ALGEBRAIC STRUCTURE FOR A SET OF NONLINEAR INTEGRAL OPERATIONS

DAVID LOWELL LOVELADY
ALGEBRAIC STRUCTURE FOR A SET OF NONLINEAR INTEGRAL OPERATIONS

DAVID LOWELL LOVELADY

A generalized addition is introduced for a set of generators, and a generalized multiplication is introduced for a set of evolution systems. Then the mapping which takes a generator to the corresponding evolution system becomes an isomorphism. Necessary and sufficient conditions are found for the generalized addition to reduce to addition, and hence, under these conditions, we are able to write a formula for the evolution system generated by the sum of two generators.

Preliminaries. Let $S = [0, \infty)$, and let $(G, +)$ be a complete normed abelian group with norm N. Let H be the set to which A belongs only in case A is a function from G to G, $A[0] = 0$, and there is a number b so that $N[A[p] - A[q]] \leq bN[p - q]$ whenever (p, q) is in $G \times G$. If A is in H, let $N[A]$ be the least number b so that $N[A[p] - A[q]] \leq bN[p - q]$ whenever (p, q) is in $G \times G$, and let $N[A]$ be the least number b so that $N[A[p]] \leq bN[p]$ whenever p is in G.

Let OA^+, OM^+, and \mathcal{E}^+ be as in [8]. Let OA be the set to which V belongs only in case V is a function from $S \times S$ to H so that

1. $V(x, y) + V(y, z) = V(x, z)$ whenever (x, y, z) is in $S \times S \times S$ and y is between x and z, and
2. there is a member α of OA^+ so that

$$N[V(a, b)] \leq \alpha(a, b)$$

whenever (a, b) is in $S \times S$.

If α and V are related as in (ii), α will be said to dominate V.

Let OM be the set to which W belongs only in case W is a function from $S \times S$ to H so that

1. $W(x, y)W(y, z) = W(x, z)$ whenever (x, y, z) is in $S \times S \times S$ and y is between x and z, where the multiplication is composition, and
2. there is a member μ of OM^+ so that

$$N[W(a, b) - I] \leq \mu(a, b) - 1$$

whenever (a, b) is in $S \times S$, where I in H is given by $I[p] = p$.

The following theorem is due to Mac Nerney [9].

Theorem 1. There is a bijection \mathcal{E} from OA onto OM so that if V is in OA and W is in OM, then (i), (ii), (iii), (iv), and (v) are
equivalent.

(i) \(W = \mathbb{G}[V] \).

(ii) \(W(a, b)[p] = \sigma I^p[I + V][p] \) whenever \((a, b, p)\) is in \(S \times S \times G\).

(iii) \(V(a, b)[p] = \sigma I^p[W - I][p] \) whenever \((a, b, p)\) is in \(S \times S \times G\).

(iv) There is \((\alpha, \mu)\) in \(\mathbb{E}^+\) so that

\[
N[p][W(a, b) - I - V(a, b)] \leq \mu(a, b) - 1 - \alpha(a, b)
\]

whenever \((a, b)\) is in \(S \times S\).

(v) If \((a, p)\) is in \(S \times G\), and \(h\) is given by \(h(t) = W(t, a)[p]\), then \(h\) has bounded \(N\)-variation on each bounded interval of \(S\), and is the only such function such that

\[
h(t) = p + (\mathcal{R}) \int_0^t V[h]
\]

whenever \(t\) is in \(S\).

REMARK 1. The notions of \(II, \Sigma\), and \((\mathbb{R})\) are to be taken as in [9].

Let \(OAI\) be that subset of \(OA\) to which \(V\) belongs only in case each of \(I + V(t, t^+), I + V(t, t^-), I + V(t^+, t)\), and \(I + V(t^-, t)\) has inverse in \(H\) whenever \(t\) is in \(S\). The following theorem is due to Herod [6] (see also [4] and [5]).

Theorem 2. Let \((V, W)\) be in \(\mathcal{E}\). Then (i) and (ii) are equivalent.

(i) \(V \) is in \(OAI\).

(ii) Each value of \(W\) has inverse in \(H\).

Furthermore, there is a bijection \(\mathcal{E}\) from \(OAI\) onto \(OAI\) such that if \(V\) is in \(OAI\), then each of (iii), (iv), (v), and (vi) is true.

(iii) \(\mathcal{E}[\mathcal{G}[V]] = V \).

(iv) \(\mathcal{E}[V](a, b) = -V(b, a) \) for each \((a, b)\) in \(S \times S\) only in case \(\sigma \Sigma N_\sigma[V[I - V] - V] = 0\) whenever \((a, b)\) is in \(S \times S\).

(v) \(\mathcal{E}[\mathcal{G}[V]](a, b) \cdot \mathcal{E}[V](b, a) = \mathcal{E}[V](b, a) \cdot \mathcal{E}[\mathcal{G}[V]](a, b) = I \) whenever \((a, b)\) is in \(S \times S\).

(vi) \(\mathcal{E}[V](a, b)[p] = -\sigma V[I + V]^{-1}[p] \) whenever \((a, b, p)\) is in \(S \times S \times G\).

The \(\oplus\) Operation.

Lemma 1. If each of \(\alpha\) and \(\beta\) is in \(OA^+\), and \((a, b)\) is in \(S \times S\), then \(\sigma \Sigma \alpha[1 + \beta]\) exists and is the greatest lower bound of the set to which \(r\) belongs only in case there is a chain \((t_k)_{k=0}^\infty\) from \(a\) to \(b\) so that \(r = \Sigma_{k=0}^\infty \alpha(t_{k-1}, t_k)[1 + \beta(t_{k-1}, t_k)]\).
Proof. It suffices to show that if \((a, b, c)\) is in \(S \times S \times S\), and \(b\) is between \(a\) and \(c\), then
\[
\alpha(a, c)[1 + \beta(a, c)] \geq \alpha(a, b)[1 + \beta(a, b)] + \alpha(b, c)[1 + \beta(b, c)].
\]
But \(\alpha(a, c) \geq \alpha(a, b)\) and \(\alpha(a, c) \geq \alpha(b, c)\), so
\[
\alpha(a, c)\beta(a, c) = \alpha(a, c)\beta(a, b) + \alpha(a, c)\beta(b, c)
\]
\[
\geq \alpha(a, b)\beta(a, b) + \alpha(b, c)\beta(b, c),
\]
and the proof is complete.

Theorem 3. If each of \(V_1\) and \(V_2\) is in \(\text{OA}\), and \((a, b, p)\) is in \(S \times S \times G\), then \(\varnothing^s V_1[I + V_2][p]\) exists. If, for \(i = 1, 2\), \(\alpha_i\) in \(\text{OA}^+\) dominates \(V_i\), then
\[
N_0[V_1(a, b)[I + V_2(a, b)] - \varnothing^s V_1[I + V_2]]
\]
\[
\leq \alpha_i(a, b)[1 + \alpha_i(a, b)] - \varnothing^s \alpha_i[1 + \alpha_i]
\]
whenever \((a, b)\) is in \(S \times S\). Furthermore, if \(U\) is given by \(U(a, b)[p] = \varnothing^s V_1[I + V_2][p]\), then \(U\) is in \(\text{OA}\).

Proof. Let \((a, b, c, p)\) be in \(S \times S \times S \times G\), with \(b\) between \(a\) and \(c\). Now
\[
N_0[V_1(a, c)[I + V_2(a, c)][p] - V_1(a, b)[I + V_2(a, b)][p]
\]
\[
- V_1(b, c)[I + V_2(b, c)][p]
\]
and consequently \((OA, \oplus)\) is a semigroup. \((OAI, \oplus)\) is a subgroup of \((OA, \oplus)\), each subgroup of \((OA, \oplus)\) is contained in \(OAI\), and if \(V\) is in \(OAI\), then

\[
V \oplus \mathcal{S}[V]^* = \mathcal{S}[V]^* \oplus V = 0.
\]

Proof. Let \(U\) be given by

\[
U(a, b)[p] = V_3(a, b)[p] + \sum_{i} V_2[I + V_3][p]
+ \sum_{i} V[I + V_2][I + V_3][p].
\]

A moment’s reflection shows

\[
V_1 \oplus (V_2 \oplus V_3) = U = (V_1 \oplus V_2) \oplus V_3,
\]

so the first part of the theorem is clear.

Now if \(A\) is in \(H\), and \(I + A\) has inverse in \(H\), then

\[
\]

This, with (vi) of Theorem 2, says that if \(V\) is in \(OAI\), then \(V \oplus \mathcal{S}[V]^* = 0\). Similarly, \(\mathcal{S}[V]^* \oplus V = 0\), so \((OAI, \oplus)\) is a group.

To complete the proof it suffices to show that if \(U\) and \(V\) are in \(OA\), and \(U \oplus V = V \oplus U = 0\), then \(U\) is in \(OAI\) and \(V = \mathcal{S}[U]^*\).

If \(t\) is in \(S\), then \([U \oplus V](t, t^+) = 0\), so

\[
U(t, t^+)[I + V(t, t^+)] + V(t, t^+) = 0,
U(t, t^+)[I + V(t, t^+)] + [I + V(t, t^+)] = I,
[I + U(t, t^+)] [I + V(t, t^+)] = I.
\]

Similarly, since \([V \oplus U](t, t^+) = 0\), we have

\[
[I + V(t, t^+)] [I + U(t, t^+)] = I.
\]

Similar computations for \((t, t^-), (t^+, t),\) and \((t^-, t)\) show that each of \(U\) and \(V\) is in \(OAI\). Also, it is clear that \(V\) is given by

\[
V(a, b)[p] = -\sum_{i} U[I + U]^{-1}[p] = \mathcal{S}[U]^*(a, b)[p],
\]

so the proof is complete.

Lemma 2. Let each of \(\alpha_1\) and \(\alpha_2\) be in \(OA^+\), and let \(\beta\) be a continuous member of \(OA^+\). Suppose \(\beta(a, b) \leq \sum_{i} \alpha_i \alpha_i\) whenever \((a, b)\) is in \(S \times S\). Then \(\beta = 0\).

Remark 2. Lemma 2 is immediate, and we shall not prove it here.
Theorem 5. Let each of V_1 and V_2 be in OA. Then (i) and (ii) are equivalent, and (iii) and (iv) are equivalent.

(i) $V_1 \oplus V_2 = V_1 + V_2$.
(ii) $V_1[I + V_2] - V_1 = 0$ at all “pairs” of the forms $(t, t^+), (t, t^-), (t^+, t)$, and (t^-, t) for t in S.
(iii) $V_1 \ominus V_2 = V_2 \ominus V_1$.
(iv) $V_1 - V_2 = V_1[I + V_2] - V_2[I + V_1]$ at all “pairs” of the forms $(t, t^+), (t, t^-), (t^+, t)$, and (t^-, t) for t in S.

Proof. We shall indicate the first equivalence, and leave the second to the reader. Since $[V_1 \oplus V_2] - [V_1 + V_2] = \Sigma V_1[I + V_2] - V_1$, it is clear that (i) implies (ii). Now suppose (ii). For $i = 1, 2$, let α_i in OA^+ dominate V_i. Let β in OA^+ be given by $\beta(a, b) = \alpha \Sigma^\alpha N_i[V_1[I + V_2] - V_1]$. Now, by (ii), β is continuous, and clearly $\beta(a, b) \leq \alpha \Sigma^\alpha \alpha_1 \alpha_2$ whenever (a, b) is in $S \times S$. Thus $\beta = 0$, (i) follows, and the proof is complete.

The \otimes Operation and the Exponential Identity.

Theorem 6. Let each of (V_i, W_i) and (V_2, W_2) be in \mathcal{S}, and let (a, b, p) be in $S \times S \times G$. Then each of

$$a \Pi^b[I + V_1][I + V_2][p] \quad \text{and} \quad a \Pi^b W_1 W_2[p]$$

exists, and they are equal. Furthermore, if M is given by

$$M(a, b)[p] = a \Pi^b W_1 W_2[p],$$

then M is in OM.

Proof. Let $U = V_1 \oplus V_2$. Let α be a member of OA^+ which dominates each of $U, V_1,$ and $V_2,$ and let $\mu = \mathcal{S}^+[\alpha]$. Let (a, b, p) be in $S \times S \times G$, and let $(t_k)_{k=0}^e$ be a chain from a to b. Now, by [7, Lemma 4],

$$N_i[I_{t_{k-1}}[I + U(t_{k-1}, t_k)][p] - I_{t_{k-1}}[I + V_1(t_{k-1}, t_k)][I + V_2(t_{k-1}, t_k)][p]]$$

$$\leq N_i[p]\mu(a, b)^{\Sigma^\alpha N_i[V_1(t_{k-1}, t_k)[I + V_2(t_{k-1}, t_k)]]}$$

$$- \sigma^\alpha \Sigma^t \alpha V_1[I + V_2]$$

$$\leq N_i[p]\mu(a, b)^{\Sigma^\alpha \alpha(t_{k-1}, t_k)[I + \alpha(t_{k-1}, t_k)]} - \alpha \Sigma^\alpha[1 + \alpha].$$

It is now clear that $a \Pi^b[I + V_1][I + V_2][p]$ exists and equals $a \Pi^b[I + U][p]$ whenever (a, b, p) is in $S \times S \times G$. Now [9, Lemma 1.2] tells us that $a \Pi^b W_1 W_2[p] = a \Pi^b[I + V_1][I + V_2][p]$ whenever (a, b, p) is in $S \times S \times G$. Since these products describe $\mathcal{S}[U]$, it is clear that M is in OM and the proof is complete.
DEFINITION 3. If each of W_1 and W_2 is in OM, $W_1 \otimes W_2$ is that member M of OM given by $M(a, b)[p] = \circ \Pi^* W_1 W_2[p]$.

There emerges from the proof of Theorem 6 a fact which we now record.

THEOREM 7. If each of V_1 and V_2 is in OA, then

$$\mathcal{E}[V_1 \oplus V_2] = \mathcal{E}[V_1] \otimes \mathcal{E}[V_2].$$

REMARK 3. Theorem 7, together with the first equivalence of Theorem 5, includes and extends Theorem 6 of [7].

THEOREM 8. Let V_1 be in OA, V_2 in OAI. Let U in OA be given by

$$U(a, b)[p] = \circ \Sigma^b V_1[I + V_2]^{-1}[p].$$

Then

$$\mathcal{E}[V_1 + V_2] = \mathcal{E}[U] \otimes \mathcal{E}[V_2].$$

Proof. Let (a, b, p) be in $S \times S \times G$. Now

$$[\mathcal{E}[U] \otimes \mathcal{E}[V_2]](a, b)[p] = \circ \Pi^* \mathcal{E}[U] \mathcal{E}[V_2][p]$$

$$= \circ \Pi^*[I + U][I + V_2][p]$$

$$= \circ \Pi^*[I + V_1[I + V_2]^{-1}][I + V_2][p]$$

$$= \circ \Pi^*[I + V_1 + V_2][p]$$

$$= \mathcal{E}[V_1 + V_2](a, b)[p].$$

This completes the proof.

REMARK 4. Note that by using Theorems 5, 7, and 8 we can compute, under two different sets of hypotheses, $\mathcal{E}[V_1 + V_2]$ in terms of the \otimes operation.

REFERENCES

Received June 4, 1970.

GEORGIA INSTITUTE OF TECHNOLOGY
AND
UNIVERSITY OF SOUTH CAROLINA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

C. R. HOBBY
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLE K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY *
OREGON STATE UNIVERSITY *
UNIVERSITY OF OREGON *
OSAKA UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF SOUTHERN CALIFORNIA CHEVRON RESEARCH CORPORATION
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Pacific Journal of Mathematics
Vol. 37, No. 2 February, 1971

Charles Compton Alexander, *Semi-developable spaces and quotient images of metric spaces* ... 277

John A. Beekman and Ralph A. Kallman, *Gaussian Markov expectations and related integral equations* .. 303

Frank Michael Cholewinski and Deborah Tepper Haimo, *Inversion of the Hankel potential transform* 319

John H. E. Cohn, *The diophantine equation*

\[Y(Y + 1)(Y + 2)(Y + 3) = 2X(X + 1)(X + 2)(X + 3) \] ... 331

Philip C. Curtis, Jr. and Henrik Stetkaer, *A factorization theorem for analytic functions operating in a Banach algebra* 337

Doyle Otis Cutler and Paul F. Dubois, *Generalized final rank for arbitrary limit ordinals* ... 345

Keith A. Ekblaw, *The functions of bounded index as a subspace of a space of entire functions* ... 353

Dennis Michael Girard, *The asymptotic behavior of norms of powers of absolutely convergent Fourier series* 357

Paul C. Kainen, *Universal coefficient theorems for generalized homology and stable cohomotopy* ... 397

Aldo Joram Lazar and James Ronald Retherford, *Nuclear spaces, Schauder bases, and Choquet simplexes* 409

David Lowell Lovelady, *Algebraic structure for a set of nonlinear integral operations* ... 421

John McDonald, *Compact convex sets with the equal support property* 429

Forrest Miller, *Quasivector topologies* ... 445

Marion Edward Moore and Arthur Steger, *Some results on completability in commutative rings* ... 453

A. P. Morse, *Taylor’s theorem* ... 461

Richard E. Phillips, Derek J. S. Robinson and James Edward Roseblade, *Maximal subgroups and chief factors of certain generalized soluble groups* ... 475

Doron Ravdin, *On extensions of homeomorphisms to homeomorphisms* 481

John William Rosenthal, *Relations not determining the structure of L* 497

Prem Lal Sharma, *Proximity bases and subbases* ... 515

Larry Smith, *On ideals in \(\Omega^\alpha \)* ... 527

Warren R. Wogen, *von Neumann algebras generated by operators similar to normal operators* ... 539

R. Grant Woods, *Co-absolutes of remainders of Stone-Čech compactifications* 545