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We show that if / is a nice (e.g. representable) homology
functor and (7 is an Abelian group, then there is a cohomology
functor 4(X; G) which is a ‘‘quasi-functor’’ of G and a short
exact sequence

0 —> Ext (W(ZX), ) — k(X; G) — Hom (W(X), G) — 0

which is natural in X, ‘“‘strongly quasi-natural” in G, and
split if two additional conditions are satisfied,

If, for example, M{X) = H,(X), then (X; &) = HY(X; G), and we
obtain a proof of the ordinary Universal Coefficient Theorem which
does not descend to the chain level but which does make heavy use of
Brown’s Representability Theorem [2]. After setting up the machi-
nery and proving some technical results in § 1, we derive in § 2 quasi-
naturality and, with suitable restrictions, splitting of the sequence.

The construction of k(X; G) involves an injective resolution of G.
We show (2.8) that k(X; G) is independent (up to non-canonical iso-
morphism) of the resolution chosen and we remark (in 2.12) that there
is a particular injective resolution /7(G) which is even functorial.

In §3 we prove a corresponding Universal Coefficient Theorem
for stable cohomotopy. We construct (3.8) the following short exact
sequence for finitely generated G and finite dimensional X

0— Ext, (G, 7' X) — {X, L(G, n)} — Hom, (G, 72 X) — 0

which is natural in X, strongly quasi-natural in G, and split if
(X, L(G, n)} is a functor of G. L(G, n) denotes the co-Moore space of
type (G, n), {X, Y} = stable homotopy classes of maps, and 7%4(X) =
{X, S}. In §4 we present some examples and a conjecture.

Let us recall from [5] the definition of a quasi-functor. Suppose
7 and <# are categories and S:|<% | —|.%7| is a function from the
objects of <& to the objects of .oz We call S a quasi-functor if given
any morphism G: B— B’ in <z there is a nonempty set S(8) of mor-
phisms in .o satisfying

(a) S(B) c .o7(SB, SB);

(b) B B— B and B': B’ — B"” imply

SB'R) > {d'aja’ e S(5), ae S(B)} ;
(© lgyeSy).
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398 PAUL C. KAINEN

Now if S, U: &Z — &% are quasi-functors, we say that v is a strong
quasi-natural transformation from S to U provided that v associates
to each Be|<#| a morphism v;: S(B) — U(B) and if 5: B— B’ then
the following diagram is commutative for all se S(B8) and all u e U(R)

71

S(B) —2— U(B)

o

S(B) —2__, um) .

We call v quasi-natural if for every se S(g) there exists u € U(B) such
that the above diagram commutes, and symmetrically, if for every
% there exists s making the diagram commute. Note that if S is a
quasi-functor which is not a functor and if v: S — S is the identity,
then v is quasi-natural but not strongly quasi-natural.

Early versions of these results comprised a portion of the author’s
doctoral dissertation written at Cornell University under the direction
of Professor Peter Hilton. I am grateful to Professor Hilton for
pointing out a number of substantial improvements. I should also
like to thank the referee for his very helpful suggestions.

One may view this paper as an alternative to Adams’ approach
(see [1]).

1. The machinery. Let us recall that a homology functor on
the category 77,° of based connected CW complexes is a covariant
functor h: #.° — Ab, the category of abelian groups, satisfying the
following two conditions:

(i) if A SEAN X-%.,C is a cofiber sequence, then

i) "0, 1ox) 22, ey

is exact;
(ii) the natural map

H h(Xa) —_ h( aYI’ Xa)

ael’

is an isomorphism for any index set I", where I] and V denote co-
products in Ab and 977*, respectively.

A contravariant functor k: 97, — Ab is a cohomology functor provided
that it satisfies the duals of (i) and (ii).

DEFINITION 1.1. We say that a homology functor is special pro-
vided that for every pair (X, A) of spaces in | 973*]
£ lim A(X" U A) — h(X)

n
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is a monomorphism, where X* is the n-skeleton of X and  is induced
by the inclusions «,: XU A— X. For example, & is special if it is
representable in the sense of Whitehead [7]. We call a cohomology
functor k: 97.¢ — Ab special if it satisfies the dual condition-that is,
the natural map

01 K(X) — lim k(X" U A)

is epic.
For the remainder of this section, let & be a fixed but arbitrary
special homology functor on 977",

LEMMA 1.2. Let I be an injective Abelian group. Then there 1s
a based CW complex B(I) and a natural eguivalence

(1.3) 7t [—, BI)] — Hom (h(-), I)
of cohomology functors on 277", where [—, —] denotes homotopy classes
of maps.

Proof. Since Hom (—, I) is an exact functor, Hom (2(—), I) is a
special cohomology functor on 7. Hence, by the Representability
Theorem of E. H. Brown [2], the conclusion follows.

LemMA 1.4. B is a functor on injective Abelian groups.

Proof. Let I and J be injective and let : I —J. Let B(y):
B(I)— B(J) be the unique (up to homotopy) map which makes the
diagram below commutative.

A

[, BI)] —— Hom (h(~), I)
(1.5) |8, 7
[, B)] —— Hom (h(~), )

where the vertical arrows are induced by B(y) and +r, respectively.
(The existence and uniqueness of a map B(y) inducing the natural
transformation 77’47, follows from the Yoneda Lemma of category
theory.)

For brevity, we shall write 4 instead of B(y). Let I:0 —

G227 J 0 be a short exact sequence in which I and J are
injective.

DEFINITION 1.6. We define B(I") to be the mapping kernel of +,
so B(I') fits into the following pull-back square
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B(I') ——— EB(J)
1.7 jl ‘ lp

B(I) —— BY)

where EB(J) is the (contractible) space of paths in B(J) starting at
the base point, p(®) = @(1), and the fibre of the fibration p is QB(J).
Note that B(I) and B(J) are homotopy associative and homotopy com-
mutative H-spaces, and + is an H-map, so that B(I") is also a homotopy
associative and commutative H-space.

By Eckmann-Hilton duality, the map + fits into a co-Puppe sequ-
ence P(I'):

s . — 50BN 2, 0B -2 0B

B < B s B

LEMMA 1.9. B and P are quasi-functors on injective resolutions
I and morphisms of short exact sequences.

Proof. Let I':0 G2 T e J >0 and F':O——»G’—pl—»

I ’(’1)—’>J’—>0 be injective resolutions, and let ¢ be a morphism
from I" to I

&

0 G212,y 0
Y X | B
0 L2y 0.

Now we may choose a map m: B(I") — B(I") so that the diagram of
homotopy classes of maps

. — QB(I) — QB(J) — B(I') — B(I) — B(J)
(1.10) lgf l“% lm lf‘ l@

. — QB(I"y — QB(J") — B(I") — B(I') — B(J")
is commutative. Thus, m induces a morphism # from P(I") to P(I").
However, the homotopy class of m is not uniquely determined. We
now define B(#t) to be the set of all such homotopy classes m and
P(y) to be the set of all corresponding morphisms # from P(I) to

P(I"). B and P are quasi-functors because the composite of commu-
tative diagrams is a commutative diagram.

DerFINITION 1.11. We define for any injective resolution I" the
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cohomology functor k(—; ") = [—, B(I")]. By the preceding lemma,
k(—; I') is a quasi-functor of I".

2. The sequence. Now we are ready to state and prove our
main result.

THEOREM 2.1. Let h be any special homology functor, let Xe

| 27321, and let I': 0 G125 0 be an tnjective resclution.
Then there is a short exact sequence

o(X; IN): 0 — Ext (h(2XX)G) — k(X; I') — Hom (W(X), G) — 0

an which the arrows are natural in X and strongly quasi-natural in I,

REMARK 2.2. A word is necessary here to describe the second
and fourth terms of o(X; I') as functors of I. If I'" is an injective
resolution of G, I is an injective resolution of G’, and t = (¢, f, 9):
I'— I, then the corresponding morphisms from BExt (h(ZX), G) to
Ext (W(2X), G') and from Hom (h(X), G) to Hom (h(X), G') are, respec-
tively, Ext (1, ¢) and Hom (1, ¢).

Proof of 2.1. Applying the functor [X, —] to 1.8 and using the
adjointness of Q and Y, we obtain the exact sequence

P £ BIO-E, (5%, BU)] — [X, BUD)]
. Js(X)

— [X, B()] =X, B()]

and so, by homological algebra, a short exact sequence
(2.4) 00— cok (V52 X)) — k(X; I") — ker (,(X)) — 0

which is natural in X and strongly quasi-natural in I'.
But by 1.5 there are isomorphisms
s: cok {4.(F X)) = cok (. (R(TX))) ,
t: ker (¢,(X)) = ker (y.(h(X))) ;

and these isomorphisms are natural in X and /°. (Note that the above
groups are functor of I'.) Moreover, there are also isomorphisms,
well-known from homological algebra,
u: cok (vu(R(2 X)) = Ext (h(2X), G),

v: ker (v,(h(X))) = Hom (h(X), G) ,

(2.5)

(2.6)

which are natural in X and I. There isomorphisms simply express
the independence of Hom and Ext of the resolution of G. Now the



402 PAUL C. KAINEN

composite isomorphisms us and vt transform 2.4 into ¢(X;G) and
preserve naturality in X and strong quasi-naturality in I.

The following lemma is well-known.

LEMMA 2.7. Let e: G— G’ be any homomorphism and let I' and
I be injective resolutions of G and G, respectively. Then e extends
(non-uniquely) to a morphism (e, f, 9): I' — I’ of resolutions.

Now we can state a corollary to Theorem 2.1.

COROLLARY 2.8. Let I' and I be two injective resolutions of the
same group G, let h be a special homology theory, and let Xe| #3°|.
Then there is a (non-unique) isomorphism o(X; I') = o(X; I').

Proof. By 2.7, 1: G — G extends to (1, f, 9): I’ — I” which yields
a morphism M: o(X; I') — o(X; I'"). Neither process is unique. But
M induces the identity on the second and fourth terms, and therefore
M must be an isomorphism by the 5-lemma.

Select for every Abelian group G an injective resolution 7(G) and

define ¢(X; G) = o(X; I'(G)). By 2.7, I'(G) is a quasi-functor of G and
so 0(X; G) is strongly quasi-natural in G. By 2.8, ¢(X; G) is inde-
pendent, up to noncanonical isomorphism, of the resolution chosen.
We shall fix, for definiteness, a particular 7I'(G) in 2.12.

Now we need a lemma.

LEMMA 2.9. Let G = G, PG, and let 7: G;— G denote the canoni-
cal injection (§ = 1,2). Let Xe| 73| be fized but arbitrary. Choose
m; € k(X; £4) so that by strong quasi-naturality we have the commuta-
tive diagram

0 — Ext (h(2X), G;) — k(X; G;) — Hom (W(X), G;) —> 0
(2.10) Ext (1, ml mjl Hom (1, ml
0 — Ext (W(2X), G) — k(X; G) — Hom ((X), G) —> 0.
Then
m, B m,: K(X; G) B X; G,) — k(X; G)
s an somorphism.

Proof. Ext and Hom are additive and, therefore, by the 5-lemma,
m, P m, is an isomorphism.

This lemma permits us to apply an elegant theorem of Hilton [3]
to the sequence ¢(X; G).
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THEOREM 2.11. (Universal Coefficient Theorem). Let h be any
special homology theory, let Xe| 27|, and let G be an Abelian group.

(a) Then there is a representable cohomology functor k(X; G) which
18 a quasi-functor of G and a short exact sequence

0(X; G): 0 — Ext (h(ZX), G) % k(X; G) X% Hom (W(X), G) — 0

n which Ty, and Nye are natural in X and strongly quasi-natural
m G.

(b) Moreover, if for some fived X €| 7| we have

(i) k(X; @) is a functor of G and

(ii) Hom (h(X, G) is a direct sum of ecyclic groups, then o(X; Q)
splits for that X and every G.

Proof. Part (a) is simply 2.1 with I" = I'(G). Part (b) follows
from [3] since Hom is a left-exact functor and, by (i) and 2.9, &(X; G)
is an additive functor of G so that o(X; &) is pure. Condition (ii)
yields splitting.

2.12 Construction of I'(G)

The following construction of ['(G) was related to me by Peter
Hilton. Let G be any Abelian group. Then G has a canonical free

resolution 0 RG L5 FG-Ls G 0, where F'G = free Abelian
group on underlying set of G and RG = kernel (FG—G). Let QG =
IM,.c @, where @, = @, the rationals, for every ge G, and define =:
FG— QG by 7(g) = 1¢Q, where § is the generator of F'G corres-
ponding to g. Then setting 7 = x: RG — QG, we have the following
commutative exact diagram

0 0 0
0 — RG —— FG -~ G 0
(2.13) 1 ln e
1 N
0 — RG — QG —— I'G — 0
1%
0 J'G
0

where I'G = cok (\), ¢ is induced by (1, #), and J'G = cok (9;) with
we: I'G— J'G the canonical map. Put I'(G) = right-hand column in
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2.13. Then I'(G) is an injective resolution of G since injective Abelian
groups are closed under coproducts and quotients. Moreover, I'(G) is
even functorial in G.

REMARK 2.14. The epimorphism 7, of 2.11(a) can be interpreted
as providing a weak adjunction from i to B(—), where B(G) is the
space which represents k(—; G). Thus, B(—): Ab— %7’ is a weak
right adjoint (in the sense of [5]) to h: 7.* — Ab, just as K(—, n):
Ab— 973", which associates to a group G the Eilenberg-MacLane
space K(G, n), is a weak right adjoint to H,: %7.° — Ab, the ordinary
homology functor.

REMARK 2.15. The results of this section hold for theories as
well as functors. Moreover, they can also be modified to hold for
other categories than 97,°. Finally, there is nothing special about
using Ab as a target; we could just as well do everything for R-
module-valued homology and cohomology functors where R is a (com-
mutative) ring of cohomological dimension 1.

3. The universal coefficient theorem for stable cohomotopy.
Let G be a finitely generated Abelian group. Then there is a standard

projective resolution o(G) of G

(3.1) 0 RG-ZFG =5 G—0

where F'G is the free Abelian group on a set SG of generators of
G, t; is the canonical projection, RG is the kernel of 7,;, and o, is
the canonical injection of RG into F'G. As in Lemma 2.7 po(G) is a
quasi-functor of G. Define
(3.2) FG=V S, S, =8teSG,n=0,

G

tes

and, similarly, define

3.3) RG=V S, =8"n=0,qel" =set of generators of RG .
qel’

LEMMA 3.4. Let n=1. Then there exists a map &% F,G— R,G
(unique up to homotopy) which induces o, upon applying H™(—; Z).

Proof. If @: Z— Z, then @ is just multiplication by some integer
m (m = 0 is not excluded), and we write ® = m. Then any map f
of degree m from S* to S* induces @ in nth ecohomology, and we can
write $" = m. -

Thus, by stable additivity, [F.G, B,G] is in one-to-one correspond-
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ence with integer matrices (m,,), and the set Hom (RG, FG) of homo-
morphisms is in one-to-one correspondence with integer matrices (m,,).
Moreover, (m,;) is induced by its transpose (m,,) so we let

(3.5) Gi = (my,) ,

where (m,,) is the matrix corresponding to o,.

Since >} FG=F,.QG, S R.G=R,.G, and SV6% =64, we have
the following Pupps sequence 03 for 43, n =1

N1

8.6 PG RG—LGn+l)—F, . GESR,.G

where L(G,n + 1) = (reduced) mapping cone of 7. Thus, L(G,n + 1)
is just the co-Moore space of type (G, n + 1); i.e. H(L(G,n +1); Z) =0
g#n+1 H*' (LG, n+1);Z) =G, and 7(L(G,n + 1)) =0 by Van
Kampen when n = 2. Since p(G) is a quasi-functor of G, so is 0*(G)
and, hence, L(G, n + 1).

Let <7, denote the category of based connected finite-dimen-
sional CW complexes. If Xe| 97| and Ye| 97%"|, then we define

(X, Y} = lim [3*X, 3*Y],
v

and we recall that {X, —} is a special homology functor on 97°.
Therefore, applying {X, —} to 3.6, we obtain an exact sequence

3.7) (X, F.G} — {X, R,G} —~n>+{1X, L(G, n + 1)}

— (X, F,.G) 25 (X, R, .G}

But clearly {X, F,G} = Hom (FG, 72(X)) by an isomorphism which is
natural in X and also natural in G(7%(X) = {X, S*}). Therefore, as
in § 2 we obtain the following theorem.

THEOREM 3.8. Let G be a finitely generated Abelian group. Let
n =2 and let Xe| 7 |. Then there is a short exact sequence

0 — Ext (G, n57 (X)) — {X, L(G, n)}

(3.9)
—— Hom (G, 7%(X)) — 0

which s natural in X and strongly quasi-natural in G. The sequence
splits if, for some fized X, {X, L(G, n)} is a functor of G.

As a corollary of this theorem, we have the following result of
Hilton-Olum-see [4].

COROLLARY 3.10. Let G, and G, be finitely generated Abelian
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groups and n = 4. Then there is a short exact sequence

00— T(Gl)* ® Gz ® Z2 — [L(Gzr n)y L(Gly /n’)]

(3.11) — Hom (G,, G;) — 0

which s strongly quasi-natural in G, and G, where T(G) = torsion
subgroup of G and G* = Hom (G, Q/Z)(=G if G is finite).

Proof. Applying 3.9 to G = G, and X = L(G,, n), we get

0— EXt (Gly ns—l(L(GZ’ n)) — {L(G2y n)’ L(Gly /n’)}

(3.12) — Hom(G,, 7X(L(Gy, 7)) — 0 .

But for n = 4

Ty N LGy m) = G, QR Z,
{L(G,, m), L(G,, m)} = [L(G,, n), L(G,, n)] ,
and
w2 L(G,, n)) = G,, so we have for n =4

0— Ext (G, G: Q Z,) — [L(G,, n), L(G,, n)]

(8.13) — Hom (G,, G,) — 0.

Now we are done since Ext (G,, —) = T\G)* Q — as functors on the
category of finitely generated Abelian groups.

4. Some examples and a conjecture. The general problem of
computing k*(X; G), for a given homology theory %, and group G,
is very difficult, even when the group is injective. For example, if
h,=mi ={8% —} and G = @, then

(4.1) F(X; Q) = HY(X; Q)

by an easy argument based on Serre’s result [6] that 7J(S") is finite
for » = q. With h, as above and G = Q/Z it is easy to establish

(ST, r # q
QZ, r=4q.

Thus computing k*(X; Q/Z) in this case amounts to knowing the stable
homotopy groups of spheres!

If the homology theory %, is represented by a spectrum B, then
the spectrum B(G) which represents k*(—; G) can be thought of as
obtained from B by introducing G coefficients. The spectrum B also
represents a cohomology theory, and we have the following

(4.2) k(S Q/Z) =

CONJECTURE 4.3. If 7n,B is a ring of cohomological dimension 1,
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then there is a homotopy equivalence of spectra B ~ B(Z).

This conjecture simply says that our method and Adams’ [1]
coincide over rings of cohomological dimension 1-where his spectral
sequence collapses to a Universal Coefficient Sequence.

REMARK 4.4, It is not true in general that k*(—; Z) is the co-
homology theory associated to the spectrum B which represents 7..
For example, if, as above, B = sphere spsctrum and #h, = stable
homotopy is the homology theory represented by B, then

(4.5) kS, Z) =0 for all ¢ > n .

But the cohomology functor associated to the sphere spectrum is stable
cohomotopy, and certainly

(4.6) 72(SY) = 0 for all ¢ > n .
In particular, £*(S**; Z) = 0 & Z, = 7{(S*™).
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