, T <, <1 -7, 75v;, <1 -7
Sor all 1,7, alorng which the difference functions g;(v), g;(u), as defined
wn Theorem 3, all satisfy a Lipschitz condition of order one and
Lipschitz constant M, then the corresponding sequence of Hausdorff
transforms {h..} exhibits the principle of localization restrictedly, with
the restriction that for arbitrary fized ¢, 0 < e <1, we have

c=min et

Preliminary Lemmas. We collect here a few lemmas to facilitate
the proofs of our results.

LEMMA 1. Let

O sina = wsins, p,cosx =1 — u + % cos s
0.8n 8 = wsint, p,cos8=1— v+ vcost.



240 FRED USTINA

Then

7y X (m\(n sin(k + 1/2)s sin(l + 1/2)t . 1 — w1 — )

(7) Z<k><l> sin 5/2 smgz LT WA -0
= pro: ¢(m; a, 8) ¢ (n; B, 1)

where

é(m; e, s) = sin ma cot s/2 + cos ma
é(n; B, t) = sin nB cot t/2 4+ cos npB .

Proof. The proof is essentially due to Szasz [3, p. 443].

m

) (”;) sin(k + 1/2)s wH(1 — w)™—*

0
(8) =Im{(1 — u + ue™)"e™?}
= Im {{o.(cos @ + 7 sin @)}"(cos s/2 + 4 sin s/2)}
= o7 Im {(cos ma + 1 sin ma)(cos s/2 + 1 sin s/2)}

= o7 (sin ma cos /2 + cos ma sin s/2) .

Dividing through by sin s/2 and noting that (7) is a product of two
sums of the type (8) completes the proof.

LEMMA 2. For small values of ¢, saylt| £ 0, and 0 < v £ 1,
(9) sinng = sinntv + 2cos n(tv + 3 rv(l — v)t°) sin nro(l — v)t¥/2 ,

where|r| = |r(t, v)| < 0.

Proof. This result is due to Szész [3, p. 449], taking into account
that sin (— #) = — sin 2.

LEMMA 3. |¢(m;a, s)| <cots/2+1,0<s=<m so that for
0<o=<s=m|¢(mas) <7< uniformly in m, « and s.

Proof. The lemma is obvious.
LEMMA 4.

5(n; 6, 1) = 2510 - (it v)

where f'(n; t, v) is bounded absolutely and wuniformly, 0 <v =<1,
O<[tl=m,m=12 +--.

Proof. From Lemma 1, we have
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é(n; B, t) = ZEHtL’B + sin ng {cot t/2 — 2/t} + cos nB
= M + (s &, v) .

LEMMA 5. For small values of t, say |[t| <0, and 0 S v <1,

S RE SRV st o)fmo(L - 0)t/12)

where |y"(n; t, v)| < 120,

Proof. The lemma follows immediately from Lemma 2 on division
by t since |cos x| < 1 and |sinz| < |z|. Thus the second term on the
right in (9) is bounded absolutely by the absolute value of nrv(l — v)t’.
Thus

sin @ = sin ntv + +"'(n; ¢, v){nv(l — v)t*/12},

where |4"(n; t, v)| < [12r(¢, v)| < 120",

LEMMA 6. For |s|]<7mand 0 < u <1,

m —mu(l—u)s2/12
or=e .

Proof. From the definition in Lemma 1, we have

0 =1—2u(l — u)(1 — cos s)
=1 — 2u(l — u){(s¥/2! — s'/4!) + (s°/6! — s*/8!) + ...}
<1 — 2u(l — u)s’(1/2! — s?/4!)
<1-—u/61— us
§e—u/6(l—u)s2

since under the restrictions on s and u, u(1 — %), and each of the
paired terms in s, is nonnegative, and 1/2! — s%/4! > 1/12,

REMARK. It is clear that under similar restrictions on ¢ and v,
we have

‘0: é e—-nv(l—v)ﬂ/u .

LEMMA 7. In the interval 0 < v <1 and |t| < 0,

sin ntv

oz ¢(n; B, t) = 207 + p(n; t, v)

where r(n; t, v) ts bounded absolutely and uniformly in n,t and v,
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say |y(n;t, v)| < 0”.

Proof. By Lemmas 4 and 5,
10)  ¢(n; B, t) = z_sir%ﬁﬂ 4 297(n; t, )l — )12 + (03 t, v)

Then

or6(n; B, t) = 20p 50 t”’“’ + 29"(ns t, ©)0R(/12)0(1 — )

+ 3y’ (n; t, v)

sin 1ty y(n; t, v) ,

= 207

where +(n; t, v) is bounded absolutely and uniformly, since +'(n;t, v)
and +"'(n; t, v) are so bounded, and

or(n/12)v(1 — V)& < (n/12)v(1 — v)e ™82 < ¢!

for all values of %, v and ¢, since ze~* < ¢* for z = 0.

LeMMA 8. For n and k large enough, 0 < v <1 and [t] < 0,

(02 ¢(n; B, t)| < 4n
and

lo(n; B, 1) < 4kn .

Proof. The first part follows immediately from Lemma 7 since
or <1, +(n;t,v) is bounded, and [sin ntv/t| < nv < n. The second
part follows from (10) since +'(n; ¢, v) and "' (n; t, v} are bounded, and
no(l — V)12 < n for 0 < ¢ < 7.

LEMMA 9. If K and k£ are any fixed, positive numbers, however,
large or small, then
K{me™ + ne™™) = o(1), m, n— <= ,

provided that for some fized N, 0 <\ < £, and fized ¢, 0 < e <1, we
have m < g™ and n < ¢ as m, n— o, a fortiori, provided that
e m/n <et as m, n— co.

Proof. We prove only that under these conditions, Kme™" = o(1),
m, n — oo, the proof of the other part being the same. But then

Kme™ < K et~ *4n

—0, 1 — oo .
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LEMMA 10. For 0 <o <s<m,
1
S prdu < em™ ,
0
where ¢ = 48]0,
Proof. By Lemma 6,
1 1
S ‘Ozn d% é g e—mu(l—u)32/12 du
0 0

< gl e—mu(l—u)62/12 du .
—Jo
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Now since the integrand on the right is symmetric in » and 1 — u,

and w(l —u) = %/2, 0 < u < 1/2, we get

1/2
0

Sl p;n du § ZS 6-—mu(1—u)62/12 du
0

1/2
<o e
0

< 48/md* = em™ .
LemMMA 11. For 0<v<1land 0<d <7,

|

sin ntv
t

tdt<210gn,n;10.

Proof. If v =0, the lemma is obvious. If v = 0, set ntv =t'.

Then
g" I'sin ntv ]dt _ S"” sin ¢ \dt
0 t [ 0 t
< S””; sin ¢ 'dt
0 t

<S sin ¢ dt - S”‘_@t_
o ¢t T

< {1 + log 7= + log n}
< 2logn,n=10.

LEMMA 12. For 0=v=1l 0<o=7m and 1l/p+1l/g=1,

1< p< oo, we have

{l.

__smtmfv lq di}r < 2n''* log n, n = 10 .

Proof. Again, if v = 0, the result is obvious. Otherwise set
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ntv = t'. Then

{g” sin ntv "dt}‘”: {SW o sint "_Qt_}""
0 t 0 t nv
n 3 1/
< {(nv)q“lg } sin ¢ ‘th} q
0 t
< on 7] 8L |}
= 0 t

< n'*{1 + log @ + log n}'*
< 2n'*logn, n =10 .

LEMMA 13. Given an arbitrary fixed number K < o, and fized
ceand N 0<e<1, 0< A< p—1, where 1 < p < o, then

K{ m*'? log m I n''? log n}
n m

= o(1), m, n — oo,
provided that n/m < e7'm* and m/n < e'n* as m, n— oo .

Proof. Again we satisfy ourselves by proving that under these
restrictions, K(m'?log m)/n = o(1), m, n — o, the proof of the other
part being the same. But then m < ¢ 'n'**, and so, taking ¢ = 1 for
convenience,

X m'” log m <K niPEe Jog pit?
n n

= K(1+ ) 08"
n

1—1/p—2/p

I

o(l), n — oo ,
provided that » < p — 1.

Proof of the main results. By the earlier remarks, to establish
the conditions under which the sequence {h,.} will exhibit the principle.

of localization, it is necessary and sufficient to establish the conditions.
under which the sequence {3,.,} is a null sequence. By (1) and (3),

_ 1 & /m\(n S P sin (k 4+ 1/2)s sin (I + 1/2)¢ dsd
Bar 4r* g' < lc)( l ) @ " 59 sin s/2 sin ¢/2 st

% S WL — wymro(l — vy —idg(u, v) .
0,0

Interchanging the order of summation and integration, which is.
permissible in this case since the sum is finite, and applying Lemma.
1, we get
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o1
Bon = 4

=1 {Sa +S~M +SM +SH }f(s, t)dsdt

47 5,—3 —r,—3 —3,3 —5,—1

1
0

[,.,, 7o tidsdt| " oror o(m; a, 9)o(n; 6, Hidg(w, )

(11) -
x [ oror tm; a, 9)p(n; g, tydg(u, v)

We assume that the mass points of dg(u, v) are all bounded
uniformly from the boundary of the unit square, and that ¢ is small
enough so that 6(r) contains no mass points of dg(u, v). We also
assume that g(u, v) satisfies a Lipschitz condition of order one and
Lipschitz constant M in every simply connected region of 6(r) over
which g(u, v) is continuous, and we let ¢ denote the union of all such
regions. Finally, we assume that in 6(7), g(u, v) has finitely many
lines of discontinuity, % = u;, 1 =1,2, «+o, k, v=9;, 7=1,2, -+, 1,
such that 7 <wu;, v; £1—7 for all 4,7, and that the difference
functions {g.(v), g;(w)}, where g.(v) = g(uf, v) — g(u;, v) and

gJ(u) = g(u’y /U.;F) - g(ur IUJ—) 1

all satisfy a Lipschitz condition of order one and Lipschitz constant
M on 6(r). We denote the set of these lines by w.

Thus, \.. ¢=1,2, 3,4, has three components, namely, due to
integration over 4(z), then due to integration over o, and finally due
to integration over w. We denote these components by 9%, 0%, and
i, so that

(12) Non = Ohn + Ol + Wiy i=1,2 34,
and by (4), (5) and (6), we have

Omn = Opn + Ohn + 0% + Oha
(13) Omn = Ok, + 0%y + Oy + O
wmn = w}m"ﬂ, + wzn’n + w::n% + wtnn

Proof of Theorem 1. From (11) and (12), we get

|ona| = 2|7, £16, Odsat oror s(ms e, )p(ns g, Dido(w, )
4 1o 20
< L (" 176 v1dsat| ororism: e o)l gm; 6, 1)l do(w, )|
4r* Ja—s 4(7)
< B grmomniin g) [ emmenonie) £ (s, 1) dode
7 5,~8 .

= K, ne""I(n) ,
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where we have applied Lemmas 3, 6 and 8, and set £ = 7(1 — 7)5%/12,
K, = kvV(g)/n*, where V(g) denotes the total variation of g(u, v) in
the unit square, and

1) = (7" oo f(s, by dsds
and used the observation that in 4(z), o7 is bounded by gm0,
Now e "4—9¢02| £(s t)[ ] 0, m — o, except on a set of measure zero,
so that I,(n) | 0, n — .

That | 0%, | £ K.ne™™I(n), where K, and I,(n) have the correspond-
ing relation to the rectangle [— 4, 0; —7, — 8], is proved in the same
manner. To show that |6%,| < Kyme™I(m) and |04, < Kme "I (m),
we interchange the roles of s and ¢, and thus of m and n. Here, &
has the same meaning throughout, and the constants K;, ¢ = 1, 2, 3, 4,
are all finite. Thus

(14) [Oma| = [0mal + [0l + [0%a] + |07l
< K{ne™"(L(n) + I(n)) + me™*(L(m) + I(m))}

where K = max {K,, K,, K;, K,}. By the same argument as used to
prove that I(n)]|0, n— -, we have that I(n)]0, n— c, and
(Ii(m) + I(m)) | 0, m — . Applying this to the right hand side of
(14), we get 0,,=ol), m,n— , provided that m < e ‘¢~ and
n < e'e™ as m, n— oco. This completes the proof of the theorem.

Proof of Theorem 2. Taking v = 1/2, we may assume that the
Lebesgue measure of ¢ is unity, that is, the measure of [1,1;0,0] ~ ¢
is zero. As before, we have

10l = e |7 1766, )1 dsat | proz|gms at, 911 g(ns 8, 81 g, )

and since on ¢ the measure |dg(u, v)| is majorized by Mdudv, we
have by Lemmas 3 and 7,

ot = 207 pis, )1 dsde | or S| gy
5,—d 0,0 t

2
(15) "
+J_W’LS "1 £Gs, t)ldsdt " or v(n; ¢, v)| dudo .
4 8,—3 20,0
Now

S:: OF [ y(m; ¢, v) | dudv = S:p;"‘du S: |y (n; 'v){dp

é 5"07)’&“1 y
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uniformly in ¢, m and #, 0 < 0 <s <7, by Lemmas 7 and 10. Thus
the last term on the right in (15) is bounded by (MvIcd”)/(4n*m) = o(1),
m — oo, where we have set

I= SH | F(s, t)|dsdt .

Next, applying Lemma 10 and changing the order of integration in
the first term on the right in (15), we get

1 7,8 ' s
ol 5 2EE LA™ 115, 0)1| S22 | dsat o
+ 0(1), m— o .

(16)

Now suppose that f(s, t)e B(N(9)), that is, |f(s,t)| < B < oo
almost everywhere in N(3). Then

lob| < BlM~yer Sl{g"

T 2mPm Jo U—s
_ BMne S {&
mm o LJo

< 2—B—J@logn + o(1)
m

Sint"“’ ‘ dt}dv + o(1)

Sint'”t” ‘ dt}dv + o(1)

— K% 1) oo, m = 10
m

by Lemma 11. Thus o¢%., = o(1), m, n — o, provided that for some
fixed but otherwise arbitrary ¢ and », 0 <& £ 1,0 <\ <1, we have
n =< ele™ as m, n— oo,

That o%, = o(l), m,n— ; n < e~t¢™', is proved in a similar
manner. To prove that o2, + ¢%, = o0(1), m, n— o, m = e‘le"z, we
again reverse the roles of s and ¢, and so of m and n. This completes
the proof of Theorem 2 for the case where f(s, t) € B(N(9)).

If f(s, t) e L,(N(9)), 1 < p < oo, then in (16),

=8 ’fA(S, t)l Sin ntv dsdt
5,—8 t

(17) ={[.", | s, orrasacpre {[ " | St

< 2In'?log n
= K'n"*logw,n =10,

"dsdt}”"

where we equated the first integral to I, and applied Lemma 12 to
the second integral. Then by (16),



248 FRED USTINA

K'Mvye n'”logn + o(1)
ant

1/p
< g rrlogn L, nz=10,

m

|Oa| <

the o(1) term being absorbed in the first term.
Proceeding as in the first part of the proof with respect to o¢%,,,
1= 2,38,4, and combining the results, we get

1/ 1/
| O | éK{n *log n 4 M plogm}, m,n = 10
m n

= o(1), m, n — oo

by Lemma 13, provided that m/n < ¢'n* and n/m < e~'m?, or equiva-
lently provided that em* < m/n <e'n?, 0 <eZL, 0 <A< p—1.
This completes the proof of Theorem 2.

Proof of Theorem 3. Let wi be the contribution to i, due to
integration along the line u = u;, and let w% be the contribution to
o}, due to integration along the line v = v;. Then

, wi1
ot = L™ f6, tasat|"" oror o(m: a, 96(n; g, g, v) -
5,—8 u; 40

By Lemma 6, o" < e¢™", where again £ = 7(1 — 7)0%/12. Then by
Lemmas 3 and 8,
oyt = YE ™ | £(s, ) dsdt
T 8,—3
MyI,
71-2
= K/ ne—"

ne—-xm

where I, and K/ have the obvious meanings, K, being an absolute
constant independent of ¢. Since there are at most &k < o such lines,
the total contribution of these k lines to w!,. does not exceed

(18) kK ne™™ = K’ ne—*™ .
Next, we have

. 7,8 ly‘U;{- .
a9 wxi= 1" s tdsat| " ororsom: a, 9p(n; 8, Hdotu, v)

and so, by Lemmas 3, 6 and 8,
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T,8 1
st = M | f(s, ¢)leo-nendsds | or du
3,—38 0

71-2

< B1Me ™ 1n)
T m

= K2 I(n)
m

where k& now is the constant of Lemma 8, and I,(n) is the same as
in the proof of Theorem 1. Here again K/’ is an absolute constant
independent of 7, and I,(n) | 0, » — . Since there are at most I < o«
such lines, the total contribution of these to w.,, is bounded absolutely
by

(20) K" ™ I(n) = K" ™ I(n) .
m m
Thus by (18) and (20),
|wh, | < K’ ne—™ + K”-ﬁL(n)
m
< K(ne™ + X I(n)) .
m

By similar reasoning, we get

wann[ = Kz(ne_xm + —@Iz(n))
m

| @ | < Ky(me™ + —”3 I(m))

| @] < Ki(me™ + 22 I(m) .
Taking K = 2. max {K,, K,, K;, K,} and combining the results, we
have
|Wpn| £ K{me™" + ne—*™}
+ K{Z (L(m) + L) + 2 (Im) + Lim)}
=ol),mn—0.e<m/n<et,

where the first part goes to zero by Lemma 9, and the second part
because of the convergence of the integrals I,(n), I(n), L(m) and I,(m)
to zero. This completes the proof for f(s, t)e Lr, n; —x, —x].

If f(s,t)e L(N®)), 1 < p < o, then
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Mye—™™
4 2

< M”/"““” So { g £, B [Ml dsdt}dv

M’)’e"
4r*

ol £ MET 1G5, )] dsat [ oz s 8, 0)| o

+

S | f (s, t)ldsdtg | (n; ¢, v) | do

by Lemma 7. By (17), the integral in brackets in the first term on
the right is bounded by K/ n'?logmn. Thus the first term on the
right is bounded MyK/ e*™ n'? log n/27*. Since +(n; ¢, v) is bounded
absolutely and uniformly, the second term is o(1) as m — <. Since
there are at most % such lines, their total contribution to !, is
bounded by

(21) ————kﬂg_f{" e n?logn + k-o(l) = K'e™™ n''? log n, m — < .
On the other hand, by (19),

dsdt

joii| = 22 | p(s, 1)) | 000
2*m Ja,—s t

T 115, )l ¢, v dsdt
4n*m Jo.—s

_ YMcK/! n'?logn 4 o(1), m— co
2n* m

1/
= grrlogn oy ms oo
m

The contribution of finitely many, say I, such lines is then bounded
by

/ 1/
(22) iy logm g oy = g WP logm
m m

the o(1) term being absorbed in the first term. Combining (21) and
(22), and setting K, = max {K’, K"}, we have

|wt,,.| £ K, n''? log n{e"“" + l}, m — oo
m
= o(1), m, n— oo, m/m < e”m}, 0 <A< p—1

by Lemma 13, since for m sufficiently large, ™" < m™.
Proceeding as before with regard to wi,, 7 = 2, 3,4, and combin-
ing the results, we get

Wpp = 0(1), m, n— co, em™?* < m/n < e™'n?
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where 0 < A < p — 1 is arbitrary but fixed.
If f(s, t) € B(N(9)), then a similar calculation yields the result

2 _ 2
Wy = 0(1), My, M — 0, m < €7'¢", 0 < e'e™

where ¢ and ) are arbitrary but fixed, 0 < ¢ < 1, and now 0 < < 1.

Since the calculations are rather obvious, we avoid the details. This
completes the proof of Theorem 3.
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