SOME RESULTS ON COMPLETABILITY IN COMMUTATIVE RINGS

Marion Edward Moore and Arthur Steger
SOME RESULTS ON COMPLETABILITY IN COMMUTATIVE RINGS

MARION MOORE AND ARTHUR STEGER

In this paper, R always denotes a commutative ring with identity. The ideal of nilpotents and the Jacobson radical of the ring R are denoted by $N(R)$ and $J(R)$, respectively. The vector $[a_1, \ldots, a_n]$ is called a primitive row vector provided $1 \in (a_1, \ldots, a_n)$; a primitive row vector $[a_1, \ldots, a_n]$ is called completable provided there exists an $n \times n$ unimodular matrix over R with first row a_1, \ldots, a_n. A ring R is called a B-ring if given a primitive row vector $[a_1, \ldots, a_n]$, $n \geq 3$, and $(a_1, \ldots, a_{n-2}) \not\in J(R)$, there exists $b \in R$ such that $1 \in (a_1, \ldots, a_{n-2}, a_{n-1} + ba_n)$. Similarly, R is defined to be a Strongly B-ring (SB-ring), if $d \in (a_1, \ldots, a_n)$, $n \geq 3$, and $(a_1, \ldots, a_{n-2}) \not\in J(R)$ implies that there exists $b \in R$ such that $d \in (a_1, \ldots, a_{n-2}, a_{n-1} + ba_n)$.

In this paper it is proved that every primitive vector over a B-ring is completable. It is shown that the following are B-rings: π-regular rings, quasi-semi-local rings, Noetherian rings in which every (proper) prime ideal is maximal, and adequate rings. In addition it is proved that $R[X]$ is a B-ring if and only if R is a completely primary ring. It is then shown that the following are SB-rings: quasi-local rings, any ring which is both an Hermite ring and a B-ring, and Dedekind domains. Finally, it is shown that $R[X]$ is an SB-ring if and only if R is a field.

2. B-rings.

Lemma 2.1. Let R be a ring with $A \subseteq J(R)$, A an ideal of R. Then R is a B-ring if and only if R/A is a B-ring.

Proof. Necessity: Let R be a B-ring and let

$$(1 + A) \in (a_1 + A, \ldots, a_n + A), n \geq 3$$

and

$$(a_1 + A, \ldots, a_{n-2} + A) \not\subseteq J(R/A) = J(R)/A,$$

where $a_i \in R$, $i = 1, \ldots, n$. Then $1 + A = \sum_{i=1}^n a_i b_i + A$, $b_i \in R$; hence $[a_1, \ldots, a_n]$ is primitive. Since $(a_1, \ldots, a_{n-2}) \not\subseteq J(R)$, it follows that $[a_1 + A, \ldots, a_{n-2} + A, (a_{n-1} + ba_n) + A]$ is primitive for some $b \in R$. Therefore, R/A is a B-ring.

Sufficiency: Suppose R/A is a B-ring and suppose $[a_1, \ldots, a_n]$ is a B-ring. Let $A = [a_1, \ldots, a_n] + A$. Then $1 + A = \sum_{i=1}^n a_i b_i + A$, $b_i \in R$. Hence $[a_1 + A, \ldots, a_n + A, (a_{n-1} + ba_n) + A]$ is primitive for some $b \in R$. Therefore, R is a B-ring.
primitive vector with \((a_1, \ldots, a_{n-2}) \subseteq J(R) \). Hence \([a_1 + A, \ldots, a_n + A]\) is a primitive vector; and, since \((a_1, \ldots, a_{n-2}) \subseteq J(R)\), we have \((a_1 + A, \ldots, a_{n-2} + A) \subseteq J(R/A)\). Since \(R/A\) is a \(B \)-ring, there exists \(b + A \in R/A \) such that \([a_1 + A, \ldots, a_{n-2} + A, (a_{n-1} + ba_n) + A]\) is primitive. It follows that \((1 - u) \in A \subseteq J(R)\), where

\[
u = \sum_{i=1}^{n-2} a_i b_i + (a_{n-1} + ba_n) b_{n-1}, \quad b_i \in R, \quad i = 1, \ldots, n - 1.
\]

Therefore, \(u \) is a unit of \(R \); i.e., \([a_1, \ldots, a_{n-2}, a_{n-1} + ba_n]\) is primitive.

Theorem 2.1. If \(R \) is a \(B \)-ring then every primitive row vector over \(R \) is completable.

Proof. Let \(R \) be a \(B \)-ring and let \(1 \in (a_1, \ldots, a_n) \). The theorem clearly holds for \(n = 1 \). If \(n = 2 \), then \(1 = a_1 x + a_2 y, x, y \in R \) and the matrix \(\begin{pmatrix} a_1 & a_2 \\ -y & x \end{pmatrix} \) is unimodular; hence the result holds for \(n = 2 \).

Let \(n \geq 3 \), and suppose the result is established for \(k < n \).

Case 1. If \((a_1, \ldots, a_{n-2}) \subseteq J(R)\) and \(1 = \sum_{i=1}^{n-2} a_i b_i, b_i \in R \), then \(1 - \sum_{i=1}^{n-2} a_i b_i = a_{n-1} b_{n-1} + a_n b_n \) is a unit \(u \in R \). Let

\[
V = \begin{pmatrix}
a_{n-1} & a_n & a_1 & a_2 & \cdots & a_{n-2} \\
-b_n & b_{n-1} & 0 & 0 & \cdots & 0 \\
O & I^{n-2}
\end{pmatrix}.
\]

Then \(V \) has determinant \(u \), and it follows that \([a_1, \ldots, a_n]\) is completable.

Case 2. If \((a_1, \ldots, a_{n-2}) \nsubseteq J(R)\), then \(1 \in (a_1, \ldots, a_{n-2}, a_{n-1} + ba_n) \), for some \(b \in R \). By the induction hypothesis, \([a_1, \ldots, a_{n-2}, a_{n-1} + ba_n]\) is completable to an \((n - 1) \times (n - 1)\) unimodular matrix \(D \). Let

\[
U = \begin{pmatrix} I^{n-2} & 0 & 0 \\
0 & \cdots & 1 & 0 \\
0 & \cdots & -b & 1
\end{pmatrix}
\]

and let \(B = \begin{pmatrix} D & 0 & \cdots & 0 \\
0 & \cdots & 0 & 1
\end{pmatrix} \).

Then \(BU \) is an \(n \times n \) unimodular matrix whose first row is \([a_1, \ldots, a_n]\).

For convenience, we introduce the notation \(Z(A) \) to mean the set of maximal ideals containing the ideal \(A \); \(Z(a) \) will denote the set of maximal ideals containing the element \(a \).

Theorem 2.2 If \(R \) is a ring such that for every ideal \(A \nsubseteq J(R) \), \(Z(A) \) is finite, then \(R \) is a \(B \)-ring.
Proof. The essentials of the proof are due to Reiner [4]. Let $1 \in (a_1, \cdots, a_n)$, $n \geq 3$, and $(a_1, \cdots, a_{n-2}) \not\subseteq J(R)$. By the hypothesis on R, $Z(A)$ is finite where $A = (a_1, \cdots, a_{n-2})$. Let $Z(A) = \{M_1, \cdots, M_r\}$, and note that if $b \in R$ and $a_{n-1} + ba_n \in M_i$, $i = 1, \cdots, r$, then $[a_1, \cdots, a_{n-2}, a_{n-1} + ba_n]$ is primitive.

For any $M_i \in Z(A)$ such that $a_n \in M_i$, we have $a_{n-1} + ba_n \in M_i$, for all $b \in R$; otherwise, $a_{n-1} \in M_i$, and $(a_1, \cdots, a_n) \subseteq M_i$ which contradicts the hypothesis that $[a_1, \cdots, a_n]$ is primitive.

For those $M_i \in Z(A)$ for which $a_n \in M_i$, we have $(a_n, M_i) = (1)$. Hence there exists an x_i such that $a_n x_i \equiv a_{n-1} \pmod{M_i}$. For these M_i, we can find (by the Chinese Remainder Theorem) an element $b \in R$ such that $b \equiv 1 - x_i \pmod{M_i}$. It follows that $a_{n-1} + ba_n \in M_i$, $i = 1, \cdots, r$. Hence $[a_1, \cdots a_{n-2}, a_{n-1} + ba_n]$ is primitive.

It follows from this theorem that quasi-semi-local rings and Noetherian rings in which every proper prime ideal is maximal (in particular, Dedekind domains) are B-rings.

Lemma 2.2. Let R be an F-ring (i.e., a ring in which every finitely generated ideal is principal) which satisfies the condition that if $1 \in (a_1, a_2, a_3)$ with $a_1 \in J(R)$ then $1 \in (a_1, a_2 + ba_3)$ for some $b \in R$. Then R is a B-ring.

Proof. Let $1 \in (a_1, \cdots, a_n)$, $n \geq 3$, and let $(a) = (a_1, \cdots, a_{n-2}) \not\subseteq J(R)$. Hence $1 \in (a, a_{n-1}, a_n)$. By the hypothesis on R, $1 \in (a, a_{n-1} + ba_n)$; hence, R is a B-ring.

Theorem 2.3. If R is an F-ring which satisfies the condition that for every $a, c \in R$ with $a \in J(R)$, there is an $r \in R$ such that $Z(r) = Z(a) - Z(c)$, then R is a B-ring.

Proof. The proof is essentially the same as the proof of Theorem 5 of [2]. Let $1 \in (a, b, c)$, $a \in J(R)$. By the hypothesis on R there exists $r \in R$ such that $Z(r) = Z(a) - Z(c)$. Hence $(c, r) = (1)$, so there exists $q \in R$ such that $1 \in (r, b + qc)$. We claim $(a, b + qc) = (1)$. Otherwise, there exists a maximal ideal M of R such that $(a, b + qc) \subseteq M$. Hence $M \in Z(a)$ and $M \in Z(b + qc)$. Since $1 \in (r, b + qc)$ it follows that $M \in Z(r)$, so $M \in Z(c)$. But we now have $M \in Z(b)$, contrary to $(a, b, c) = (1)$. Therefore $(a, b + qc) = (1)$. Lemma 2.2 completes the proof.

Theorem 2.4. Every adequate ring is a B-ring.

Proof. In the proof of Theorem 5.3 of [3], Kaplansky shows that
if R is an adequate ring and if $1 \in (a, b, c), a \neq 0$, then there exists $q \in R$ such that $1 \in (a, b + qc)$. Since an adequate ring is an F-ring, the result follows from Lemma 2.2.

Theorem 2.5. Every π-regular ring is a B-ring.

Proof. If R is a π-regular ring, and if $a \in R/N(R)$, then by Lemma 2.2 of [5], a is an associate of $e + \beta$, e an idempotent and β a nilpotent of the π-regular ring $R/N(R)$. Since $\beta = 0$, $a = ve$, v a unit of $R/N(R)$. Therefore, $a^2 = ve$ and $v^{-1}a^2 = ve = a$. Hence, $R/N(R)$ is a regular ring and therefore an adequate ring ([1, Th. 11]). Theorem 2.4 and Lemma 2.1 complete the proof.

Theorem 2.6. Let D be an integral domain, K its quotient field. Let $R = \{(a_1, \ldots, a_k, a, a, \ldots): a_i \in K, a \in D\}$, where k is a nonnegative integer (k may be different for distinct elements of R). The operations in R are component-wise addition and multiplication. If R is a B-ring then D is a B-domain.

We illustrate the proof. Suppose R is a B-ring and let $1 \in (a, b, c)$, $a, b, c \in D$, $1 = aa' + bb' + cc'$. Let $\hat{a} = (1, a, a, \ldots), \hat{b} = (0, b, b, \ldots), \hat{c} = (0, c, \ldots), \hat{a}' = (1, a', a', \ldots), \hat{b}' = (0, b', b', \ldots), \hat{c}' = 0, c', c', \ldots)$. Then $1 = \hat{a}\hat{a}' + \hat{b}\hat{b}' + \hat{c}\hat{c}'$. If $\hat{a} \in J(R)$, then $\hat{1} - \hat{a} = (0, 1 - a, 1 - a, \ldots)$ is a unit of R. Since this is false, $\hat{a} \in J(R)$, hence $\hat{1} \in (\hat{a}, \hat{b} + \hat{y}\hat{c})$ for some $\hat{y} \in R$. Therefore $\hat{1} = \hat{a}\hat{d} + (\hat{b} + \hat{y}\hat{c})\hat{e}$, where $\hat{d}, \hat{c}, \hat{e} \in R$. Let $\hat{d} = (d_1, \ldots, d_p, d, d, \ldots), \hat{e} = (e_1, \ldots, e_q, e, e, \ldots), \hat{y} = (y_1, \ldots, y_r, y, y, \ldots)$ and let $\lambda = \max(1, p, q, r)$. In the $(\lambda + 1)$st entry of $\hat{a}\hat{d} + (\hat{b} + \hat{y}\hat{c})\hat{e}$, we have $ad + (b + yc)e$; i.e., $1 \in (a, b + yc)$. Hence, D is a B-domain.

Theorem 2.7. $R[X]$ is a B-ring if and only if R is a completely primary ring.

Proof. Sufficiency: Let R be a completely primary ring. Since $R/N(R)$ is a field and since $(R/N(R))[X] \cong R[X]/N(R)[X]$, it follows from Theorem 2.2 that $R[X]/N(R)[X]$ is a B-ring. Since $N(R)[X] = N(R[X])$, the result follows from Lemma 1.2.1.

Necessity: Assume that R is not completely primary and that $R[X]$ is a B-ring. Let r be a nonunit, nonnilpotent element of R. Then $1 \in (r, 1 + X, X^2)$ and $r \in J(R[X])$. By the assumption that $R[X]$ is a B-ring, we have $1 \in (r, 1 + X + X^2\tilde{f}(X))$ for some $\tilde{f}(X) \in R[X]$. Let \bar{a} denote the image of $a \in R$ under the natural homomorphism of $R[X]$ onto $(R/rR)[X]$. Then $1 \in (0, 1 + X + X^2\tilde{f}(X))$ and $1 + X + X^2\tilde{f}(X)$ is a unit of $(R/rR)[X]$. This is a contradiction since the coefficient of X is not nilpotent.
Since $R[X]$ cannot be completely primary, (clearly, X is neither a unit nor a nilpotent) it follows that for every ring R, $R[X, Y] = R[X][Y]$ is not a B-ring.

3. Strongly B-rings. We now turn our attention to the study of SB-rings. Our main objective here is to compare the theory of this particular subclass of B-rings with that of B-rings given in the last section.

Lemma 3.1. R is an SB-ring if and only if for every $s, c_1, c_2, c_3 \in R$ with $s \in (c_1, c_2, c_3)$ and $c_1 \in J(R)$, it follows that $s \in (c_1, c_2 + bc_3)$ for some $b \in R$.

Proof. The necessity clearly follows from the definition of an SB-ring.

Sufficiency: Let $r \in (a_1, \ldots, a_n), n \geq 3$, with $(a_1, \ldots, a_n) \nsubseteq J(R)$. Without loss of generality, we may assume that $a_{n-2} \in J(R)$. Suppose $r = \sum_{i=1}^{n} a_i x_i$ and let $s = a_{n-2} x_{n-2} + a_{n-1} x_{n-1} + a_n x_n$. Then $r \in (a_1, \ldots, a_{n-3}, s)$ and $s \in (a_{n-2}, a_{n-1}, a_n)$. Since $a_{n-2} \in J(R), s \in (a_{n-2}, a_{n-1} + ba_n)$ for some $b \in R$. Therefore $r \in (a_1, \ldots, a_{n-3}, s) \subseteq (a_1, \ldots, a_{n-2} + ba_n)$, and the proof is complete.

In view of Lemma 3.1, we need only consider triples instead of arbitrary n-tuples in our study of SB-rings.

Lemma 3.2. The homomorphic image of an SB-ring is an SB-ring.

Proof. Let \bar{R} be the image of R under the homomorphism ϕ, and let $\bar{d} \in (\bar{a}_1, \bar{a}_2, \bar{a}_3)$ with $\bar{a}_1 \in J(\bar{R}), \bar{a}_2, \bar{a}_3, \bar{d} \in \bar{R}$. Suppose $\bar{d} = \sum_{i=1}^{3} \bar{a}_i \bar{x}_i, \bar{x}_i \in \bar{R}$ and let $a_i \phi = \bar{a}_i, x_i \phi = \bar{x}_i, i = 1, 2, 3$. Let $d = \sum_{i=1}^{3} a_i x_i$. Since $(J(R)) \phi \subseteq J(\bar{R})$, we have $a_i \in J(R)$; hence, $d \in (a_1, a_2 + ba_n)$ for some $b \in R$. Since $d \phi = \bar{d}$, we have $\bar{d} \in (\bar{a}_1, \bar{a}_2 + \bar{b} \bar{a}_n)$, where $b \phi = \bar{b}$. Hence \bar{R} is an SB-ring.

Theorem 3.1. Every quasi-local ring is an SB-ring.

Proof. Let $d \in (a_1, a_2, a_3)$, with $a_1 \in J(R), R$ a quasi-local ring. Since $a_1 \in J(R), a_1$ is a unit of R; hence, $d \in (a_1, a_2 + ba_n) = (1)$ for every $b \in R$.

Lemma 3.3. Let $A = (a_1, \ldots, a_n), n \geq 3$, be an ideal in a Dedekind domain R. If $B = (a_1, \ldots, a_{n-1}) \neq (0)$, then $A = (a_1, \ldots, a_{n-2}, a_{n-1} + ba_n)$ for some $b \in R$.

Proof. Let \(A = \prod_{i=1}^{t} M_{i}^{n_{i}} \) and let \(B = \prod_{i=1}^{t} M_{i}^{n_{i}} \) be the representations of the ideals \(A \) and \(B \) as a product of powers of distinct maximal ideals. Since \(B \subseteq A \), we may order the \(M_{i} \) so that \(0 \leq \alpha_{i} < \beta_{i} \) for \(1 \leq i \leq r \), and \(\alpha_{i} = \beta_{i} \) for \(r + 1 \leq i \leq t \). Let \(1 \leq k \leq r \). We claim that either \(a_{n_{i}} - b_{n_{i}} \) or \(a_{n_{i}} \) does not belong to \(M_{i}^{n_{i}+1} \). For suppose both \(a_{n_{i}} - b_{n_{i}} \) and \(a_{n_{i}} \) belong to \(M_{i}^{n_{i}+1} \). Then \(A \nsubseteq M_{i}^{n_{i}+1} \), a contradiction. Since the \(M_{i} \) are relative prime, the Chinese Remainder Theorem guarantees the existence of a \(b \in R \) satisfying:

\[
b \equiv 0 \pmod{M_{i}^{n_{i}+1}} \quad \text{if} \quad a_{n_{i}} - b_{n_{i}} \notin M_{i}^{n_{i}+1} \\
b \equiv 1 \pmod{M_{i}^{n_{i}+1}} \quad \text{if} \quad a_{n_{i}} \notin M_{i}^{n_{i}+1}
\]

for \(k = 1, 2, \ldots, r \). It follows that \(a_{n_{i}} + ba_{n_{i}} \notin M_{i}^{n_{i}+1} \) for \(k = 1, 2, \ldots, r \). Let \((a_{1}, \ldots, a_{n_{2}}, a_{n_{1}} + ba_{n_{1}}) = \prod_{i=1}^{t} M_{i}^{n_{i}} \). Since \((a_{1}, \ldots, a_{n_{2}}, a_{n_{1}} + ba_{n_{1}}) \subseteq A = \prod_{i=1}^{t} M_{i}^{n_{i}} \), it follows that \(\mu_{i} \geq \alpha_{i} \), \(i = 1, 2, \ldots, t \). Since \(B = \prod_{i=1}^{t} M_{i}^{n_{i}} \subseteq \prod_{i=1}^{t} M_{i}^{n_{i}} \subseteq \prod_{i=1}^{t} M_{i}^{n_{i}} = A \), and since \(\beta_{i} = \alpha_{i} \), \(r + 1 \leq i \leq t \), it follows that \(\mu_{i} = \beta_{i} = \alpha_{i} \), \(r + 1 \leq i \leq t \). If \(\mu_{i} > \alpha_{i} \) for some \(i \) with \(1 \leq i \leq r \), then \(a_{n_{i}} + ba_{n_{i}} \notin M_{i}^{n_{i}} \subseteq M_{i}^{n_{i}+1} \), a contradiction. Hence, \(\mu_{i} = \alpha_{i} \), \(i = 1, 2, \ldots, t \). Equivalently, \((a_{1}, \ldots, a_{n_{2}}, a_{n_{1}} + ba_{n_{1}}) = A \).

As an immediate consequence, we have:

THEOREM 3.2. A Dedekind domain is an SB-ring.

LEMMA 3.4. Let \(R \) be a B-ring, let \(e = e^{2} \in R \), and let \(e \in (a_{1}, \ldots, a_{n}) \) with \((a_{1}, \ldots, a_{n}) \notin J(R) \), \(n \geq 3 \). Then \(e \in (a_{1}, \ldots, a_{n-2}, a_{n-1} + ba_{n}) \) for some \(b \in R \).

Proof. Since the case \(e = 1 \) is covered by the hypothesis, we may assume \(e \neq 1 \). Let \(e = \sum_{i=1}^{n} a_{i}x_{i} = \sum_{i=1}^{n} (a_{i}e)(x_{i}e) \). Hence, \(1 = (a_{e} + 1 - e)(x_{e} + 1 - e) + \sum_{i=2}^{n} (a_{i}e)(x_{i}e) \). Thus,

\[
1 \in (a_{e} + 1 - e, a_{e}x_{i}, \ldots, a_{e}e).
\]

If \(a_{e} + 1 - e \in J(R) \), then \(1 - (a_{e} + 1 - e) = e(1 - a_{i}) \) is a unit of \(R \), a contradiction since \(e = e^{2} \), \(e \neq 1 \). Thus, since \(R \) is a B-ring, we have \(1 \in (a_{e} + 1 - e, a_{e}x_{i}, \ldots, a_{e}^{n}e, a_{n-1}e + ba_{n}e) \) for some \(b \in R \). Therefore, \(e \in (a_{e} + 1 - e, a_{e}x_{i}, \ldots, a_{n-1}e, a_{n-1}e + ba_{n}e) \subseteq (a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1} + ba_{n}) \).

COROLLARY. If \(R \) is a regular ring then \(R \) is an SB-ring.

Proof. The result is immediate from Theorem 2.5 and Lemma 3.4; since, for every \(r \in R \), \(r \) is an associate of some idempotent \(e \in R \) ([1, Lemma 10]).

THEOREM 3.3. If a B-ring \(R \) is also an Hermite ring, then \(R \) is an SB-ring.
Proof. Let \(d \in (a_1, a_2, a_3) = (a), a \in J(R) \). By Corollary 5 of [1], there exist \(b_1, b_2, b_3 \) such that \(a_1 = b_1a, a_2 = b_2a, a_3 = b_3a, \) and \((b_1, b_2, b_3) = (1) \). Since \(R \) is a \(B \)-ring and since \(b_i \in J(R) \), there exists a \(q \in R \) such that \((b_1, b_2 + qb_3) = (1) \). Therefore, \((a) = (b_1a, b_2a + qb_3a) = (a_1, a_2 + qa_3) \). Hence, \(d \in (a_1, a_2 + qa_3) \).

Corollary. Every adequate domain is an \(SB \)-ring.

Proof. An adequate domain is both an \(F \)-domain and a \(B \)-ring. Since every \(F \)-domain is an Hermite ring, the result follows from Theorem 3.3.

Corollary. If \(R \) is an \(F \)-ring with infinitely many maximal ideals and, if for every ideal \(A \subseteq J(R), Z(A) \) is finite, then \(R \) is an \(SB \)-ring.

Proof. \(R \) is necessarily a \(B \)-ring by Theorem 2.2. By the proof of Corollary 2 of [2], \(R \) is also an Hermite ring. Theorem 3.3 completes the proof.

Theorem 3.4. \(R[X] \) is an \(SB \)-ring if and only if \(R \) is a field.

Proof. The sufficiency follows from Theorem 3.2. To prove the necessity, let \(r \in R, r \neq 0 \). Then \(r \in (X^2, X, r) \) and \(X^2 \in J(R[X]) \). If \(R[X] \) is an \(SB \)-ring then \(r \in (X^2, X + rb(X)) \) for some \(b(X) \in R[X] \). Let \(r = X^2f(X) + (X + rb(X))g(X) \), where \(f(X) \) and \(g(X) \in R[X] \), and let \(f_i, g_i, b_i \) represent the coefficient of \(X^i \) in the polynomials \(f(X), g(X), b(X) \), respectively. Equating coefficients in the above equation gives \(r = rb_0g_0 \) and \(0 = g_0 + r(b_0g_1 + g_0b_1) \). Hence \(r \) divides \(g_0 \) and therefore \(r = r^2k \) for some \(k \in R \). Hence \(rk = (rk)^2 \); therefore, \(rk \) is an idempotent of \(R \). Since \(R[X] \) is a \(B \)-ring, \(R \) must be a completely primary ring by Theorem 2.7. It follows that the idempotent \(rk \) is either 0 or 1. Since \(rk = 0 \) and \(r = r^2k \) imply \(r = 0 \), we conclude that \(rk = 1 \); i.e., \(r \) is a unit of \(R \). Hence, \(R \) is a field and the proof is complete.

References

Received October 30, 1969.

University of Texas at Arlington

University of New Mexico
Charles Compton Alexander, *Semi-developable spaces and quotient images of metric spaces* ... 277
John A. Beekman and Ralph A. Kallman, *Gaussian Markov expectations and related integral equations* ... 303
Frank Michael Cholewinski and Deborah Tepper Haimo, *Inversion of the Hankel potential transform* ... 319
John H. E. Cohn, *The diophantine equation*
\[Y(Y+1)(Y+2)(Y+3) = 2X(X+1)(X+2)(X+3) \] ... 331
Philip C. Curtis, Jr. and Henrik Stetkaer, *A factorization theorem for analytic functions operating in a Banach algebra* 337
Doyle Otis Cutler and Paul F. Dubois, *Generalized final rank for arbitrary limit ordinals* ... 345
Keith A. Ekblaw, *The functions of bounded index as a subspace of a space of entire functions* ... 353
Dennis Michael Girard, *The asymptotic behavior of norms of powers of absolutely convergent Fourier series* .. 357
Paul C. Kainen, *Universal coefficient theorems for generalized homology and stable cohomotopy* ... 397
Aldo Joram Lazar and James Ronald Retherford, *Nuclear spaces, Schauder bases, and Choquet simplexes* .. 409
David Lowell Lovelady, *Algebraic structure for a set of nonlinear integral operations* ... 421
John McDonald, *Compact convex sets with the equal support property* 429
Forrest Miller, *Quasivector topologies* ... 445
Marion Edward Moore and Arthur Steger, *Some results on completability in commutative rings* ... 453
A. P. Morse, *Taylor’s theorem* ... 461
Richard E. Phillips, Derek J. S. Robinson and James Edward Roseblade, *Maximal subgroups and chief factors of certain generalized soluble groups* ... 475
Doron Ravdin, *On extensions of homeomorphisms to homeomorphisms* 481
John William Rosenthal, *Relations not determining the structure of \(\Sigma \) 497
Prem Lal Sharma, *Proximity bases and subbases* ... 515
Larry Smith, *On ideals in \(\Omega^\omega \)* ... 527
Warren R. Wogen, *von Neumann algebras generated by operators similar to normal operators* ... 539
R. Grant Woods, *Co-absolutes of remainders of Stone-Čech compactifications* 545