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A theory for an elliptic quadratic form J(x) defined on
a Hilbert space U has been given by Hestenes, A fund-
amental part of this theory is concerned with the signature
s and nullity » of J(x) on %, These indices are used to
develop a generalized Sturm-Lionville Theory and a Local
Morse Theory. In this paper the theory of Hestenes is
extended to elliptic quadratic forms J(z;s) defined on 2(s)
where ¢ is a member of the metric space (X, o) and UA(o)
denotes a closed subspace of U, A fundamental part of this
extension is concerned with inequalities dealing with the
signature s(¢) and nullity #n(s) of J(z;0) on %{s), where ¢ is
in a o neighborhood of a fixed point ¢, in %,

It is noted that the hypothesis for these inequalities is sufficiently
weak so as to include many mathematical problems. In the second
part of this paper these results are applied to the study of eigenvalue
problems for compact quadratic forms. A significant result is that
the nth eigenvalue, )\,(0), is a o continuous function of ¢. Comparison
theorems are given for completeness. This work is a generalization
of the eigenvalue theory of A. Weinstein.

The inequality results may also be used to study focal point
problems and numerical approximation problems associated with linear
self adjoint systems of ordinary or partial differential equations.

2. Preliminaries, The basic theory of Hilbert spaces, strong
and weak convergence, and linear operators and quadratic forms is
given in References [2] and [3]. The fundamental Hilbert space is
denoted by 2; subspaces by <2, &, <2, ---; elements of ¥ by the
letters «, y,2, -»+; scalars by a,b,¢, ---. The inner product is
denoted by (v, ¥); the norm by ||x||; strong convergence by z,= ;
weak convergence by x,—x,, We will assume that subspaces of
are closed and the scalars are real. The latter assumption is for
convenience; the complex case holds equally well.

A real valued function L(x) defined on % is said to be a linear
Sorm if it is linear and continuous. A real valued function Q(z, y)
defined on 9 x U is a bilinear form if, for each y in A, Qzx, y) and
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Q(y, ) are linear forms in z. If x,— @, and y, — ¥y, imply Q(z,, v,) —
Q(xy, ¥,) then Qz, y) is compact. If Q(x, y) = Q(y, ) then Qx) =
Q(z, x) is the quadratic form associated with the bilinear form
Q(x, y). We assume throughout this paper that bilinear forms
satisfy Q(z, y) = Q(y, %).

Q(x) is positive (negative, nonpositive, nonegative) on A if Q(x) >0
Q) <0,Q) =0,Qx)=0) for x = 0 in ¥. Q(x) is positive definite
on I if there exists a positive number % such that Q(x) = h||x|* on
A. Q) is compact if x,— x, implies Qx,) — Q(z,). Qx) is weakly
lower semicontinuous (wlsc) if z, — x, implies lim inf,_.. Q(z,) = Q(z,).

Two vectors © any y in U are Q orthogonal if Q(x, y) = 0. The
vector x is @ orthogonal to <# if y in <# implies @z, y) = 0. The set
of all vectors @ orthogonal to <7 is the Q orthogonal complement,
denoted by <#% <% and & are Q orthogonal if each x in <& is @
orthogonal to &”. A vector x is a @ null vector of <7 if ® in <& N <F.
<%, will denote the set of @ null vectors of 7.

The signature (index) of Q(x) on <Z is the dimension of a maximal,
linear subclass & of <# on which Q(x) is negative. The nullity of
Q(x) on <# is the dimension of &%, = % N<F% Finally J(») is an
elliptic form on A if J(x) is wlsc on 2, and x,—wx, whenever z,—x,
and J(z,) — J(x,).

We note the following results for elliptic forms [3]: A quadratic
form J(x) is elliptic on 2 if and only if there exists a finite dimen-
sional subspace <# of 9 such that J(x) is positive definite on the
orthogonal complement of <& A quadratic form J(z) is elliptic on
N if and only if there exists a positive definite form P(x) and a
compact form K(x) such that J(x) = P(x) — K(x). Furthermore K(x)
can be chosen nonnegative on 2. A positive elliptic form is positive
definite.

Theorems 1 and 2 have been given in [3].

THEOREM 1. The signature of Qx) on <&, if finite, is given by
each of the following quantities:

(a) the dimension of a maximal subspace & in <& on which
Q(x) < 0;

(b) the dimension of a maximal subspace <7 in B on which
Q) =0 and 2N &, = 0;

THEOREM 2. If the sum m = s+ n of the signature s and nullity
n of Q) on <& 1is finite, it is given by each of the following
quantities:

(a) the dimension of a maximal subspace % in & in which
Q@) < 0;
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(b) the least imteger k such that there exists k linear forms
Ly, +++, L, on <& with Q(x) >0 for all  in <& satisfying L.(x) =
Oa=1, .-+, k).

3. Fundamental Inequalities. The purpose of this section is
to state and derive fundamental inequalities which relate the signature
and nullity of an Elliptic Form on a closed subspace of 9 to “approxi-
mating” Elliptic Forms on “approximating” closed subspaces.

The main results are contained in Theorems 6 and 7. Theorem &
is a combination of these two theorems. Theorem 11 is an extension
of Theorem 7 to the metric space M = E' x Y. Continuity of the
nth eigenvalue, A\, (0), follows immediately from Theorem 11.

Let ¥ be a metric space with metric p. A sequence {g,} in %
converges to o, in ¥, written ¢, — o, if lim,_.p(o,, o) = 0. For
each ¢ in Y let (o) be a closed subspace of 9 such that

(la) If 0,— 0y 2. in A(o,), z, — ¥y, then y, is in W(o,);

(1b) If x, is in A(o,) and ¢ > 0 there exists § > 0
such that whenever o(o, 0,) < d, there exists 2, in (o) satisfying
o, — o, || <e.

LEMmA 3. Condition (1b) 1is equivalent to the following: Let
Z(0,) be a subspace of Wo,) of dimension h and ¢ > 0. There exists
0 > 0 such that whenever (o, ) < 0, there exists a subspace <% (g) of
W(o) of dimension h with the property that if x, is a unit vector in
B (0,) there exists x, in F(0) such that |[x, — x, || < e.

Clearly this condition implies (1b) with 2 = 1. Conversely let
X, -++, %, be an orthonormal basis for <#(c,). Given ¢ > 0 there
exists 6 > 0 such that if o(o, 0) < ¢ then z,, «+-, x,, is in (o) with
[, — @, |[F < &fh.

Assume that usual summation conventions with £, 1 =1, ---, .
Letting «, = b,x, and «, = b,x,, where b,b, = 1 we have

g — a0, |[* = [[bu(wy — @) [P = (10e ] [ 2 — @ |1)°
= (0l @ — @l [[ 20 — @ []) = Mefh) = €.

This concludes the proof of the lemma.

The “approximation” hypothesis for forms are now stated.

For each o in X let J(x; o) be a quadratic form defined on (o)
with J(x, y; o) the associated bilinear form. Let s(o) and n(o) be
the index and nullity of J(x;¢) on o). For +=0,1,2, --- let z,
be in W,), y. in o, such that: if z.—=zx, y,—y, and o,—0,
then
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(2a) limJ(., y,; 0,) = J(, Y5; 00);
(2b) liminf J(x,; 0,) = J{@; 0,); and

(2¢) limJ(x,; 0,) = J(2,; 0,) implies «, = .

LEMMA 4. Assume condition (2a) holds. Let g, be given. Then
there exists 0 > 0, M > 0 such that o{o, g,) < 0 implies |J(x, y; 0)| =
Milxl| 'yl for all z, ¥ in A(o).

Suppose the conclusion does not hold. Then for »=1,2, «--
we may choose 0, in Z and =,, ¥, in U(o,) such that ||z.|| =|ly.|| =1,
p(o,, o) <1/r and a; = |J(x,, y,; 0,)| > 7.

Now Z, = z,/a, =0 and ¥, = y,/a, = 0 so by

(2a) 1=JE&,¥y,;0,)—J0,00)=0.
This contradiction establishes the result.

THEOREM 5. If (2a) and (2¢) hold then either J(x; o) or —J(; d)
satisfy (2b).

Suppose the conclusion does not hold. Then there exists sequences
{o.}, {v.} and {2,} (»=0,1,2, -..) such that o,— o, ¥, 2, in A(o,);
Yr — Yoy & — 2, and

lim J(y,; 0,) = A < J(ys; 00)
liAm J<yry zr; O-r) = B’ and
1i_m J(z,;0,) = C > Jz; 0,)
where A, B, and C are real numbers by Lemma 4. Thus the equation
[A — J(ys; 0)]a® + 2a[B — J(yo, 20; 00)] + [C — J(25; 0,)] = 0

has two distinct real roots a,, a,. For i=1,2 and r=0,1,2, ---
let #,; = a;y, + 2, so that x,, — z,;. By the definition of a,,

J(@,; 0,) = J(,; 0.)ai +2a;J(y,, 2,; 0,) + J(2,; 0,) — Aa}+2Ba; +C
= J(yo; 0'0)0/% + zaiJ(yo, 2 Uo) + J(zo; Uo) = J(xoi; 00)

so that from (2¢) z,;, =%, (¢ = 1,2). Since a, + a, then y, =y, and
2, = 2,. Finally from (2a) we have

A= lim JW,; 0,) = J(y; 0) > A
This contradiction establishes the theorem.

THEOREM 6. Assume conditions (la), (2b) and (2¢) hold. Then
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for any o, in T there exists 0 > 0 such that p(o,, d) < 0 tmplies
3) s(o) + n(0) = s(o,) + nlo,) .

Assume the conclusion is false. Then there exists a sequence {o,}
with ¢, — 0, and s(o,) + n(c,) > s(o,) + n(c,). Let k = s(a,) + n(o,) + 1.
For » = 1,2, --- there exists k orthonormal vectors «,,, ®,,, «+-, @,, in
Weo,) with J(x;0,) =0 on span {z,,, -+, 2,,}. Foreach p=1, .-+ Fk
the sequence {z,,} is bounded in 9 and hence has a weakly convergent
subsequence, which we may assume to be {x,}, such that z, — z,.
By (la) z, is in (g,).

Assume the usual repeated index summation convention with
p=1 .o, k. Let b= (b, ---,b,) be arbitrary, set y, = b,x, and
Y, = b,%,.. Since y,— y, we have by (2b)

J(yy; 0,) = liminf J(y,;0,) 0.

Thus =z, -+, 2, is a linear dependent set, for if not by Theorem 2,
k—1=s(o,) + nlo) = k.

Choose b == 0 such that y, = b,x, = 0; also choose y, = b,x,,. We
note ¥, — ¥y, = 0 and

0 = J(0; o)) = liminf J(y,; 0,) < limsup J(y,;0,) <0 .

Hence J(y,; 0.,) — 0 = J(0; 6,) so that y, =0 by (2¢).
Finally 0 = lim,_. || v, || = b,b, # 0. This contradiction establishes
the theorem.

THEOREM 7. Assume conditions (1b) and (2a) hold. Then for
any o, in I there exists 0 > 0 such that o(c, 0) < implies

4) s(oy) < s(0) .

Let <#(0,) be a maximal subspace of U(g,) such that J(x; o) < 0
on <#(o,). Let x, -+, 2, be a basis for .<#(s,). By Lemma 3 and
conditions (1b) and (2a) there exists a basis #,,, ---, z,, for <# (o) such
that if x, = a,2,, and

qu(o) = J(xpa, Tgoy 0)
then
F(a, 0) = J(&,; 0) = a,a,4,,0) (p,q =1, -+, h; p, ¢ summed)

is a continuous function of ¢ at o,.
By the usual arguments for quadratic forms we may choose
M < 0 and ¢ > 0 such that



388 JOHN GREGORY

F(a, ) < 2Ma,a,
and
F(a, 0) = F(a, 0) + (A(0) — A,(0))a,a, < Maja,

where p(g,, 6) < 6. This completes the proof.
Combining Theorems 6 and 7 we obtain

THEOREM 8. Assume conditions (1) and (2) hold. Then for any
o, in T there exists 0 > 0 such that p(o, 0,) < 6 implies

(6) 8(0)) = s(0) = 5(0) + n(0) = s(00) + n(0) .

COROLLARY 9. Assume 6 >0 has been choosen such that p(o, 0,) <
0 tmplies equation (5) holds. Then if p(o, o) < 0 we have
(6a) n(o) < n(ay),
(6b) n(o) = n(o,) implies s(o) = s(o,) and m(c) = m(o,), and
(6c) n(o,) = 0 implies s(o) = s(o,) and n(o) = 0.

This result follows at once from Theorem 8. As a further result
we have

COROLLARY 10. The set {oe€X|n(o) =0} is open. The set
{o e Z|n(o) # 0} is closed.

As an example of these results we will extend Theorem 8 to a
result for the metric space M = E* x Z. This result will be funda-
mental for the continuity of the nth eigenvalue A*(g). Thus assume
M =1x X, I an open interval of E', is a metric space with metric
d defined by

Aty M) = [ Ne — M| + 0(0% G))

for any pair of points f, = (A, 0), ftt: = (N, 0,) In M. Let s(p) =
s(n, 0), n(w) = n(n, 0) be the index and nullity of J(x; 1) on A();
let m(y) = m(\, g) = s(\, 6) + n(\, 6). Theorem 8 and Corollary 9
hold with the obvious modifications.

THEOREM 11. Let conditions (1), (2) be satisfied with ¢ = (\, 0)
in M replacing o in X. For fixed o let the signature s(\, ) be
a monotone function of N such that s(» + 0, 0) = s(» — 0, 0) implies
1\, 0) = 0. Let tty = (\, 0) ©n M be given such that s(n, — 0, g,) =
n, s(\, + 0, 6,) = m. Then there exists 0, > 0 such that | N — N | = 0,
and o(o, 0,) < 0, imply that s(\, o) is between n and m.

Assume s(:, o) is monotone increasing on an interval I and
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hence n < m. Choose 6>0 so small that s(\, g,) =n for (\,—20, M)cT
and s(\, 0,) = m for (N, A, + 20) c I. By assumption n(\, — §, 6,) =
n(\, + 0, ) = 0. Finally choose ¢,, 0 <4, < 9, such that o(c, d,) <9,
implies (5) holds for both p, = (x, — 9, 0,) and g, = (, + 9, 0,). By
(6¢), s(x,— 0, 0) =n and s(\, + 9, 0) = m for all ¢ such that o(o, g,) < d,.
The theorem now follows by the monotone condition.

4, Eigenvalue Theory. The purpose of this section is to apply
the theory of §3 to the study of eigenvalue problems for compact
quadratic forms. Our work is motivated by (and at times duplicates)
the methods and results of Hestenes [3]. Of particular significance
are Theorems 20 and 21 which give sufficiency conditions for the
continuity of the nth eigenvalue. Theorem 22 and 23 are comparison
theorems. They follow directly from “signature inequalities” given
in Reference [3].

In this section we assume X is a metric space with metric p.
For each o in X let (o) be a closed subspace of A, J(x; o) an
elliptic form defined on (o), and K(x; o) a compact form on (o).

We assume conditions (1) and (2) are satisfied and that o, — o,
x, in W(g,), %, in Wa,), x, —x, imply K(=,; 0,) — K(x; 0).

Let M = E' x ¥ be the metric space with metric d defined above
(after Corollary 10). For each g = (\,0) in M define A(p) = A(o)
and

(7 Hix; 1) = J(x; N, 0) = J(x; 0) — NK(x; 0)

on the space 2(y). Finally let s(p) = s(\, 0), n(y) = n(\, ¢), and
m(p) = m(\, o) denote the index, nullity, and sum of the index and
nullity of H(x; t) on A(y).

THEOREM 12. Conditions (1) and (2) hold with p replacing o and
H replacing J.

Since A(y) = W) conditions (1) hold. For (2a) let z«,,y, in
A, r=10,1,2, «-- with ¢, - x, and y, = y,. Then

H<mrr Yy f‘l'r) - H(xoy Yos #0) = {J(xv-r Yoy O,) — J(xov Yo 00)}
+ >\J()[I{(moy %; U) - K(xr! ya; or)]
+ (NO - )\‘T)K(wr! Yrs 0-1') .

If » — oo the first term goes to 0 since (2) holds on X, the third
term goes to 0 as K(x,, ¥,; 0,) is bounded, and the second term goes
to 0 by the equality
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2[K(xy, Yo; 00) — K(2,, ¥, 0,)] = K&, + ¥y 0,) — K(x, + y,; 0,)
— K(xy; 00) — K(yo; 0,)
+ K(CCT; ar) + K(yr; O-r) M

For (2b) let lim A, denote liminf 4, then

lim H,; 1) = lim [J(@,; 0,) — M K(@,; 0,)]
= lim J(x,; 0,) — lim,_ .\ K(,; 0,) Z J(%; 00)) — MK(@; 0,)
= H(wy; 1) -
For (2¢) if ©, — x,, lim H(x,; &) = H(xy; ) then
J(@5; 00) — MK (205 00) = H(zy; o) = lim,_.. H(z,; pt,) = lim,_..J(2,; 0,)
— lim,_, )\ K(2,; 7,)

so that J(x,; 0,) = lim,_.J(%,; ¢,). Since (2¢c) holds on X, we have x, —x,.
This complete the proof of the theorem.

Theorem 13 now follows immediately from Theorem 8.

THEOREM 13. For any Y, = (A, 0,) i M there exists 6 > 0 such
that if ¢t = (N, 0), d{t, tt,) < 0 then
(8) sy 05) £ s\, 0) £ s\, 0) + n(h, 0) £ s\, 0) + BNy Gy) ©

COROLLARY 14. Assume 0 > 0 has been chosen such that p =
Ny a)y d(p, ) < 0 implies inequalities (8) hold. Then tf d(p, rt) < 0
we have
(9a) n(\, 0) = nhy, 09),
9b) n(n, 0)=n(\, o) implies s(x, 0) = s(\,, 0,) and m(\, 0) =m(\,, 0,), and
(9¢) n(n, o) = 0 implies s(\, o) = s(\,, 7,) and n(x, o) = 0.

Corollaries 14 and 15 follow immediately from Theorem 13.

COROLLARY 15. The set {¢ in M| n(t) = 0} is open. The set
{¢t in M|n(y) = 0} s closed.

THEOREM 16. Let o, in Z be given and let A, be a nonempty
compact subset of (| n{\, 6,) = 0}. Then there exists ¢ > 0 such that
N Ao and (o, 0,) < & imply

(10) s\ @) = 8Ny G}y BN, G) = B{Ngy 0p) = 0

where A, is the e-neighborhood of A,.

Let A\, in 4, and set ¢, = (A, 0)). By Corollary 14 there exists
0 = 0(\) > 0 such that ¢ = (\,0) and d(g, ¢,) < 6 imply conditions
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(10). By the usual arguments for compact sets there exists 6 > 0
such that (10) holds whenever d(z, y) < é for any X\, in 4,. This
completes the proof. '

COROLLARY 17. Let \* be real and o, in T such that n(\*, 0,) =
s(\*,0,) = 0. Then there exists ¢ >0 such that po(o,0,) <c and
IN— N | <& tmply v\, 0) = s(\, 0) = 0.

Let 0, in ¥ be given. A real number X, is an eigenvalue
(characteristic value) of J(x;0,) relative to K(x;0,) on 2o, if
1\ 0) = 0. The number n(\,, 0,) is its multiplicity. An eigenvalue
X, will be counted the number of times equal to its multiplicity. If
N\, is an eigenvalue and x,+# 0 in A(o,) such that J(x, y; o) =
MK (2o, y; 0,) for all y in 2A(o,) then x, is an eigenvector corresponding
to A,

Assume J, K, and 2 are independent of ¢, that is, consider a
fixed Elliptic Form J(x) and a fixed compact form K(x) on a fixed
space . Results for this case (Theorem 18) have been given by
Hestenes [3].

THEOREM 18. Assume = 0 in A, K(x) <0 implies J(x) > 0.
Then there exists N* such that J(x; \*) 1is positive definite on 2.

If Ny = N* there exists ¢ = e(\,) suzh that
(11a) s(A\) = s(n), n(A) =0 (Ay — e < N < \y) and
(11b)  s(\) = s(\) + B\, B(A) = 0 (N < A< Ny + &)

If Ny < \* there exists € = e(\,) sush that
(12a) s(\) = s(\) + (), (A) =0 (M — e < M < )) and
(12b) s\ = s(No)y (M) =0 (g <N < N + 8).

If M SN <N then s(\') — s(\) 1s equal to the number of
characteristic values on N <N < N5 if M <N <N then s(V') — s(\)
18 equal to the number of characteristic valugs on N' <A < N,

If A <V <\ then s(\V') + n(\) — s(\) is equal to the number
of characteristic valuss on N < N < N5 if N <N S\ then s(\) +
n(\N') — s(\) 1s equal to the number of charasteristic valuss on
VTSNS N

It is instructive to describe the graph of \ versus s(\). By
Theorem 18 this graph is a step function with a finite or countably
infinite number of intervals; each interval has the associated non-
negative integer value s(\). The number \* is not unique. It may
be chosen to be any interior point of the interval on which s(\) = 0.
Note that s(\) is a nondecreasing function on (\*, <o) and nonincreasing
on (—-oco,\*); it is continuous from the right if » < \* and from
the left it A* < A. The discontinuities in s(\) are points at which
n(\) = 0; in fact the jump at N is n()\).
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For convenience we will denote the kth eigenvalue greater than
A by n,_;, the kth eigenvalue less than A\*, by a»,. If g, in X is
such that Theorem 18 holds we use the notation A.(g,) and \_.(c,).

THEOREM 19. Let o, wn X be given and assume J(x; o) >0
whenever © == 0 wn Wo,), K(x; 0,) < 0. Then there exists n > 0 sush
that p(o, o) <% tmplies J(x; 6) > 0 whenever x =+ 0 in A(o), K(x; o) < 0.

In addition there exists N* amd 6 > 0 such that ¢ = (N, 0), ¢, =
(W5 00, d(ps ) < 0 imply Hiw; 1) >0 on A(pe).

If the first result is not true, we may choose sequences {o,},
{x,} such that o,—o0, 2z, in WA, |lz,il =1 K(z;0) =0, and
J(z,; 0,) < 0. Since {x,} is bounded there exist y, in A and a sub-
sequence {x,}, which we assume to be {x,} such that z,—y,. By
1) vy, is in A(a,).

We claim y, = 0. If not K(y,; g,) = lim,.. K(x,; 0,) < 0 implies
J(¥y; 0,) > 0 which is impossible as

0 = lim sup J(v,; 0,) = lim inf J(2,; 0,) = J(¥e; 00) -
g=o0 g=oo

Thus J(y,; 0,) = 0 = lim,_., J(2,; 0,) and by (2¢) «, = 0. The contradic-
tion 1 = lim,_.. || x,|] = || 0| = 0 establishes the first result.

For the second result; by Theorem 18 there exists A* such that
H{x; 1) > 0 on Ay}, Thus n(\*, 0,) = s(\*, 6,) = 0. The result now
follows by Corollary 17.

THEOREM 20. Let g, in X be given such that J(x; o,) > 0 whenever
x %= 0 wm Wo,), Kx; o) <0. Assume N, N'(N < N') are not etgen-
values of o, and there exists k eigenvalues of o, on (N, N'). Then
there exists € > 0 such that p{o, 0,) < e implies there are exactly k
etgenvalues of o on (N, \').

In fact if NJ(0y) S Ny i(00) £ oo 0  Nwinil0y) are the k etgenvalues
of g, on (M, N') then MNf(0) N (0) £ oo E Npipi(0) are the k
etgenvalues of ¢ on (A, \').

We may assume M (g,) < N <N if MV < A¥(g,) < N’ we consider
the two intervals N < X < M (o) and M\ (o,) < A < )\’ separately.
Assume s(\,g,) = n then by Theorem 18, s(\',o) =n + k — 1,
n(\, o) = n(\’, 0,) = 0. By Corollary 14 there exists ¢ > 0 such
that if o{o, 6,) < ¢ then n(\, 0) = n(\"’, 0) =0, s(\, 0) = n and s(\", 0) =
n -+ k — 1. The result follows from Theorem 18 by taking ¢ =
min (¢, 7) where 7 given in Theorem 19.
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COROLLARY 21. If the nth eigenvalue 1\, (0) (n = 0, +1, =2, --+)
exists for o = o, it exists im a meighborhood of o, and is a continuous
Sfunction of o.

We note that the continuity of the nth eigenvalue also follows
from Theorem 11 as the hypothesis of Theorem 18 implies the
hypothesis of Theorem 11.

Theorems 22 and 23 are concerned with comparison theorems and
eigenvalue problem. These results have been given in Reference [2]
and are included for completeness.

THEOREM 22. Let UA* be a subspace of A, J(x) >0 whenever
=0 and Ki) =20, and V* be given as in Theorem 18. Let {\,},
N (=0, &1, £2, -++) be the eigenvalues of J(x) relative to K(x) on
A and W* respectively. If the kth eigenvalues \,, N} exist (b =
0, £1, &2, ---) we have

(13a) /\’k :.<— k’;ck (k — O, 1) 27 . ') and
(13b) M= N (k= —1, =2, =3, -+4) .

Strict inequality holds for any k (k= 0, £1, =2, -++) such that the
J(@; Ny) null vectors of U and A* are disjornt.
If A O UA* has finite dimension e then

(14a) e SN =Ny, B=0,1,2,--+) and
(14b) >\’k g N;c 3 7’\/k—-e (k = —‘17 -'2y _3y "') .

THEOREM 23. Let J*(x) and K*(x) be a second pair of elliptic
and compact forms on U such that J*(x) >0 whenever x = 0,
K*(x) < 0. Let J*(x; N) = J*(@) — M\K*(x) and assume for any real \
that J(x;\) < 0 whenever J*(x;N) £ 0. Then there exists N* such
that both J*(x; M*) and J(x; N*) are positive definite on 2.

Let {\, (M} (=0, £1, £2, -++) be the eigenvalues of J(x)
relative to K(x) on U and J*() relative to K*(x) on U respectively.
Then inequalities (18) hold. If J(x; Ny < 0 whenever «+ 0 and
J*(x; N) < 0 then inequalities (13) hold with strict inequality.

5. An Example. In this section we show that condition (1)
and (2) include the hypothesis of the eigenvalue theory of A.
Weinstein [1]. Thus many physical problems, including those of
vibrating membranes and plates, may be handled by our methods.
In a subsequent paper we will indicate how the values \,(¢) may
be found by numerical methods.

The assumptions of Weinstein are now given. Gould [1] contains
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the most complete discussion of this theory as well as a complete
list of references.

Let <~ be a closed subspace of 2 and .~ (n=1,2,+--) be a
sequence of closed subspaces of 2. Let P and P* be the respective
projections of 2 onto .27 and .". The sequence {.~"} converges to
%7, written &~*"— & if P"x = Px for all « in 2. The sequence
{7} converges downward to &, written &\, &, if & converges
to &7 and "' &~ ". The sequence { &} converges upward to 7,
written " 7 &7, if o™ converges to .~ and & C .

THEOREM 24. If <"\, .~ then &¥ =NZ" If <",/ ¥
then & = U™

If "\, then ¢ in & implies ¢ in .&" for n=1,2, «--
so that # in M. Conversely if ® in " for each n then Pz =g
and hence x = lim,... P*¢ = Px so that z in .~

If & 7<% and @ not in -~ then Px =+ ®. Thus there exists
« > 0 such that

a < ||z — Pzl :li}nHm—P"xH

so that « is not a limit point of YU.Z*" i.e., » is not in Ur™
Conversely if ¢ in .~ then P"x = Px = 2. Thus given ¢ > 0 there
exists m such that |{{x — P"x|| <e¢ with P™» in &~ < |J.Z"; hence
x is in U™

A correspondence between Weinstein’s setting and §8 is now
given: Let Z={reE'|z=1/n(n=1,2,--.) and 0} with the usual
metric. Forn =1,2,3, --- we set 2A(1/n) = & and A(0) = & where
<, ~"n=1,2,8,---) are subspaces of U and &¥* ¥ A
correspondence between the Generalized Raleigh-Ritz Method and § 3
is obtained in the same manner except that &7\ .

THEOREM 25. Assume {7} satisfies " \,.& or "/ A
Then n— oo, &, 0 £", x,— Y, tmplies y, in

Assume "\, Let m be an arbitrary fixed integer. If
n = m then w, in & ™. It follows that y, is in <™. By Theorem
24, ¥, is in ™ = &~

Assume " "% By Theorem 24 & = |J <™ and hence %,
in & for n =1,2, -.-. This implies, y, in <.

THEOREM 26. Assume {. "} satisfies <"\, or &/ L.
Then given any x, n & and ¢ > 0 there exists a fized integer n,
such that if n > n, there exists x, 1 " satisfying || %, — x.|| < &.
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If _~,\, .~ then z, in " = s and we take x, = @, in ="
n=12,---). If &¥* .~ then 2, in ¥ = J.~". Thus there
exists Z in |J.~" such that ||, — Z|| < ¢ and an m such that Z in
<™. The result follows by taking n, = m.

We remark that the spaces {.°"} are chosen by Weinstein in a
more restrictive manner than that above. In particular for the case
mN, .2 they satisfy "= 7S span{p, -+, p,} when {p,} is a
complete orthonormal sequence in .2”°©® . In the case 7 7 /7
they satisfy .~ "= _~"@span{p, -+-, p.} wWhere {p,} is a complete
orthonormal sequence in .~ @ .~°°.

We note that inequalities (14) with ¢ = 1 include the comparison
(or separation) results of Weinstein contained in [1; pp. 77].
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