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Let 2; P—> Q be a homeomorphism between two compact
subsets of the topological spaces X and Y respectively.

Conditions on the decompositions of X\P and Y\Q are
found such that there exists a homeomorphism H of X onto
Y which is an extension of 4.

It is shown that if P and @ are compact subsets of the
one dimensional space R, consisting of all rational points of
the Hilbert space [, then any homeomorphism between P and
Q@ can be extended to a homeomorphism of R, onto itself,
Thus an example of a one dimensional space having a very
high degree of homogenity is obtained.

A generalization of a theorem of B, Knaster and M,
Reichbach (Reichaw) is also given,

Let %: P— Q be a homeomorphism between two compact subsets
PcC X, QT Y of the topological spaces X and Y. The problem of
finding conditions under which there exists a homeomorphism H: X — Y
which is an extension of / has been considered by a number of authors
(see [7], [9]). It was shown ([7]) that one can extend homeomorphisms
given between two compact subsets of the Cantor set to a self homeo-
morphisms of the Cantor set under certain conditions. There are other
examples where one can extend homeomorphisms in totally disconnected
spaces.

In this paper theorems on extensions of homeomorphisms between
subsets of two topological spaces to a homeomorphism of the whole
spaces are proved. Some results concerning the degree of homogenity
of spaces are obtained. The theorems obtained here apply mostly to
totally disconnected spaces.

In §1 a generalizations of a theorem of B. Knaster and M.
Reichbach (see [7]) from metric separable spaces to regular spaces is
given. It is applied to extend homeomorphisms in a non separable
lacunar subset of some Banach space.

In §2 a theorem an extension of homeomorphisms in metric spaces
is proved. It is applied to the subspace R, of the Hilbert space I,
consisting of all points = = {«,} such that z, is rational for each .
As was shown by P. Erdos (see [4] or [5] p. 13) R, has dimension 1.
We show that every homeomorphism between two compact subsets of
the space R, can be extended to a self homeomorphism of R,. Thus
an example of a finite dimensional, but not zero dimensional space
having a very high degree of homogenity is obtained. This result is
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related to a problem posed by B. Knaster in [12]. At the end some
problems concerning extensions of homeomorphisms in the Knaster-
Kuratowski biconnected set ([8], or [5]) are posed.

NorATioN. In the sequel we use the logical connectives \/ (or) A
(and) = (implies}). N denotes the set of natural numbers Z the set

of integers and R the set of real numbers. card (4) or A denotes
the cardinality of A, nbd. stands for “neighborhood” and S(p, ¢) denotes
the ball of radius ¢ and centre p in a metric space. Finally all
homeomorphisms, are “onto”.

1. In this section two theorems on extensions of homeomorphisms
to homeomorphisms are proved. The first theorem generalizes Theorem
1 of [7] from separable metric spaces to regular spaces. The second
theorem follows from the first one and is applied to extend homeo-
morphisms in lacunar' subspace of some Banach space.

DErFINITION 1.1. A directed set® A will be called sequentially
directed if A = Uz, 4; where A; are disjoint and the ordering in A is
defined by: Two elements of the same A, are incomparable and if
a'eA; a’eA; and 1 < j then o < .

We note that in a sequentially directed set every non cofinal subset
has an upper bound.

DEFINITION 1.2. Let A = {a|ac A}, B ={3|8 ¢ B} be directed sets.
A map f: A— B will be called cofinality preserving if:

( 1) a, #+ azzf(az) :'/:f(az)

(ii) for every cofinal subset Cc A, f(C) is a cofinal subset of B.

(ili) for every cofinal subset D, D C f(4), f~(D) is a cofinal sub-
set of A.
A map f satisfying conditions (i) and (ii) will be called semi cofinality
preserving.

LEMMA 1.1. Let A and B be directed sets. Let f and g be co-
finality preserving maps f: A— B, g: B— A. Then there exists a
bijection k: A — B such that k s also cofinality preserving and for
every ac A either k(a) = f(a) or kla) = g7(@).

Proof. The proof is similar to the proof of the Cantor Bernstein
theorem. The following lemma is trivial.

1 A lacunar space is a space in which every compact set is nowhere dense. (See
[10)).

2 A directed set A is a partially ordered set such that for every «’,a’”’€ A there
exists a’”’€ A with ' > o’ A o’ > o' ([6]).
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LEmMMA 1.2. Let A and B be two directed sets in which every non
cofinal subset has an upper bound. If f: A— B is monotone and semi
cofinality preserving then f is cofinality preserving.

DEFINITION 1.3. Let PC X be a compact subset of X. A de-
composition of X\P is a family {X,|ae A} such that X\P = Uses Xo»
where X, are open, closed and disjoint subsets of X and A is a di-
rected set of indices.

A decomposition {X,|ae A} of X\P is called regular if the fol-
lowing conditions hold:

(1) for every pe P and every nbd. U, of p there exists an «, and
a nbd. U of p, U c U,, such that for a > a, X, N U # @ = X, U,.
(2) for every pe P, every nbd. U, of »p and every «, the set
U\U{X,|a > a}) is a nbd. of p.

(3) for every cofinal subset C of A there exists a point pe P and
a cofinal subset C, C such that for every nbd. U, of p there exists
a, such that U,N X, + @ for aeC, A @ > a,. («, depends on U,).

DEFINITION 1.4. Let {X,|ac A} and {Y,|5 < B} be decompositions
of X\P and Y\Q@ respectively. Let h: P— Q be a homeomorphism.
We say (similarly to [7]) that {X,} and {Y,} approach P and @ ac-
cording to h if the following properties hold:

(4) There exists a cofinality preserving map f: A— B such that X,
is homeomorphic with Y.

(4a) There exists a cofinality preserving map g: B— A such that Y,
is homeomorphic with X, ;.

(5) for every pair of points (p,¢) with pe P, ¢ = h(p)e Q and for
every nbd. V of ¢ there exists a nbd. U of p» and «, such that for
a > Q,

XNU+Q=Y;uNV=+Q

(5a) for every pair of points (g, p) with g€ @, p = h~'(¢) € P and for
every nbd. U of p there exists a nbd. V of ¢ and B, such that for
B > By

YinV+20=X,sNU=+0

THEOREM 1.1. Let X and Y be regular spaces and let h: P— Q
be a homeomorphism between compact subsets PC X, QC Y. Let
{X, ae A} and {Y;|B € B} be regular decompositions of X\P and Y\Q
respectively and let {X,} and {Y;} approach P and @ according to h.
Then there exists an extension of h to a homeomorphism H: X — Y.

Proof. Let 0. X,— Yiu s Ys— X, be the homeomorphisms
given by (4) and (4a). Let k be the cofinality preserving map of A
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onto B given by Lemma 1. Denote:

Ay = {alac A A ko) = fla)}
and

A, = {alac AN kla) = g (@)} .
Define H by:

h(x) xeP
H(x) = {0,(x) 2xeX, N acA;
val(@) xeX, N aeA\A;.

Clearly H is a one-to-one mapping of X onto Y. By the sym-
metry of our assumptions it suffices to prove that H is continuous.
Continuity of H is obvious at every point z¢ X\P. We shall show
that for every point g€ @ and an arbitrary nbd. V of ¢ there exists
a nbd. U of p = h~'(q) such that H(U)c V.

Denote by H the map H restricted to X\P. It suffices to show
that there exists a nbd. U of p such that H(U)c V.

Let (1a) (2a) and (3a) denote properties obtained from (1), (2) and
(3) by replacing X, p, P, U,a, C by Y, q, Q, V, B, D respectively. Let
V < V be the nbd. of ¢ given by (1a). By (5) there exists a nbd. (?1
of p contained in U such that

(6) a>a,NX, N0 +0=0X)nV+02.
By (2) there exists a nbd. U, of p such that
(7) X.NU #@=0(X)CV.

If there are no sets X, contained in U, for which H is defined
by +7' then obviously H is continuous at p. Thus it remains to con-
sider the case that there exist sets X, satisfying:

(8) X, cU,
(9) for X,, H is defined by "
(10) HX)Z V.

We denote these sets by X, and the set of their indices by A’ =
A'(U). We prove first the following proposition (*).
(*) The nbd. U, can be chosen so that A’(U,) is not cofinal.
Indeed, suppose that for some U,, A’ is cofinal. By definition of
V there exists for this U, a cofinal subset of indices «' such that

(11) X, cU and v X N V=0

hence there exists a cofinal subset A” = A”(U)) of indices «” and a
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point ¢, such that (3a) is satisfied. Clearly ¢,¢ V. By (8) there exists
a cofinal subset A" = A"'(U,) of indices a’’(A"" < A”) and a point p,
such that every nbd. U of p, intersects all sets X, with & > "
(a depends on U). By regularity of X and by X, c U,

(12) p. e U, (the closure of U) .

By (5) and (5a) we have h(p) = q..

Indeed assume A7'(q,) = p. # p,. Let U, and U, be disjoint nbd’s
of p, and p, and let U, c U, U, U, be the nbd’s of p, and p, given
by (1). There exists an index «;” such that for «” > «” we have
X0l # @.

According to (5a) there exists for U, a nbd. V of ¢, and a 3,
such that for 8> 8, Y;N V= @ — X,... N U, @ but this is impos-
sible since X,..c U, for a > a)".

Suppose now to the contrary that (*) does not hold. Then for
every U, there exists a point p,, and a point ¢, such that

pul € (719 Qule V and h‘(pul) = qul .

But then the generalized sequence {p,} converges to p which contra-
dicts the contmulty of h at p. Thus (*) holds. Consider now the
set U= U\U {(X.|ac A'}. By (*) A" is not a cofinal subset of A.
Thus by (2) U is a nbd. of p and H(U)C V. Theorem 1 is proved.

From now on X and Y will denote metric spaces and the decom-
positions of X\P and Y\Q will be assumed to have sequentially directed
sets of indices A and B, A = U, 4;, B= Uz, B..

THEOREM 1.2. Let h: P— Q be a homeomorphism. The following
conditions are sufficient for the existence of a homeomorphism H: X —
Y which is an extension of h:

(13) for every 1, Zi = B, = M where M is some fized infinite cardinal.
(14) for every ae A;

1
(X, < =
(Xa) < o

(14a) for every B € B;
N 1
o(Ys) < o

(15) for every ae A;
1

d(i) < p{X,, P) < oy

(15a) for every Be B;
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1

gi—1

(i) < p(Y; @) <

where d(i) > 0.
(16) for every a, B there exists a homeomorphism

Pos: Xo— Y5 o
A7) for every pe P and ¢ > 0 there exists an 1, such that
card {a|ae A,y N X, NS(P,e) # @} =M
(17a) for every qc @ and € > 0 there exists a 7, such that
card {B|Be B;, A YsNS(q,e) # @} =M.

Proof. It suffices to show that all assumptions of Theorem 1 are
satisfied. Clearly {X,|ae A} and {Y;|B € B} are regular decompositions
of X\P and Y\Q. To show that {X,} and {Y;} approach P and @
according to % it suffices to construct (by the symmetry of our as-
sumptions) a monotone semi-cofinality preserving map f: A — B such
that (4) and (5) hold. Let us well order A; and B; into type w(M)
where w(M) denotes the first ordinal of cardinality M.

Let j: N— N satisfy:

1 d(1) .
(18) o= < 5 for all te N
(19) i) <j@ -+ <jl—1) <j@) .-
(20) j(t) >4, where j, satisfies (17a) with ¢ = @)

2

For every X, (where awe A;) there exists a point p,e€ P such that
0(X,, ) = 0(X,, P). Take the point ¢, = h(p,) € Q. By (17a) and
(20) there exists an injection f;: A; — B;; such that,

Yﬁ(a) N S(Qm %‘) * @ .
The union f = U, f; is a semi cofinality preserving monotone map
f+ A — B satisfying:
jae A»; =>f(0() € Bfu‘)
(Y iy (D) < 0( Xy D) -

Thus (4) holds. By (18), (19), (21) also (5) holds.
Let _ denote the Banach space of all bounded functions from
an infinite set Y to the reals,

(21)
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A= {f1f: T — R, Sup | f(0)| < =}

with the norm || f|| = sup,.: | f(0)].

Let W denote the subset of _; consisting of rational valued
functions. Clearly W is a lacunar space. In the following theorem
an application of Theorem 2 to extension of homeomorphisms in the
space W is given

THEOREM 1.3. FEach homeomorphism h: P— Q between compact
subsets of W has an extension to a self homeomorphism of W.

Proof. We shall write W\P(W\Q) as union
U{X.lae AJ(U{Y:|B€ B})

where X,(Y;) are “cubes” such that all assumptions of Theorem 2
will be satisfied.

For every function e« € Z* from Y to the set of integers Z denote
by X! the cube:

(22) X.={flfe WAV 2 +afo) <flo) <V'2 + a(s) +1 for all 6} .

All such cubes are homeomorphic, mutually disjoint, closed and open
subsets of W. Let .7, = {X!|ae Z*}). Clearly .7, = 2°. Define

(23) A = {alaeZ* A p(XL, P) > 1) .

Since P is bounded (as a compact set) we have also: A = 9. For
every function a € Z* denote by X? the cube:

24) Xi={rirewn 1/7+ﬁg1)—<f(0)<1/'2_
aio) + 1
+-‘——6——— for all 0}.

Let 7, = {X:|lae Z° \ X:C W\U..., X} and define
(25) A, = {alaeZ* A\ o(X2 P) > § A Xie 7).

There exists for every pe P at least one cube X in & such
that X; NP =@ and X; NS(p,1) # Q, (hence a,¢ A,). The set
{Xi| X;c X, A\ ae 4,;} has cardinality 2% and therefore also A, = 2°.
Thus (17) holds for ¢ = 1 and 7, = 2.

By induction we define sets A, for ¢ = 3,4 ... and sets of cubes
{X.lae A} satisfying:

tay

(26) A, =2 (i=1,2.-")
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(7) 8(X) < 1/6 for ae A,

(28) ?1__ <P, P) < L for acd,.

Obviously (26) (27) (28) imply (13) (14) (15). Taking 4, = 7 + 1 for
€>1/6""(i=1,2, ---) one obtains that (17) holds with M = 2°. Also
W\P = U {X,|aec A} where Az, A..

Similarly W\Q can be decomposed into sets Y,, g€ B= Uz, B..
Finally assumption (16) of Theorem 2 is satisfied since all the cubes
X, and Y, are homeomorphic.

2. In this section a theorem on extension of homeomorphisms to
homeomorphisms in metric spaces is proved. It is applied to extend
homeomorphisms in the one-dimensional space R, of all points with
rational coordinates in the Hilbert space [,. We show that each
homeomorphism between two compact subsets of R, can be extended
to a self homeomorphism of E,. Thus an example of a finite dimen-

sional but not zero dimensional space having a very high degree of
homogenity is obtained.

DerFINITION 2.1. Let {X,|ac A} be a decomposition of X\P. For
every ac A let p,e P be any point such that o(X,, P) = 0(X., D.)-
The sets X, will be called thin with respect to P if the following
conditions hold:

él?<p(Xa,P)<E;_T for acA, (for i =2,8.+)
(29)
—;—<p(Xa, P) for acA

(30) for every pc P and ¢ > 0 there exists an 4, = 7,(p, ¢) and 6 =
o(p, ¢) > 0 such that

1> ANaed; AN Sp,0)NX,#* @ =np,8(p,e¢) .
If moreover
(81) for every 1 =1,2, -.- Z = M where M is an infinite cardinal
and for every pe P and every d > 1/2° there exist M indices a’ satis-
fying o’ € A;, 0(po, ) < 1/4" and o(X,., P) < Kd where K > 1 is a fixed
number then the sets X, will be called M dense with respect to P.

LEmMMA 2.1. Let {X,|ac A} and {Y;|8¢e B} be decompositions of
X\P and Y\Q. Let h:P— @ be a homeomorphism. The following
assumptions suffice for the existence of an extension of % to a homeo-
morphism H: X — Y.

(32) The sets X, are thin with respect to P.
(32a) The sets Y, are thin with respect to Q.
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(33) There exists an injection ¢: A — B such that
ac A, = ¢{a) e B,
(33a) There exists an injection ~»: B— A such that
Be B, = (B) e 4;
(34) There exist homeomorphisms f,: X, — Y., satisfying

—}{—p@:, ) < 0(ful®), h(ps) < Kp(z, p.)

for every v ¢ X where K > 1 is a fixed number
(84a) There exist homeomorphisms ¢;: Y; — X, satisfying

—lfp(y, 25 < 0(9:(1), h™(q5) < Kp(y, ¢s)

for every ye Y, where K > 1 is a fixed number, and ¢;,€ Q is any
point of @ for which o(Y;, Q) = 0o(Y5;, qs).

(85) for every cofinal (in A) sequence {a,} of indices O(A(p.,), ¢s.,) — 0
for s — oo

(85a) for every cofinal (in B) sequence {3,} of indices o(h™"(¢;s,), Dy s,)—0
for s — co.

Proof. By (33) and (33a) there exists a one-to-one mapping 4 of
A onto B. Denoting A; = {a|ac A, 6(a) = ¢(a)} and Ay = {a|jae A,
f(a) = v (@)} one can assume (by Lemma 1.1) that ¢ is defined so
that A = A, U Ay. We define H by:

hx) xeP
H(x) = {f(x) zeX, NacA,
g (%) we X NaecAy\A,.
As in Theorem 1.1 it suffices to show that H is continuous at an ar-
bitrary point pe P. Let V = S(g, ¢) be a given nbd. of ¢ = h(p). By

the continuity of 2 we have:
(a) There exists a nbd. U, of p such that

xeUNP=H@)=hzx)yeV.

Let U, be a nbd. of p such that A(U,N P)c S(g, ¢/8). By (32) and
(80) there exists a 6 > 0 such that X, N S(p,d) # @ = p,€ U,. Let
0, = min (¢/3K, 0) and let U, = U, N S(p, 6,). Then

ve XN U= 0(7(0), ) < 0(F.(0), hip) + 0(h(p), 0

< Ko(z, p.) + g < e] :
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Hence
(b) There exists a nbd. U; of p such that

veX,N U, —fx)e V.

We now show that
(¢) There exists a nbd. U, of p such that

xeXypy NU,=gr'(x)e V.

Indeed, otherwise there exists a cofinal sequence of indices {«,} such
that 2, ¢ X, , ,— p and 0(g5,(%.), ¢) > ¢ where g8, = ¥ '(a,). But then
Do, — P and by (35a) also h7'(¢;,) — ». Thus ¢;, —q. Now by (34a)

0(Y.a5) < Ko(z,, h™*(¢5,)) where vy, = g;(x,) .
This is however impossible because o(y,, ¢s)) > ¢/2 and p(x,, h™'(g,,)) <

o(z,, p) + o(p, h'(gs,)) — 0. It follows by (a) (b) and (¢) that H(U, n
u.nuycV.

THEOREM 2.1. Let {X,|ac A} and {Y,|8 <€ B} be decompositions of
X\P and Y\Q and let h: P— @ be a homeomorphism.

Denote for every ¢ and every a< A; by z,€ X, a point satisfying
(O(xay P) - IO(XOI’ P) < 1/41‘

Similarly denote for every ¢ and every Se B; by y;€ Y, a point
satisfying o(ys, Q) — 0(Y;, @) < 1/4%.

The following conditions are sufficient for the ewxistence of a
homeomorphism H: X — Y which is an extension of h.
(36) X, are thin and W, dense with respect to P.
(86a) Y, are thin and W, dense with respect to Q.
(87) for every ac A; and B¢ B; there exists a homeomorphism f,,:
X,— Y, such that

faﬁ(xa) = Ys

and such that for every xze¢ X,

< Max {Zl;, 20(x,, :c)}
O(fas(®), 5) 1
>l0(xay x) - Zl_

(37a) for every Be B, and ac A; there exists a homeomorphism g,,:
Y, — X, such that

gﬁa(yﬁ) = Lo

and such that for every ye Y,
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1
<MaX{E, 20(ys, y)}
0(95.(Y), %) {
>0, vs) ~ 3
(38) for every xze X,

ole, p) > —0(w, ) + 0w, )
(38a) for every ye Y;
oY, qs) > %p(y, Ys) + %p(yﬂ, q5) -

Proof. It suffices to define mappings ¢: A— B and +: B— A and
homeomorphisms f,: X, — Y, ., and g4 y; — Xy so that all assumptions
of Lemma 2.1 will be satisfled. We note first that by (36) and (36a)
assumptions (32) and (32a) hold. Now denote for a fixed 7 by {a,};-,
the sequence of elements of A, and define ¢: A, — B; by induction.
Suppose that ¢ has already been defined for «, --- «,. Define ¢(a,.,)
as follows: By (81) there exists a set Y, satisfying:

(@) BeB;

(0) B {p(a) - pla)
©  olas h(p) <
@ 0¥, Q < Ko(X,,P) here a=a,,.

Put ¢(a,.,) = B and define f, = fa si0: Xo — Y, as the homeomorphism
given by (37). Thus ¢: A;— B; is defined for every ¢ and so ¢: A— B
is defined.

Similarly we define : B— A and ¢;: Y;— Xy (again using (31)
and (37a)).

Obviously (33) and (33a) are satisfied. By (39¢) also (85) and
(35a) hold. By (29), (37), (38) and (39), (denoting ¢(a) by Q) we have:

[O(fzx(x)a h(pa)) < lo(faﬂ(x)y fari‘(ma)) + lo(faﬂ(xa)y qﬂ) + IO(Qﬂv h(pa))

< 5 200, @) -+ Kol p) + 2

(39)

< (K + 6)o(®, p)
and

p(fa(x)v h(pa)) > p(fa(x)s qﬁ) - IO(Qﬁy h<pa))
> %p(fa@(m, Fus)) + L0s, 0 — plas, h(p)

1

Z K16

0%, D) «
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Thus also property (84) of Lemma 2.1 holds with K replaced by K -+ 6.

REMARK. One could define the notion of “thin and M dense”
using sequences of numbers {¢,}, {r;} satisfying ¢, — 0, r,/,,— 0 instead
of the sequences {27*}, {47} used.

Extension of homeomorphisms in R,. We shall show now that
in R, every homeomorphism between two compact subsets can be ex-
tended to a self homeomorphism of R,. Before proving this we intro-
duce some definitions and notations.

The n-dimensional cube C = {(x, ++- @,) e, S0, Za; +1,i=1, -+ n}
will be denoted by [a.a; «-- a,;].

Every cube [a, .- a,; 1] can be divided into 2* cubes C;
the form:

of

pigeeriy

Ciripreniy, = {(901 cee ) |ay + ’5]'—;— Sv =0+ %‘(if + 1)

for every j = 1n}
where 7; equals 0 or 1. Let CA'I, C,--- C,,, be the sequence of these
cubes grdered lexicographically. ABy induction we define (as above)
cubes C,;; which divide the cube C; into 2" cubes and more generally
C”k.
For a given cube C, let Q(C) denote the set of cubes:

{éj‘jzz...zn}u{élj{j:2...2n}U{éM;j=2...2n}U e

Let {C> =<a, -+ a,, > denote the cylinder (in l,) over the cube
C i.e.

Cr={{x)z{x}el, and VY., (a; <2, =a; +1)}.

We call the n-dimensional cube C = [a, --- a,, I] the base of the
cylinder {C», and define Q{C> as the set of ¥, cylinders in [, whose
base is one of the cubes in the set Q(C).

7, denotes the projection of [, on the subspace of all points of
the form (x, -+ 2,0 -+« 0 +-¢).

Finally for a compact subset PCl, and for a set X, disjoint with
P we denote by p, any point of P for which po(X,, P) = o(X,, p.) and
by @, any point of X, satisfying o(z,, P) — o(X,, P) < ¢, where ¢, is
given. The following two lemmas are trivial:

LEMMA 2.2. Let S be a compact subset of R, and let ¢ > 0. There
extists m, such that for every point s€ S and every n > n, o(s, T,(s)) < &.



ON EXTENSIONS OF HOMEOMORPHISMS TO HOMEOMORPHISMS 493

Proof. Indeed it suffices to take any finite ¢/3 net {s;s,--- s} in
S and choose n, such that o(s;, 7, (s;) < ¢/3 for every ¢ = 1,2, --- k.

LEMMA 2.3. The cylinders of the form
dry + V2,7, + V2, e, V25D

are for every me N and every sequence l, v, +++ v, of rational numbers
closed and open subsets of R,.

THEOREM 2.2. Any homeomorphism h: P — Q between two compact
subsets P and Q of R, can be extended to a self homeomorphism of R,.

Proof. 1t suffices to decompose the sets B \P and R,\Q so that
all assumptions of Theorem 2.1 hold. Let ¢ >0 and let n, be a
natural number such that Lemma 2.2 holds with S = P n, = n, and
¢ = ¢,. Consider the collection F', of all cylinders of the form

1 2 ken o . 1 >
<4,,1 VT VE, I
where k, » -+ k, areintegers. F, isa set of mutually disjoint cylinders.
Choose from F, the set of all cylinders {C) satisfying o(KC), P) > %
and denote it by G,. Take the (countable) set of cylinders

U<C>e Gy Q<C>

and denote it by {X,|ae A} where A, is countable. (By Theorem 2.1
one has to decompose R,\P into sets X, where acJz, A; and the
sets A; have to be disjoint sets of indices. Therefore we do not
assume that A, is the set of integers).

Let ¢, satisfy 0 < e, < ¢, and let n, be any natural number such
that Lemma 2.2 holds with S = P n, = %, and ¢ = ¢,.

Decompose the set R,\U {{C>|<{C>e G} into cylinders of the form:

L en 1
1 2 2 2 .
< 4%2 + l/ 477, + 1/ 4n2 + ]/ 4%2

where k, -+ k,, are integers, and denote the obtained set of cylinders
by F,. F, is a set of mutually disjoint cylinders. Let

G. = {KCOIKCYe Fu A 0KE, P > -
Take the (countable) set of cylinders U,.s, C) and denote it

by {X.lae A} where A, is countable. By induction one can define
for a given sequence ¢,— 0 (0 < ¢, < &,_,) and a sequence of natural
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numbers #,(n, > n,_,) countable sets of cylinders {X,|a e 4,} for every
Ek=1,2...

Clearly R,\P = U {X,|ae A} where A = Uz, 4..

Similarly R,\Q = U{Y;|8e B} where B = |J, B;. Also we can
choose the same sequences {¢,} and {n,} for both decompositions. It
is easy to show that for sufficiently fast decreasing sequence of num-
bers ¢, (for example ¢, < 1/8% the sets X, (Y,) are thin and ¥}, dense
with respect to P(Q)).

Obviously every cylinder X, ac A, is homeomorphic to every
cylinder Y;, 8€ B,. Also for every pair of points x,c X (ae A,)y; <
Y:(B € B,) there exists a homeomorphism f,;: X, — Y; so that f,,(x,) =
9, and such that (37) is satisfied. Finally (38), (38a) follow from sim-
ple geometric properties of the Hilbert space I..

Theorem 2.2 is proved.

We conclude with two problems. Let X denote the biconnected
set defined by Knaster and Kuratowski ([8] or [5] p. 22) and let pe X
be the point such that X\{p} is totally disconnected.

ProBLEM 1. Can each homeomorphism between two compact sub-
sets of X\{p} be extended to a self homeomorphism of X?

In connection with the result obtained in Theorem 2.2 one can
ask:

PrROBLEM 2. Does there exist for n = 2,3 --+ n-dimensional space
X where every homeomorphism between two compact subsets can be
extended to a self homeomorphism of X?
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