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We prove that a Frechet space E with a Schauder basis is
nuclear if and only if every bounded subset of F is contained
in a bounded Choguet simplex, We then show how this theorem
relates to the basis problem for nuclear Frechet spaces and
to the classical Banach-Dieudonné theorem,

In the class of all infinite dimensional Banach spaces the Hilbert
spaces (and their isomorphs) seem to be the natural generalization of
the finite dimensional normed linear spaces. Indeed many authors
have characterized Hilbert spaces by extending results from Euclidean
geometry (see [4, Chap. VII, § 8 p. 115-121] for an excellent discussion).

However, in the class of all infinite dimensional Fréchet spaces
(complete, metrizable, locally convex) this is no longer the case. It
now appears that the nuclear spaces of A. Grothendieck [9], [26] are
the proper generalizations of the finite dimensional spaces.

Indeed, Grothendieck [9] has shown that a Frechet space E is
nuclear if and only if E has the Dvoretzky-Rogers property: every
unconditionally convergent series in K is absolutely convergent.

This property is known to characterize the finite dimensional
normed linear spaces in the class of all normed linear spaces [7].

Also, it is well known that nuclear spaces can be nicely approxi-
mated by finite dimensional spaces (Kolmogorov diameters, diametric
and approximative dimensions) see [1], [22] and [26]. Moreover, the
Dynin-Mitiagin theorem [8] and a recent result of Wojtynski [29]
asserts that a Fréchet space F with a Schauder basis is nuclear if
and only if every basis of E is absolute. Since pelezynski and Singer
[23] have shown that every infinite dimensional Banach space with a
basis has a conditional basis, the above result can be viewed as a
generalization to the class of Fréchet spaces with bases of a well-
known property of finite dimensional spaces.

Aside from these characterizations and a few related results, there
seems to be few instances where nuclear spaces have been characterized
by some property common to finite dimensional normed linear spaces.
The purpose of this paper is to present such a characterization.

It is obvious that a bounded set in a finite dimensional normed
linear space lies in a bounded simplex. Our goal is to prove

THEOREM 1. A Fréchst space E with a Schauder basis is nuclear
iof and only if every bounded subsct of E 1is contained im a bounded
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Choquet simplex. (Moreover, this simplex can be taken to be compact).

Part of this result, without the basis requirement, has appeared
in [18].

2. Terminology. All linear-topological prerequisites can be found
in Kothe [15] and Day [4]. Throughout this paper E denotes a real
Fréchet space. We will use the word neighborhood to mean ¢‘closed
convex circled neighborhood’’.

If U is a neighborhood of the origin in E with Minkowski func-
tional o, then by E, we denote the quotient space E/o7'(0), on which
Oy is a norm. The space E is nuclear [26] if for each neighborhood
U of 0 in E there is a neighborhood of 0, V, absorbed by U, such
that the canonical map

IVU . EV g EU
is nuclear, i.e.

L) = g NalZy fu)On s ve By

where 7, [\, | < +oo, (fu) © E/ is equicontinuous and (p,) C E, is
bounded.

(For equivalent ways to define nuclearity see [26].) We will use
conv A and I"(4) to denote, respectively, the convex hull and convex
circled hull of a set A in E. As usual, A denotes the closure of A.

A sequence (x,) in K is topologically free if no =z, is in the closed
linear span of (x,:m # n); equivalently, (x,) is topologically free if
there are functionals (f,) in B’ such that

S, = 6,,, the Kronecker delta.

(See [5] for a discussion of topologically free sequences in locally convex
spaces.) A topologically free sequence (x,) with associated functionals
(f.) is a Schauder basis for E if for each ze E,

@ = 3 fu@)a,

convergence in the topology of E.

If A is a set of positive sequences a = (a,) (i.e., all a, = 0)
satisfying

(i) for each n there is an aec A such that a, = 0; and,

(ii) for a', --+,a"c A there is an ac€ A and M > 0 such that

ai, < Ma, for all ¢ and =, then

MA) = fo = @):0.0) = S, 0, <+ for all ae A}
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with the topology generated by the seminorms {o,:ac A} is called a
Kothe sequence space. It follows from the Dynin-Mitiagin theorem
above that a nuclear Fréchet space E with a Schauder basis (v,) is
isomorphic to the Kothe sequence space MA), A = {|.].}, where
[+, < |-, < --- is an increasing family of seminorms generating the
topology of E. Thus, nuclear Fréchet Kothe sequence spaces coincide
with the class of nuclear Fréchet spaces with bases. (The above
discussion is the main theme of the work [1]; for general relations
between bases and sequence spaces see [28]).

In general, » = \(4) is nuclear if and only if for each x e\ there
isayenand tel, with z, < ¢y, for each n. This property is known
as the Grothendieck-Pictsch criterion [14].

Grothendieck has conjectured that every nuclear Fréchet space
has a Schauder basis. Our Theorem 2 below sheds some new light
on this (still unsolved) conjecture.

Finally we need the notion of a Chogquet simplex.

Let S be a convex subset of E. Passing to E x R, R the scalar
field, if necessary, we may suppose that S lies in a hyperplane of E
which misses the origin. The set S is a Choqust simplex [3], [25] if
the cone

C={as: «a=0,seS}

generated by S induces a lattice order in C-C. Chogquet has observed
that in finite dimensional spaces a Choquet simplex coincides with the
usual notion of simplex. (A word of caution is necessary. A Choquet
simplex S may not, strictly speaking, generate a cone in FE, e.g. if
the origin is in the core of S. More precisely, S is a Choquet simplex

if S is affinely homeomorphic to a set S’ with the above properties.
In particular, a translate of a Choquet simplex is again a Choquent
simplex.)

3. Three lemmas. In this section we develop the machinery
used to prove Theorems 1 and 2. Lemma 1, purely technical in nature,
appears in [18]. We reproduce it here for completeness. Lemmas 2
and 3 are of independent interest.

LEmMMA 1. Let (7,23, 1) be a measure space and (g,)r-. & sequence
in LT, X, 1). Suppose there is a constant M such that ¢, =0, g, +

Sineo 0 = 0 and S g + ZW,S 0.4 < M for any finite set o of posi-
T T

tive integers. Then

S| lolde < e
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Proof. Since L,(T, X, 1) is weakly complete and
> On

nea

=M+ gl

it follows that >, g, is unconditionally convergent [4, p. 60], [21],
say to g. For any positive integer m let (E;)2™ be a partition of T
into disjoint measurable sets such that each g,, 1 < n < m has constant
sign on E;, 1 < i < p(m).

For fixed 7 let

Pi:{n: gnlElgO,léném}a

and
Qi:{lyzy "'ym}—Pi'
Then
s | todp=| (3 a.)an= | od
neP; JE; E; \neP; E;
and
s jolde= -] (5 0.)des| odue.
new; JE; E; \ne¢; E;
Thus
S| lolde=] @+ g
n=1 JE; E;
and so,

S igldn=| @+ 9dp < e

The next lemma is the main tool needed in the proofs of Theorems
1 and 2.

LEMMA 2. Let (y,) be a topologically free null sequence in a
locally comvex space. If K = Tonv (y,) is compact, then K is a Choquet
stmplex.

Proof. By Milman’s theorem [15,p. 332] the set of extreme
points of K, ext K, is included in {y,: » = 1}U{0}. By the Choquet-
Meyer uniqueness theorem [25, p. 66] we must show that every point
ke K admits a unique maximal (in Choquet’s order) representing
measure. The set ext K is closed since (y,) is a null sequence and
so the maximal measures on K are exactly those measures supported
by ext K [25,p. 27, p. 30 and Prop. 9.3, p. 69], i.e. they are atomic



NUCLEAR SPACES, SCHAUDER BASES, AND CHOQUET SIMPLEXES 413

measures supported by {y,: » = 1}U{0}. Let ¢ and v be two maximal
measures representing ke K. Let 1({y.}) = tt., #£({0}) = ¢, and similarly
for v, and v,. Then g, v, =20 for n=10,1,2, ...,

oo

(+) Z#TL_Z 7L:17

n= n=0

and
k:ZA nyn“zvnyn‘

n=1

Let (f,) be the functionals associated with (y,). Then f,(k) = p, = v,
and from (+) it follows that g, = v,, i.e. £ = v and K is a Choquet
simplex.

It is very likely that the conclusion of Lemma 2 holds without
the assumption that K is compact. In the case of a Fréchet space,
our interest here, of course K is compact. Thus we have not checked
the general result.

For our final lemma we need the notation of the normal hull of
a set of sequences. If M is a set of real sequences b = (b,), the
normal hull of M is the set of all real sequences y = (y,) Wwith
94.] < |b,| for all » and some be M.

Kothe [14] has shown that in a nuclear sequence space X, each
bounded set B is contained in the normal hull of a single element
0 = (0.).

Geometrically Lemma 3 says that in a nuclear sequence space a
“‘parallelopiped’ can be placed in a simplex.

LEMMA 3. Let ) be a nuclear Kothe sequence space and let p =
() eN, 0,20 for each n. Then B = {xe\: |x,| £ p.} 18 contained
m a compact Choquet simplex.

Proof. Considering B + o instead of B we may assume B =
{xrex: 0 <2, < p0,). By the Grothendieck-Pietsch criterion there is a
o= (o,)ex and (t,) €l, such that p, < t,0,. Dividing by a constant
if necessary we can assume that 3t, < 1,¢, > 0. Also we can suppose
that no o, is zero. If {e,) is the unit vector basis of A\ then (g,¢,)
is a topologically free null sequence. Thus if xe B,z = Y6, =
2t (o,t,) w0, and Xt (0,t,) 2, < Xt, <1 i.e. B '(0,e,). By the
Dynin-Mitiagin theorem JXo,e, is absolutely convergent to o. Let
S = eonv (20,¢,). By Lemma 2, S and hence any translate of S, is a
compact Choquet simplex. Thus B + o C [ (0,2, + 0 C S, i.e..

BcS—-o.

4, Proof of theorem 1. We first suppose that E is a nuclear
Fréchet space with a basis. If Bc E is bounded then by the result
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of Kothe above B is contained in the normal hull of some o = (p,) e ),
the sequence space representation of E. By Lemma 3, B is contained
in a compact Choquet simplex.

Now suppose each bounded subset of E is contained in a bounded
Choquet simplex. Let >\, x, be an unconditionally convergent series
in F and let A = {3>),.,®,: ¢ finite}U{0}. It is well known that 4 is
precompact, hence by hypothesis, contained in a bounded Choquet
simplex B. Consider in E x R the cone C generated by B x {1}.
Then F' = C-C is a linear lattice with the order induced by C. The
Minkowski functional of I"(B x {1}) is a norm on F. This norm and
the order are related by the following two properties:

(i) if x Ay =0 then ||z + y|| = ||z — y]|[; and

(ii) if £ =0,y =0 then ||z + y|| = [|=]| + |ly]].

It follows from the Kakutani theorem [16], [4, p. 98-100] that the
completion of F is an abstract L-space (with order determined by C).

Let P be the restriction to F of the natural projection from
E x R onto E. Since B is bounded, P is cotinuous from F to E.
Let v, = (x,,1),7n=0,1,2, +-. where x,=0. Clearly y,€ B x {1}
and Y, + Dluee (W — %) € B x {1} -for each finite set of positive integers
o. But B x {1} is part of the positive face of the unit ball in an
abstract L-space. By Lemma 1 it follows that >7 |y, — %l < +eo.
Since Py, = «, it follows from the continuity of P that Yz, is abso-
lutely convergent, i.e. E has the Dvoretzky-Rogers property. By the
result of Grothendieck quoted in the introduction, E is nuclear.

5. Cones and the existence of bases. In any separable Fréchet
space E (in particular a nuclear Fréchet space) there is a topologically
free null sequence (z,) whose closed linear span is E, i.e. (2,) is funda-
mental. (This result is due essentially to Markuchevitech [19]; see
also Klee [11]). Thus S = éonv (z,) is, by Lemma 2, a Choquet sim-
plex. It is not hard to see that C = {as:a = 0,se S} is always a
proper cone. There are important cases in which C is not only a
cone but makes C-C a vector lattice (see [24] for terminology). We
will call a simplex S a VL-simplex if C is a cone making C-C a
vector lattice.

Let (#,) be an unconditional basis for E with coefficient functionals
(f,) and let K = {xec E:f,(x) = 0 for all »}. Then K is called the
basis cone of (x,).

Ceitlin [2] has shown that K is normal (for any two nets (x;), (y;)
in £ with 0 < 2, < y;, if lim; 2, = 0 then limz; = 0) and K-K = E. Ceitlin
observes that in this situation the induced lattice operations are con-
tinuous. The work of Ceitlin above makes it easy to prove the following
result.

ProrosiTiON 1. If (,) is an wunconditional basis in a Fréchet
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space E with lim, x, = 0 then S = ¢onv (x,) is a VL-simplex.

Proof. By Lemma 2 and the above remarks we need only observe
that C = K where C = {as:a = 0, se S} and K is the basis one of (x,).
The inclusion C < K is obvious and since any finite sum 37, a.;,
a; =01is in C, K= C.

Our next theorem shows the difficulties in trying to remove the
basis hypothesis in Theorem 1.

THEOREM 2. Let E be a nuclear Fréchet space. The following
are equivalent:

(a) E has a Schauder basts;

(b) each bounded subset of E is contained in a translate of a
bounded VL-simplex; and

(c¢) thereis a fundamental bounded sst containing 0 and contained
wn a translate of a bounded VI-simplex.

Proof. (a)—(b): Let (e,) be a basis for E, B a bounded subset
of E and let o = (p,), ¢ = (g,) have the meaning of Lemma 3.

Then by Lemma 3, BC —po + S where S = éonv (20,¢,). Since
we may assume that each o, = 0 (20,e,) is, by the Dynin-Mitiagin
theorem, an unconditional basis for E. Also (20,¢,) is a null sequence.
By Proposition 1, S is a VL-simplex.

(b)—(c) is obvious from [19] since E is separable.

(¢)—(a). Let B be the fundamental bounded set of (c). By hypo-
thesis there is a pe K and a VIL-simplex S such that B— p<S. If
C is the cone generated by S then, since 0e B

BcB—-B=(B—-p)— (B—p)cC —C ie.

is dense in E. Since E is nuclear and S is a VL-simplex
C — C is a nuclear vector lattice and so [13] the lattice operations
can be extended to K in such a way that FE is a nuclear vector
lattice. However, from the generalized Grinblyum K-condition [20]
and the results of Komura-Koshi [13] it follows that every Fréchet
nuclear vector lattice has a basis. (See [1] for a complete discussion
of the Komura-Koshi result and its relation to basis theory.)

|
| QA

6. The strong Banach-Dieudonné property. Let us recall the
Banach-Dieudonné theorem for Fréchet spaces: every precompact subset
of E is contained in the closed convex circled hull of a null sequence
(see e.g. [15, p. 273]).

The following proposition allows one to strengthen this result.
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PROPOSITION 2. Let (x,) be a null sequence in a locally convex
space F. Then there is either a linearly independent null sequence
or a finitely nonzero sequence (z,) in F such that conv (x,) C conv (2,).

Proof. If there is no infinite dimensional bounded set in F' then
conv (x,) is bounded and finite dimensional and the assertion is obvious.
Thus suppose (v,) is a bounded linearly independent sequence in F.
Construct an infinite array in the following manner: If x, ..., x; are
linearly independent and x;., = >)i_, M@, put 2, 1 < J < ¢ in the first
place of the j-th row. Choose n, such that n;'y, + ,;, is linearly
independent from the elements in the array and put this new element in
the first place of the ¢ + 1l-row. If ®;,, is linearly independent from
the elements of the array put it in the first place of the 7 + 2-row.
If not, put in this place n;'y,, + %;.. where n, > n, and n;'y,, + ;.
is linearly independent from the elements of the array. Next choose
ny > n, such that n,'y,, + @y, 18 linearly independent from the ele-
ments of the array and put it in the second place of the 7 + 1-row.
The first element of the 4 + 3-row will be «,,, or of the form
N7 'Y, + ®iis (Where m, > m;) depending on whether x;.; is linearly
independent or not from the elements of the array. Next put
N5 Yoy + Tiiry M5 Yy + Tip With 2 > ny > m, in the third place of the
1 + l-row and the second place of the ¢ + 2-row (if the row does not
begin with x,,,), where these elements are chosen to be linearly
independent from the array. Continue the process and enumerate the
array diagonally to obtain the sequence (z,). Then (z,) is a null
sequence and (x,) C ¢onv (z,).

In particular if £ is metrizable, Proposition 2 and the Banach-
Dieudonné theorem show that every precompact subset of E is contained
in the closed convex circled hull of a linearly itndependent null sequence.

This motivates the following definition. We say that a locally
convex space F has the strong Banach-Dieudonné property if each
bounded subset of F' is contained in the closed convex circled hull of
a topologically free null sequence.

REMARK 1. If F is barrelled and has the strong Banach-Dieudonné
property then F'is a Montel [15] space. Indeed, in this case, bounded
sets are necessarily precompact. In particular, if a Banach space E
has the strong Banach-Dieudonné property then E is finite dimensional.

If one replaces ‘‘null sequence’”’ in the above definition with
‘‘absolutely convergent sequence’’ then the proof of Lemma 2 and
[26] show that a space F with this property must be nuclear.

We do not know if a Fréchet space E with the strong Banach-
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Dieudonné property is necessarily nuclear. Lemma 3 shows that a
nuclear Fréchet space with a Schauder basis (e,) has the strong
Banach-Dieudonné property. Indeed if

B={xex:|z,| £ 0.}
then by the proof of Lemma 3

A={yen:0y, <20, (0,8,) .
Also,
—Ac (o, and Bceconv(4AU-4)

since Xu,e, is we conclude with two examples.

ExamMPLE 1. A nuclear space F which lacks the strong Banach-
Dieudonné property.

Let F' be I, with the o(l,, l..)-topology. Since F' has a neighbor-
hood basis {U} such that for each Ue{U}, F; is finite dimensional,
F' is nuclear. By Shur’s lemma sequential convergence in F' is norm
convergence in [,. If B is the unit ball of I, there is no null sequence
(y,) in F with Bc I'(y,).

ExAMPLE 2. A locally convex space F with the strong Banach-
Dieudonné property which is mot nuclear.

Let F' be I, with the bounded weak*-topology (i.e. the topology
of uniform convergence on null sequences in ¢). Since a functional
f is bw*-continuous if and only if it is w*-continuous [6], a bounded
subset of F' is w*-bounded, hence norm bounded. Thus to show that
F has the strong Banach-Dieudonné property it suffices to show that
the unit ball of [, is contained in the closed convex circled hull of a
topologically free F-null sequence. Let (e,) be the unit vector basis
of I,. Clearly B I'(e,) and (e,) is topologically free. Also w*-lime, =0
and so by [4, p. 42] (e,) is F-null.

To see that I is not nuclear it suffices [26] to produce a series
2z, in F' which is unconditionally but not absolutely, convergent.

By the proof of the Dvoretzky-Rogers theorem [7], [4] there is a
sequence (x,) in [/, such that Xz, is unconditionally convergent (in
norm) and ||x,| = 1/n. For each n let y, <€ ¢, |[%.l] =1 and x,(y,) > 1/2xn.
Let y be the null sequence ((1/In m)y,). Then

1

oY) | = L
Inm

“ oninn

Ou(,) = sup }
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Thus Yo,(x,) diverges. But o, is a continuous seminorm on F and
so Xz, is not absolutely convergent in F'.
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