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Simplexes may be characterized as follows: (C) X is a sim-
plex if and only if each v € X has a unique <-maximal represent-
ing measure, where < denotes the Choquet ordering on the
set M+(X) of positive regular Borel measures on X. In this
paper, we study compact convex sets which satisfy a condi-
tion which is similar to that given in (C). Definition: X has
the equal support property if, for each xcX, any two
<-maximal representing measures for x have the same
suppoert., Some of our theorems are extensions to sets with
the equal support property of results which hold for simplexes,
Other results given here are analogous of theorems which hold
for simplexes. We are especially interested in the relation-
ships between the equal support property and a topology,
called the structure topology, which was first defined for the
set of extreme points of a simplex, but also makes sense
for a wider class of compact convex sets,

The background material for §81 through 4 of this paper may
be found in [12]. The equal support property was first considered
by Feinberg in [8]. The expression “compact convex set” will always
refer to a nonempty compact convex subset of a locally convex
Hausdorff linear space. Let X be a compact convex set. ex X will
denote the set of extreme points of X. 06X will denote the closure

ex X of ex X. Consider a point e X and a closed subset F of X.
RI will denote the set of representing measures for x which are
supported by F, i.e., vanish on X — F. (We will not distinguish
between measures on F and measures on X which are supported by
F.) It is known [12, p. 5] that yecov F if and only if RI = .
Recall tha X = cov (ex X) (Krein-Milman Theorem, KMT), or, equi-
valently, R?' = ¢ for each ve X. We will make use of Milman’s
converse to the Krein-Milman Theorem, henceforth refered to as MT,
which states that: X = cov S implies ex X < S.

1. Extreme sets., In this section, X will denote a compact
convex set. A fuction f: X— Z where Z is a convex set is called

affine if f(ex + (1 — cjy) = ef(x) + (1 — ¢)f(y) for every
(®,y,c)e XxXx][0,1] .
A function g: X — (— ==, o] is called concave if

429



430 JOHN N. McDONALD

cg@) + (1 — 0g(y) = glcx + (1 — c)y)
for all (z, y, ¢c) e X x X x][0, 1].

DEFINITION 1.1. A set S & X will be called extreme if
(u, v, 0) e Xx X x(0,1)

and bu + (1 — b)ve S imply u,veS. A convex extreme set will be
called a face.

Note the union of any collection of closed faces is extreme. In
particular, if S Z ex X, then S is extreme.

LEmMMA 1.2. A closed subset E of X is extreme if and only if

v e E implies supp 0 S E for each pe RY (supp o denotes the closed
support of the measure p).

The proof is a slight modification of the proof of [12, prop. 1.4].
See also, [1, p. 100].

Let & (X) denote the collection of closed faces of X. Note that,
if w 2. & (X),thennN{C|Ce%}e 5 (X). Thus, & (X) is a complete
lattice in the containment ordering. Let F’, F”e¢ & (X). We will
denote N {F'|Fe # (X) and F 2 F'UF"} by F' Vv F”. The following
gives some elementary but useful information about members of
F(X):

PrOPOSITION 1.3. Let F, F'e & (X). Then: (a) ex FF =ex XN F.
(b) ex (cov (FUF") =ex FUex F' = ex XNcov (FUF.

Proof. (a) is clear. By MT, ex (cov (FUF) < FUEF'. (b)
now follows from (a).

It is natural to ask, whether F,F'e #(X) imply cov
(FUF)e # (X)? A more general question is: If E is closed and
extreme, is cov E extreme? It follows from a result of Effros that,
if X is a simplex and E < ex X, then the answer to the last question
is yes (see [7, Th. 3.3]). The following theorem shows that the
answer to the above question is affirmative if X has the equal support

property, furthermore, the proof given here may be used to obtain
Th. 3.3 of [7]:

THEOREM 1.4. Suppose that X has the equal support property.

Let E be a closed extreme set of X. Then cov E is extreme, and
hence 1s a face.
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In the proof of Theorem 1.4, we will need the following pro-
positions:

ProrosiTiON 1.5. Let Y be a compact convexr set. Suppose
p,ve Mi(Y) and ¢t <v. Then supp ft < cov (supp V).

Proof. Suppose yecsuppyt — cov (suppv). Then, there is a
continuous affine function % on X such that u(y) = —1 and inf u{cov
(suppy)) = 0. Let w = min{u, 0}. Then w is concave. Hence,

Swdv < Swd;z < 0. But, w = 0 on suppy — a contradiction.

ProroSITION 1.6. Let F be a closed extreme set of the compact
convex set Y. Suppose v, <y, and suppy, S F. Then suppy, & F.

Proof. Let J, denote the function which is 0 on F and 1 on
Y~ F. Then J, is l.s.c. and concave. Let D be the set of
continuous concave functions on Y which are strictly dominated
(pointwise) by J,. By a result of Mokobodski [11, p. 222], D is

directed upward and J, = sup{g!g e D}. Sinces gd v, < Sgd v, for each

ge D, it follows thatSJFd y, < SJFd v,. (For a proof that

SJFolv2 = sup{ggd vzlgeD} ,
see, e.g., [4. p. 8].) Thus, v, (Y — F) =y, (Y — F) = 0.

Proof of Theorem 1.4. Let weccov E. It will be shown that
supp 2 S cov E for allpze RY. By [12, Lemma 4.1] and proposition
1.5, it is enough to prove that cov Z contains the support of every
<-maximal measure in BY. Since X has the equal support property,
it is only necessary to find one <-maximal representing measure
which is supported by E. Letve Rf (see [12, p. 5]). There is a

<-maximal measure g such that v < ¢ [12, Lemma 4.1]. By pro-
position 1.6, it follows that supp ¢t < E.

In [1], Alfsen proved that if Z is an r-simplex, i.e., a simplex

whose set of extreme points is closed, then cov B is a face for every
B<Zer Z. We will show that X satisfies the conclusion of Alfsen’s
result if and only if X has the equal support property and exr X is
closed. We claim that X has the equal support property and ex X = 06X
if and only if for each x¢ X, all measures in R?' have the same
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support. The “only if” part of the previous statement follows from
the fact that if supp ¢t S ex X, then p is <-maximal [12, pp. 26-27].
Suppose that ze X and that all measures in R?* have the same
support. Let v be a <-maximal measure with ¢, <y. Since all
< -maximal measures are supported by X [12, p. 30], it follows that
e, =v. Thus, zeex X[12, p. 27]. The proof of the above statement
is complete. (¢, = the Dirac measure at z.)

DErFINITION 1.7. X has the strong equal support property if, for
each ¢ X, all measures in R%* have the same support.

For the sake of brevity, we will use the abbreviation “s.e.s.p.”
to indicate the “strong equal support property”.

THEOREM 1.8. The following are equivalent:
(i) X has the s.e.s.p.

(ii) cov B is extreme for every B < 6X.

Proof. That (i) implies (ii) follows from Theorem 1.4.

If (ii) holds, then cov{x} = {«#} is extreme for each zec X.
Thus, 0X S ex X. It must be shown that X has the equal support
property. Let ye X and let ¢ and v be <-maximal representing

measures for y. Since y e cov (supp p),it follows, by Proposition 1.2,

that supp v < cov (supp /£). By MT and Proposition 1.3, supp v < cov
(supp ) Nex X = supp #. Similarly, supp ¢ S supp v.

In [8] Feinberg gave a proof of Theorem 1.8 which is independent
of Theorem 1.4.

We are now able to give an example of a compact convex set
which has the s.e.s.p., but is not a simplex.

ExampLE 1.9. Let M(]0, 1]) denote the space of real valued
regular Borel measures on [0,1]. Assume that M([0, 1]) is equipped
with the weak* topology (recall that M([0, 1]) is the dual of the space
of real valued continuous functions on [0,1]). In [9, Remark 4]
Lazar considers the quotient space M([0, 1])/V, where V is the linear
subspace of M([0, 1]) spanned by a certain measure p. p possesses
the following properties: (P1) ¢{J0,1]) = 0 and (P2) every open sub-
interval of [0, 1] contains sets of positive z#-measure and sets of negative
p-measure. Let T be the restriction to P([0,1]) (P([0, 1]) = the
probability measures on [0, 1]) of the quotient map of M([0, 1]) onto
M(0,1])/V and let Z = T(P([0,1])). Then T maps ex P([0,1])
homeomorphically onto ex Z and satisfies: T(T(F)) = F for each
Fe 7 (P(0,1])). Furthermore, Z is not a simplex.
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It is claimed that Z has the s.e.s.p. By Theorem 1.8, it is
enough to show that cov Ee.& (Z) whenever E is a closed subset
of ex Z. Let E'=ex P([0,1))nT"(E). Then, T(cov E') = cov E.
By Theorem 1.8, it follows that cov E’ is a face. Thus,

T-'(cov E) = cov E’ .

A straightforward argument shows that cov E is a face.

Rogalski [13, Prop. 13] has given an example of a compact
convex set Y which does not have the equal support property but
which satisfies the following: If E is a closed subset of Y with
E Cex Y, then cov E is a face of Y.

2. Extremally concave functions. In this section X will denote
a compact convex set and A will denote the set of real valued
continuous affine functions on X. Consider the following abstract
“Dirichlet” problem: (D) Given feC(@X) (C(6X) = space of real
continuous functions on 0X), find a,e A such that a,/0X = f. In [2]
Bauer characterized r-simplexes as follows: X is an r-simplex if and
only if (D) is solvable for each feC(06X). In view of the definition
of the equal support property, it is natural to expect that there is a
characterization of compact convex sets with the s.e.s.p. which is
similar to Bauer’s result. In §4 we will characterize the s.e.s.p. in
terms of a problem which is the same as (D) except that A is
replaced by a certain collection & (X) of functions on X. This section
is concerned with investigating & (X).

Suppose X has the s.e.s.p. Let f e C(ex X). For each cc (— =, =],
let F,=cov (f(—co,c]). By Theorem 1.8, F,e .~ (X) for each
ce(— o, «]. Define a function f*:X-—(~=22, ] as follows: for
each v ¢ X, let f*(x) = inf {¢|x e F',}. Then f* extends f and satisfies:
(f*) " (—,d]le. (X) for each de (—c2, co].

DErFINITION 2.1. A function ¢g: X — (— o0, o] will be called
extremally concave if g~'(— o, c]e F(X) for each ce€(— o, >=]. The
set of all extremally concave functions on X will be denoted by «(X).

ProprosiTioN 2.2. (a) Ewxtremally concave functions are concave

and 1.s.c. (b) For each xc X and each (e R, ggd‘u < g(x) for every
g€ & (X).

Proof. Let g be an extremally concave function. That ¢ is
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l.s.c. is clear. The fact that g is concave is a special case of (b).
Suppose e RY. Let N = g(x). Since xze g (e, \], it follows that

supp £ < g~*(— oo, \] (Prop. 1.2). Thus S gd it < \uX) = g(a).

ProPO3ITION 2.3. Suppose f, g€ & (X). Then: (@) f < gif and only
if flexw X <glex X. (b) —f S gifand onlyif (—f)|ex X < glex X.
It follows from (a) that extremally concave fumnctions are uniquely
determined by their values on ex X.

Proof. Suppose flex X < glex X. Let xe€X and let b = g(%).
Clearly, g7'(—o,bdlnNex X & f~'(—c,b]lNex X. By Proposition 1.3
and the KMT, g'(—,b] & f(—,b]. Thus, f(x) <b = g(x).

Suppose —flex X < glex X and (f + g)"(—,0) %= @. Then
there are real numbers s, ¢ with s < ¢ and

97 (=20, sIN(=F)7[t, o0) = @

Since g7'(— oo, s]N(—=F)7'[¢, =) € & (X), it follows by Proposition 1.3
and the KMT that g~'(— <o, sin{(—f)"'[t, =)Nex X #+ @ — a contradic-
tion.

The next theorem is crucial in the proofs of some later theorems.

THEOREM 2.4. Let &7 & &(X). Then sup{g|lgec =} (pointwise)
18 in & (X). Consequently, & (X) ts a complete lattice in the pointwise
ordering.

Proof. Let k= sup{glg e D}. Suppose ce(—c, ]. Then
k' (—co,¢c] = N{g7'(—,c]l|ge D}. Since & (X) is closed under
arbitrary intersections, it follows that k¢ & (X).

Let f,ge&(X). f A g will denote sup{k|kec & (X) and ¥ < min
{7, 9tk

We will complete this section by giving another property of
extremally concave functions and some simple examples.

ProPOSITION 2.5. Let ge&(X), xzeX, and pcRY. Then
g{x) = sup g{supp ). In particular, if x=cu+ (1 —cv where
w,ve X and ce(0,1), then g(x) = max {g(u), g(v)}.

Proof. Since x e g~'(—co, g(x)], it follows from Proposition 1.2

that supp ¢t S ¢~'(— oo, g(x)]. Thus, sup g(supp ) < g(»). Let Z = cov
(supp ¢#). Then ze Z. Note that g|Ze & (Z). (This fact follows from
the fact that if S is an extreme subset of X then SN Z is an extreme
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subset of Z.) By MT, ex Z < supp ¢ By Proposition 2.3, g/ Z < sup
g(supp 21).

The “In particular.-.” part of the proposition follows from the
fact that cs, + (1 — ¢)e, € RE.

Examples. Let X = [0,1]. Then fe&(X) if and only if f is
in one of the following forms: (i) f is a constant be(— oo, ] on
(0,1] and f(0) =<b. (i) f(x) = g(1 — ®) where ¢ is of form (i).

Let X = {(a,d)|a,be0,1] and a + b < 1}. Let F,, F,, and F, be
the “edges” of X. We will regard the F,’s as copies of [0,1]. Then
fe&(X) if and only if f is in one of the forms f(x) = be (— o, o]
for e X — F; and f(x) = g(x) <b, where ge Z(F;), when zeF},
i=1,23.

3. The structure topology. Let Z be a simplex. Effros [6,
p. 117] has defined a topology for ex Z called the structure topology.
In this section, we extend Effros’ definition to a larger class of
compact convex sets. Alfsen and Andersen [2] have defined a topology
called the facial topology, for the set of extreme points of an arbitrary
compact convex set. The facial topology is a generalization of Effros’
structure topology. At the end of this section, we will make a com-
parison between the structure and facial topologies.

For the rest of this section, X will denote a nonempty compact
convex set. Let 9 ={FNexr X|Fe & (X)}. Note that &, ex Xe 7
and that the intersection of any sub-collection of & is in F%.
Suppose X has the e.s.p. Consider F', F” ¢ .5 (X). By Theorem 1.4,
cov (FFU F") e & (X). By Proposition 1.3,

(Fne X)U(F' Nex X) =ex XNecov (FUF).

It follows that the union of any finite sub-collection of .77 is in 7.
Thus, .; is the collection of closed sets for a topology on ex X,
whenever X has the e.s.p.

DerFINITION 3.1. If & is closed under finite unions, then the
topology on ex X for which .97, is the collection of closed sets will be
called the structure topology. We will use the adjective “structurally”
to replace “- .. in the structure topology”, e.g., “structurally compact”
means “compact in the structure topology”.

THEOREM 3.2. The following are equivalent:

(1) The structure topology exists on ex X.

(i) cov (FU F)e 7 (X) for all F, F'e 7 (X).
(ili) cov (FUF") = F\VF for all F, F'e(X).
(iv) F(X) is a distributive lattice.
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Proof. The equivalence of (i) and (ii) follows from Proposition 1.3.
The equivalence of (ii) and (iii) is clear.
Let F, F"” e & (X). Suppose (iii) holds. To show that

FRE'VF") = (FNF)VENF"),
it is enough to prove that
(1) Fneov (FFUF")=cov (FNFYUFNEF").
By the KMT, equation (1) is equivalent to
(2) ex (FNecov (F"UF") = ex (cov (FNF)YJUFNF")) .

Equation (2) follows from Proposition 1.3. Suppose (iv) holds and
F\/ F” properly contains cov (F U F’). By the KMT and Proposition
1.3, there is a point w,cex XN (EVE —cov (FUZF’). Since
{#} e & (X) we have

o} ={@}n (FVF)
= (@} N F)V{aetn F)
=0V =0.

The next lemma indicates that compact convex sets X for which
Z (X) is distributive are similar to simplexes.

LemMMA 3.3. Suppose 57 (X) is distributive. Let S S ex X. Then
cov S is extreme and each point in cov S has a unigque <-maximal
representing measure.

Proof. To prove that cov S is extreme, it is enough to consider
the case where S is finite. cov S is surely extreme if S is a singleton.
Suppose that, for sets S of cardinality < the integer =, cov S is
extreme. Let B be a subset of ex X with n elements. Choose some
ye B. Then cov B=cov ({y}Ucov (B— {y})). By Theorem 3.2,
cov B is extreme.

We will now prove the second assertion. Let zecov S. Then
2z may be written in the form (f) z = 3?7, ¢;x; where the z;’s are
distinet elements of S, ¢, >0 for ¢ =1,2.+«,p and > ,¢;, =1. By
Lemma 1.2, all representing measures for z are supported by cov
{®, +++,@,}. Thus, to show that 37 ¢z, is the only maximal
representing measure for z, it is enough to show that the representa-
tion (1) is unique (see [18, p. 26]). Let 2z = >, b;y; be another
representation for z of the form (}). Since cov{z, --., x,} is extreme,

{yly ”'$yq} gCOV{xl, "'7xp}m ex X
S {@y, -oe, @5}
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Similarly, {x, -+, 2} S {y, *-+, y,}. Assume y,=2; 1 =1,2, -+, p.
Suppose b, > ¢,. Then

bl—cl> b, b
— 2 x, + @ e P
<]_~—c1 1—012+ _{_1——019017

€cov {x,, + -+, x,}. Thus @, ecov{x, -+, 2,} — a contradiction. Hence,
¢, = b,. Similarly, b, = ¢,. By the same argument, ¢; = b;, 7 = 2, «+., p.

THEOREM 3.4. Suppose X is a compact convex subset of a finite
dimensional linear space. Then the following are equivalent:

(i) For some integer m, there is an affine homeomorphism of
X onto the standard n-simplex.

(ii) X 1is a simplex.

(iil) F (X) s distributive.

(iv) X has the e.s.p.

Proof. For a proof of the equivalence of (i) and (ii) see [18,
Prop. 9. 11]. At the beginning of this section we proved that (iv)
implies (iii), and it is clear that (ii) implies (iv). Suppose (iii) holds.
By a theorem of Minkowski [18, p. 1], X = cov (ex X). By the
previous lemma, X is a simplex.

In [10], Feinberg proved the equivalence of (ii) and (iii). Theorem
3.4 shows that compact convex sets X for which . &# (X) is distributive
and those which have the equal support property are generalizations
of finite dimensional simplexes. The following example shows that
they are distinct generalizations:

ExamPLE 3.5. The technique used in constructing this example
is due to Alfsen [1]. Let N* be the one-point compactification of the
space of positive integers. Then C(N*) is the space of real sequences
of the form (a,, a,+--; a..) where a.. = lim a,. Let

M(N*) = M*(N*) — M*(N*),

then M(N*) is the dual space of C(N*) and may be identified with
the space of real sequences of the form (x,,, +--;®.) Where
el w] < oo It will be assumed that M(N*) is equipped with the
weak* topology. P(N*) will denote {(x,, -+ ;2)|x, = 0n =1,2, «-c0
and 2. + 35, @, = 1}. Then P(N*) is a compact convex subset of
M(N*), indeed P(N*) is a simplex (see, e.g., [2, Satz 13]). The
extreme points of P(N*) are those of the form ¢, where ¢, is 1 at
the p-th and 0 at every other position p =1,2, -+, o (see [4, p.
441]).
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Consider the sequences w» = (1/2,0,1/4,0,1/8,0,..- —1) and
v=(0,1/2,0,1/4,0,1/8, -+ — 1). Let L be the subspace of M(N*)
generated by w and v. Consider the quotient space V = M(N*)/L
and let T be the cannonical projection of M(N*) onto V. Let
Z = T(P(N*)). It is claimed that ex Z = {T(¢,)|1 =< n < «}. Suppose
ycex Z. Then T-'(y) N P(N*) is a closed convex extreme subset of
P(N*). By Proposition 1.3, and the KMT, it follows that y = T(c,)
for some 1 £ n £ . It must be shown that % = . Let §, denote
the Dirac measure at 7T(s,) for w =1,2,+++, 0. The series 3%,
1/270,;_, converges in the norm topology of the dual of C(Z) to a
measure p, which is <-maximal and represents T(c..) (see [18, p. 26]).
It follows that T(c..) ¢ ex Z.

Next, it is asserted that Fe & (Z) if and only if F =X or
F =cov E where E is a finite subset of ex Z. Suppose Fec # (Z)
and ex F' is infinite. Then T-'(F) N ex P(N*) is infinite. It follows
that e.e T'(F). The measure g, = >\, 1/27d,;_, is a <-maximal
representing measure for 7T'(e..). By Lemma 1.2, supp ¢, U supp ¢, < F.
But supp ¢, Usupp #t, 2 ex Z. By the KMT, it follows that F = Z.
Conversely, suppose F' = cov {x,, ---, x,} where {x,, ---, 2,} S ex Z. To
prove Fe & (Z), it is enough to show T-'(F) N P(N*)e & (P(N*)).
There are integers k,, k,, - -+, k, such that T(¢,) = 2;, 5 =1,2, -+, n.
Clearly, cov {e;,, -, ¢, } S T(F) N P(N*) and T(cov {ex, +++,¢&,}) = F.
It follows that, if w = (a,, --+; a.) € T7(F) N P(N*), then there is an
secov{e,, -+, &, } such that w — s = cu 4+ dv where ¢,d are real
numbers. Hence, a. = —(¢ + d) = 0. Also, there integers » and ¢
such that a,, , = 1/2°¢ and a,, = 1/2?d. Thus, ¢ =d = 0. It follows
that cov {e,,, «++, &, } = T7'(F) N P(N*).

It is now clear that cov (FFU E)e.&# (Z) for all F, Ee 7 (Z).
By Theorem 8.2, & (X) is distributive. Z does not, however, have
the e.s.p. for the measures p, and p, are both <-maximal and
represent 7'(e..) but supp ft, = supp .

It is interesting to note that the structure topology on ex Z is
the smallest T, topology on ex Z.

The following theorem extends [7, Corollary 4.6].

Theorem 3.6. If the structure topology is defined on ex X, then
ex X is structurally compact.

Proof. Let _# be a collection of structurally closed subsets of
ex X having the finite intersection property. For each Ce _JZ, there is
a F,e & (X) such that F; N ex X = C. Hence, the family {F,|Ce _#}
has the finite intersection property. Thus, N {F;|Ce _#} is nonempty.
By the KMT and Proposition 1.3, it follows that N {C|Ce _Z} # @.
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THEOREM 3.7. Suppose the structure topology ts defined on ex X.
Let f:ex X — (—oo, co] be structurally l.s.c., then there 1is an
ffe&(X) such that f*lex X = f.

Proof. For each be(—oco, o], let F, =cov f~'(—c,6b]. By
Proposition 1.3, and the KMT, it follows that F,c.&# (X) for all
be(—vco, o]. Define f* by: f*(x) = inf{b|x e F,}.

NoTATION. Suppose f:ex X — (— oo, o] ([~ <o, =)). If there is
an extension of f to & (X) (— & (X)), denote it by f*(f.).

When the structure topology is defined, it is stronger than the
facial topology. If the facial topology is Hausdorff, then the facial,
structure, and relative topologies coincide (see [2, Th. 6.2]).

Consider Example 1.9. We will identify ex P([0,1]) and [0, 1]
and regard each oe P([0, 1]) as its own unique <-maximal represent-
ing measure. Note that, on ex Z, “closed” and “structurally closed”
mean the same thing. Let E be a proper closed subset of ex Z and
let £/ =100,11n T-(E). It is known that the set FF=cov E is a
face of Z. Furthermore, T7'(F') = cov E' = {p|supp o & E'} is a face
of P([0,1]). We claim that E is closed in the facial topology if and
only if |p|(E") = 0, where |zt| denotes the total variation of . (It
will be convenient to assume that |z|{[0, 1]) = 2.)

Suppose that |g¢|(E') = 0. It is enough to show that F is a
split face ([2, p. 9]). Let G ={x|x = T(v) where v(E’) = 0. Then
G is a face of Z and, since T-'(F) = cov E’, G is disjoint from F.
Since every pe P([0, 1]) can be written as a convex combination of a
measure in cov E’ and a measure in P{[0, 1]) which vanishes on F’,
it follows that Z = cov (FUG). Thus, any face of Z which is
disjoint from F' must be contained in G. Hence, G is the comple-
mentary set ([2]) of F. Suppose that we Z — F UG and

w=cu + 1 —c)v, = cu, + 1 — ¢)v,,

where 0 < ¢; < 1,u, € F, and v,eG for : =1,2. For 7= 1,2 choose
a; such that T(a;) = u;, and B; such that g, (&) = 0 and T(8;) = v;.
Then there is a real number & such that

e, + (1 —¢)B — ety — (L — ¢)B, = k.

Since |¢|(E") = 0, it follows that ¢, = ¢, and @, = a,. Hence, F' is a
split face.

Assume that |g|(E’) > 0. It will be shown that F' is not split.
Let ¢ = p* — 1= be the Hahn decomposition of p. By Pl, we have
ut, e PO, 1).

Case 1. p7(E’) >0 and x~(E') > 0. By P2, we have 1 > n"(E),
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p(E). Let ¢, = ¢~ (E') and ¢, = ¢~ (£’). Define measures a,, a,, B, 5:
as follows: «(B)=c 'y (E'NB), ayB) =¢' 1 (E'NB), BuIB) =
(1—0)~ it (B—E), and By(B) = (1— )~ pr~(B— E). Then ¢z,+(1— ey, =
e, %, + (1—cy)y,, where x; = T(a;) and y; = T(B;) for ¢ = 1, 2. A straight-
forward argument shows that either ¢, # ¢, ®, # x,, or ¥, #+ 9,. Since
a,, o, are supported by E’, it follows that =, x, ¢ F. Suppose it can be
shown that y, and ¥, are in the complementary set of F. Then, by
definition, F' is not a split face.

The set S={ucZ|cu+ (1 — ¢)v =y, for some (¢, v)€ (0, 1) x Z}.
is the smallest face containing y,. Suppose that cu + (1 — ¢)v = ..
Choose v,, v, such that v = T(v)) and v = T(v,). Then there is a real
number % such that ev, + (1 — ¢)v, — B, = kp. It follows that ky is
non-negative on subsets of E’. Thus, k£ = 0. It follows that u, v ¢ F.
Hence, SN F = @. i.e. y is in the complementary set of F.
Similarly, v, is in the complementary set of F.

Case 2. p*(E’) > 0and = (E') = 0. Let I denote the characteristic
funection of the set F. The pointwise inf of the set of all continuous
affine functions strictly dominating I will be denoted by I. Suppose
F'is a split face then, by [2, Th. 3.5], I is affine. Define the measure
put o T by pt o T(B) = p(T7'(B)). Define fr= o T similarly. Then
pt e T and p~ o T~ are <-maximal representing measures for the
point T(p") = T(¢x™). It follows by [12, Lemma 9.7] that

gfd;ﬁo T”:Sfd;ro T .

Since I is u.s.c. on Z, we have I = I on ex Z (see [12, p. 27]). It follows
that p* o T (&) = o T (&). Therefore, ut(£') = p(£) =0 - a
contradiction. Hence, F' is not split.

The case in which ¢*(£") =0 and g (E’) > 0 is handled in the
same way as Case 2.

By P2, a proper subset of ex Z which is closed in the facial
topology, is nowhere dense in the structure topology.

4, Characterizations of the strong equal support property.

THEOREM 4.1. Let X be a nonempty compact conver set. Then
the following are equivalent:

(i) X has the s.e.s.p.

(ii) For each feC(©OX), there is a function f*e & (X) with
frloX =rf

(ili) & (X) s distributive and separates the points of ex X in the
following sense: if x and y are distinct extreme points of X, then
there are g, f € E(X) such that f(x) >0, gly) >0 and fFAgZ0
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(iv) 7 (X) s distributive and ex X s structurally Hausdorff.
(v) For each continuous affine function a on X, there is an
a*e & (X) such that alex X = a*|ex X.

Proof. For a proof that (i) implies (ii), see the discussion
preceding Definition 2.1.

(ii) — (iii). Suppose x and y are distinct elements of ex X.
There are functions h, ke C(0X) such that h(x) >0, k(y) >0, and
min {h, k} < 0. Since h*, k*|ex X £ 0, it follows by Proposition 2.3
that 2* A k* < 0.

To prove that & (X) is distributive, it is enough to show that,
for all f, ge &(X),

(NS A gloX = min {f, g}{0X .

Since f and ¢ are l.s.c., it follows that f|0X = sup{uju < f|oX
and ue€C0OX)} and ¢g|oX = sup{v|v < ¢g|0X and wveC(OX)}. Let
h = sup{u* A v*|u,ve C(0X), u < floX,v < ¢g|0X}. By Theorem 2.4,
it follows that he & (X). Note that, if wu,veC0OX), u* A v* =
(min {u, v})* (Prop. 2.3). Thus, h|0X = min{f|0X, ¢g|0X}. It follows
by Proposition 2.3 that o = f < g.

(iii) — (iv). First, it will be shown that .& (X) is distributive.
We will use Jg to denote the function which is 0 on S and 1 elsewhere.
Let F, Ee &% (X). Then J,, Jye & (X). Note that J. A J, = J,yz-
Suppose xe (F'\VV E) Nex X) — cov (F U E). Then

J(x) = max {J(x)9 JF A JE}
= (maX {J(m), J]}) A (maX {J(:c)a Jb})
=1A1l=1.

Thus, (FV E)Nex X) —cov (FUFE)= . By Proposition 1.3 and
the KMT, F\/ E =cov (F U E). It follows by Theorem 3.2 that
& (X) is distributive.

To prove that ex X is structurally Hausdorff, it is enough to
show that, for each pair z,ycexv X, » # y, there are F, Fec 7 (X)
such that a¢ F, ye F and FFU E 2 ex X. By hypothesis, there are
functions f, ge & (X) such that f(z) > 0,9y >0 and f A g=0.
Let FF = f~'(—c,0] and £ = g~'(— ==, 0]. Since min {f|ex X, glex X}
is structurally 1.s.c., it follows by Theorem 3.7 and Proposition 2.3
that f A glex X = min{f, g}|ex X. Thus, (FUE)Nex X = ex X.

(iv) — (1i). Suppose it can be shown that ex X is closed. Then,
since the structure topology is weaker than the relative topology,
every closed subset of ex X is structurally closed. Thus, if £ S ex X
is closed, then there is an Fe 7 (X) with = Fne: X. By
Proposition 1.3, cov £ = F. It follows by Theorem 1.8 that X has
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the s.e.s.p.

It remains to be shown that ex X is closed. Let C,(ex X) be
the space of structurally continuous real-valued funections on ex X.
Suppose z, €0X. Then there is a net {z,} of elements in ex X which
converges to z, and converges structurally to some zcex X. Hence,
by Theorem 3.7 and the proof of Theorem 3.8, f*(z,) = f(z) for each
feCyex X). Note that J,|ex X is structurally 1.s.c. Since ex X is
structurally compact and Hausdorff, it follows that

Jilew X = sup{feCfex X)|f < J,lex X} .
By Theorem 2.4 and Proposition 2.3, it follows that
Joy =sup{f*|feClex X), f < Jy,lex X}. -

Therefore, J,(z) = J.,(z). Thus, z = 2.

That (ii) implies (v ) is clear.

(v)—(iv). First it will be shown that & (X) is distributive.
Let F, Ec % (X). Let K = {a|a is continuous affine and a='(— <0, 0] 2
cov (FU E)}. It is claimed that

cov(FUE)=n{{a*)y(—e,0]|lae K}.

If ac K, then (a*)"'(—,0] 2 ex (cov (F U E)) by Proposition 1.3.
Suppose a*(x) < 0 for every ac K. If & is any real continuous affine
function on X, then A* — h is concave and 1.s.c. Since (h* — h)|ex X = 0,
it follows that 2* = h. Thus, a(®) £ 0 for every ac K. A simple
separation argument shows that xecov (F U E).

To prove that ex X is structurally Hausdorff, it is enough to
note that C,(ex X) contains a point-separating subspace.

Many of the results contained in this paper can be generalized
to the following setting: Let Y be a compact Hausdorff space.
Suppose that S is a cone of real-valued continuous functions on Y
which satisfies: f, ¢ & implies that min{f, g}e &7 A notion of
“convexity with respect to .&”” can be introduced on Y. The concepts
of: extreme point, extreme set, face, and structure topology can be
given meaning in the above context. For details, see [10].

REFERENCES

1. E. M. Alfsen, On the geometry of Choquet simplexes, Math. Scand., 15 (1964),
97-110.

2. E. M. Alfsen and T. B. Andersen, Split faces of compact convex sets, Aarhus
Universitet, preprint series 1968/1969 No. 32.

3. H. Bauer, Shilovscher Rand wund Dirichletsches Problem, Ann. Inst. Fourier
(Grenoble) 11 (1961), 89-136.



COMPACT CONVEX SETS WITH THE EQUAL SUPPORT PROPERTY 443

4. M. Brelot, Elements de la theorie classique du potential, 3rd ed., Centre Documenta-
tion Univ., Paris, 1965.

5. N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1957.
6. E. Effros, Structure in simplexes, Acta. Math., 117 (1967), 103-121.

7. —————, Structure in simplexes II, J. of Functional Analysis, 1 (4) (1967), 379-391.
8. 1. Feinberg, Henry Rutgers thesis, Rutgers-The State University (1968).

9. A. J. Lazar, On affine functions on simplexes, Ditoed notes, Hebrew University,
Jerusalem.

10. J. N. Mc Donald, Thesis, Rutgers-The State University (1969).

11. P. A. Meyer, Probability and potentials, Blaisdell, Waltham, Mass. (1966).

12. R. R. Phelps, Lectures on Choquet’s theorem, Van Nostrand, Princeton, N. J. (1966).

13. M. Rogalski, Quelques problemes concernant une caracterisation des simplexes,
C. R. Acad. Sci., Paris, Oct. (1969).

Received January 22, 1970. This paper is based on part of the author’s Ph. D.
thesis, written at Rutgers-The State University under Professor Marvin Grossman. Part
of the research for this paper was done while the author was on an NSF Summer
Traineeship. Part of the work presented here was supported by an Arizona State
University Faculty Grant.

ARIZONA STATE UNIVERSITY






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California
Los Angeles, California 90007
C. R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLE K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

UNIVERSITY OF SOUTHERN CALIFORNIA

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
“we” must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (8 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17,
Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.



Pacific Journal of Mathematics

Vol. 37, No. 2 February, 1971

Charles Compton Alexander, Semi-developable spaces and quotient images of

T 7 oK 7 o X 277
Ram Prakash Bambah and Alan C. Woods, On a problem of Danzer. . .......... 295
John A. Beekman and Ralph A. Kallman, Gaussian Markov expectations and

related integral eqUALIONS . ............. ... iuuiiiiiiiiiiiiiaanns 303
Frank Michael Cholewinski and Deborah Tepper Haimo, Inversion of the Hankel

POtential transSform . . ... .. e 319
John H. E. Cohn, The diophantine equation

YX+DX +2)Y+3)=2XX+DX+2)(X4+3) e 331
Philip C. Curtis, Jr. and Henrik Stetkaer, A factorization theorem for analytic

functions operating in a Banach algebra . ............................... 337
Doyle Otis Cutler and Paul F. Dubois, Generalized final rank for arbitrary limit

OFAINGLS . . ... e 345
Keith A. Ekblaw, The functions of bounded index as a subspace of a space of

ENLITE JUNCHIOMS . . . . o\ vttt e et ettt e e e ettt e iiees 353

Dennis Michael Girard, The asymptotic behavior of norms of powers of
absolutely convergent FOurier Series............o.uuuiinenniienennnn.. 357
John Gregory, An approximation theory for elliptic quadratic forms on Hilbert
spaces: Application to the eigenvalue problem for compact quadratic

Paul C. Kainen, Universal coefficient theorems for generalize
stable cohomotopy . ........... .. ..o ...
Aldo Joram Lazar and James Ronald Retherford, Nuclear sp
bases, and Choquet simplexes........................
David Lowell Lovelady, Algebraic structure for a set of nonli
OPETALIONS « . v v e ettt et ettt
John McDonald, Compact convex sets with the equal support
Forrest Miller, Quasivector topologies . ....................
Marion Edward Moore and Arthur Steger, Some results on co
COMMULATIVE TTIGS . o oo v v v ettt
A. P. Morse, Taylor’s theorem . ...........................
Richard E. Phillips, Derek J. S. Robinson and James Edward
Maximal subgroups and chief factors of certain generali
GFOUDS .« oot e et et
Doron Ravdin, On extensions of homeomorphisms to homeo
John William Rosenthal, Relations not determining the struct
Prem Lal Sharma, Proximity bases and subbases . . . ........
Larry Smith, On ideals in Q% .............................
Warren R. Wogen, von Neumann algebras generated by oper
ROFYMAL OPEFALOTS . ...\ttt ans
R. Grant Woods, Co-absolutes of remainders of Stone-Cech
COMPACHIfiCAtIONS . ... ...



	
	
	

