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A relation S is said to be determined up to isomorphism
by relations I with respect to a theory K if for all models
A, Uy of K, A, restricted to R is isomorphic to U, restricted
to R implies ¥, is isomorphic to 2,. In this paper simple
necessary conditions for S to be determined up to isomorphism
by R are given, These are applied in set theory to show
there are (nonstandard) models of set theory with isomorphic
ordinals and nenisemorphic constructible sets, The isomor-
phism on the ordinals may be taken to preserve many familiar
arithmetic functions on the ordinals as addition, multiplica-
tion and exponentiation,

In this paper we show that the structure of the constructible
sets of a model of set theory is not determined by the order-type of
its ordinals, or, in fact, by its ordinals with various familiar arithmetic
functions. This is shown by exhibiting (nonstandard) models of set
theory with isomorphic ordinals and nonisomorphic constructible sets.
The isomorphism on the ordinals may be taken to preserve familiar
arithmetic functions.

These results are obtained by the use of certain simple general
model-theoretic results developed in § 2. We define a relation S to
be determined up to isomorphism by a set of relations R with respect
to a theory K if (A, R,,S.> & K,{B, Ry, S;> = K, {4, R,> ~ (B, Ry
implies <A, R,, S.> ~ (B, R;, S;>. We then give two simple sufficient
conditions for S not to be determined up to isomorphism by R wrt
K. Firstly, by a modification of a model-theoretic proof of Beth’s
theorem relating implicit and explicit definability, we show S is not
determined up to isomorphism by R if there is a sentence ¢ such
that the consequences about R of K, KU {o}, KU {- 0o} are all the
same. Using this, we show S is not determined up to isomorphism
by R wrt K if there iz a model 2 of K in which the truth set of
A is not Turing-reducible to K join the truth set of A restricted to
R.

After illustrating simple applications of these results in §2, we
turn to the main set theory results in § 3. We observe that for any
model 2 of set theory, {(Ongy, <y = <{®*, <> which has recursive
truth set [9] and that the truth set of (Ony, <y, &, =y is not re-
cursive (where F is the map defined up Godel from On — L, aég if
Fla)eF(R), a = g if Fla) = F(B) [8; 16]. Using this we may by
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our model-theoretic results immediately construct models of set theory
with isomorphic ordinals and nonisomorphic constructible sets. This
result is extended to include various functions on the ordinals by
generalizing the above approach.

2. Notation and model theory results. Our notation will
generally follow that suggested in [1] with the following additions
and modifications: Capital italic letters will denote either relations
and operations, or sets of relations and operations. Capital italic
letters will also denote either relation and operation symbols, or sets of
relations and operation symbols. Of course, we will use certain stand-
ard relation or operation symbols such as <, +, x ete.

Say A is a set of operation and relation symbols. Then X(4) is
the sentences of the first-order language with relation and operations
symbols the set A. We let Thy be the set of all sentences true of
Ain the object language of A. We let Try(A) be Thy N X(A). Fin-
ally Cn(K) = {¢|K = 0}. For certain special subsets of Y(4) we use
standard symbols, e.g., ZF for the axioms of Zermelo-Fraenkel set
theory.

In general given an w-enumeration of A, a set of relation and
operation symbols, we use this to define godel numbers of elements
of X(A). We denote the godel numbers of sentences by the sentences
themselves, and similarly the set of godel numbers of a set of sent-
ences by the set of sentences.

Let K be a theory in X(A, B) (where A, B are sets of relation
and operation symbols). We say B is determined up to ~ by A with
respect to (wrt) K if for every models {C,, A, B>, {C, A, B,y = K,
{C,, A ~C, A,y implies {C,, A, B> ~{C,, A, B,y (or equivalently
if for every models {C, A, B>,{C, A, B) = K, {C, A, B>~ {C, A, B)).
We say B is determined up to = by A with respect to K if for
every models {C,, A, B>, <C,, A, B,y = K, {C,, A) ~{C,, A,y implies
{C, A, By =<C, A, B,). In general we omit mention of K when it
is clear.

Trivially, B is not determined up to = by A implies B is not
determined up to ~ by A.

Let K be a theory in £(4). We say K is complete wrt X' = X(A4)
if for every 0eX, Kk o or K= —o.

THEOREM 1. The following 4 are equivalent
(a) For every model A of K, K U Try(A) is complete wrt (A, B).
(b) For every oeX(A, B), there is a e XZ(A) such that

KE(oc—1).
(¢) B is determined up to = by A wrt K.
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(d) For all models {C\, A,, By and {C,, A,, B,y of K,
<Cly A1> = <C2a A2> - <Cly Aly Bl> = <C2y AZ) BZ> .

Proof. We show (b)=(a) = (d) = (¢) = (b). The first three im-
plications are trivial and left to the reader. (¢) = (b) is a routine ap-
plication of the Robinson Joint Consistency Theorem [11]. Assume
(FoeZ(A, B)(VreZ(A)— K = (6 — 7). Let ¢, be such a 0. So KU
{o.}, K U{—0,} are consistent and — (37eZ(A))(ceCn(K U {0,})) and
(—)eCn(K U {—a})).

Relabel the symbols of B preserving arity so as to be symbols
not in A U B. Call this new set B’. Let @’ in general be ¢ with
symbols in B replaced by the corresponding ones in B’. So

— (FreZ(A)(reCn(K U {o}) and (—7)eCn(K’ U {—a}))),

i.e., the hypotheses of the joint consistency theorem. So there is a
€ =<C, A, B, B>suchthat € = KU {o}UK U{—0;}. So<C, A, B) =
K U{o}, <C, A, B> = KU {—o0a}. So

C,A By=(C, A B,

i.e., B is not determined up to = by A.

Let K be a theory in Z(A, B). We say B is Turing determined
by A wrt K if for every model % of K, Try(A, B) =, K join Try(A).
Note—we are here assuming w-enumerations of A, B have been given
and that the derived godel numbers of sentences are abusively de-
noted by the sentences themselves. Also if K is recursive, then this
is equivalent to Try(A, B) =<, Try(A). (=, is Turing reducible.)

THEOREM 2. B s determined up to = by A wrt K implies B 1is
Turing determined by A wrt K.

Proof. By Theorem 1, if B is determined up to = by A, then
K U Try(A) is complete wrt (4, B) for every model 2 of K. But
hence Try(A, B) <, K join Try(A).

REMARK. We see, thus, that B Turing determined by A wrt K —
B determined up to = by 4 wrt K— B determined up to ~ by A
wrt K — B determined up to = by A wrt K (i.e., B is implicitly de-
finable in terms of A wrt K). The converses of these do not hold.
We give examples

(1) Let F,G be unary relation symbols. Let K< X(F, G) be
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(3! xF(x), N2G(x), — (F(x) AG(x))}. Then G is not determined up to =
by F wrt K. But G is determined up to ~ by F wrt K.

(2) Let < be a binary relation symbol, ¥ be a unary relation
symbol. Let K & X(<, F') be ThQ, <, 0.

Then F is not determined up to ~ by < wrt K.

(e.g., QN (=2, 0) URNIO, ), <, —1)
# QN (=<, 0)UEN[0, «)), <,1>.)

But F is determined up to = by < wrt K (as K complete).

(3) Let < be a binary relation symbol, F a unary relation
symbol. Let K & Z(<, F) be theory of dense linear order without
endpoints U {Fz3y(F(2)A F(y) A (V) (F(z)—» 2 =2V y = 2))}. Then F
is not determined up to = by < wrt K (as 3! xF(x) is undecided).
Yet in any model UA: Try(<, F) is recursive and hence =<, Try(<).
So F' is Turing determined by < wrt K.

REMARK. We give several simple well-known examples illustrat-
ing the use of Theorem 2.

(1) Let K = ENT (elementary number theory). Then x is not
determined up to = by <, +.

Proof. Let N =<w, <, +, xp. 8o T, = Trg(<, +) is recursive,
T, = Thg isnot. So T, £, T,. So by Theorem 2, X is not determined
up to = by <, +. In fact, this result also holds for K = any other
arithmetic set of formulae true about 9. Similar results hold for
arithmetic theories with Q = <@, <, +, x> as a model.

(2) Add to the standard symbols (<, +, %, 0, 1) of real closed
fields an additional unary relation symbol 7 which is intended just to
apply to integers.

Let K = RCF (the theory of real closed fields)
U{n0), i(x) — i(x + 1) A ile — 1), = @2)(0 <2 <1 A i),
— (@A) (YY) e = ¥ = v + 1— —iy)
U any arithmetic set of formulae true about M relativized to
=0 A ix).

Then 4 is not determined up to ~ by <, +, %, 0, L.

Proof. As if R =<R, <, +, X, 1, then Trg(<, +, X) join K is
arithmetic, but Thy is not and hence not =<, Try(<, +, x) join K.
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Similar results are obtained for algebraically closed fields.

3. Applications to set theory. We show in this chapter that
the structure of the constructible sets is not determined up to isomor-
phism by the order type of the ordinals, nor in fact, by certain fairly
large classes of functions on the ordinals. We proceed as follows:

Let F' be the map of On (the ordinals) onto L (the constructible
sets) defined by Godel [8]. Let

éa, B) = i F()eF(B); = (a, B) = 4 F(a) = F(B) .

Takeuti defines [16] a theory of primitive recursive functions and re-
lations on the ordinals, which we will call ONT (Ordinal number
theory). In particular he shows:

LEMMA 1. (a) &, = are primitive recursive relations

(b) if {On, <, PR)> = ONT, then {(On,§, =)= ZF, V=L and
On, <, PR) ~ {ONon 2,250 <tomzz PRionz =)

() if A= ZF, then {Ony, <qg, PRyy = ONT (if A & ZF, then
Ong are its ordinals, <g the < relation on its ordinals and PRy the
primitive recursive functions on the ordinals.)

Furthermore = 1is definable in terms of E.
Proofs. Omitted.

So if € is not determined up to ~ (or =) by < (i.e., if there are
models {On, <, PR>, {On, <, PR, = ONT such that {(On, <,&)
(or #) {On, <, &,)); then by Lemma 1b %; = (On, &, =,> = ZF, V = L.
Furthermore by Lemma 1b, <0n,xi, <%>N {On, <> and hence

{Onyyy <gp ~Omy, <y -

But by assumption {On, &> 5 (or %) {On, &>, and so U, # (or #) Ws.
As U; = V=L, Ay =Ly, ey,>. So there are models A, A, = ZF such
that (Ong,, <g> ~<{Ony,, <g,> and Ly, equ> 7 (or #) {Lyy, &, if &
is not determined up to ~ (or =) by <.

We usually will show é is not determined up to = by < by
showing it is, in fact, not Turing determined by <. Similarly and
more generally we have

PROPOSITION 2. If & is not Turing determined by < and some
class of primitive recursive functions, then the structure of L 1s not
determined up to = by the structure of the ordinals with that class
of primitive recursive functions on them.
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Let 9 be any arbitrary model of ZF, V = L. Then as is well
known Thy is not recursive. As AR V=L,

WU A~ (L, eqp A~ {Omny, &gy, =g

S0 Thy <7 T7n pRm>(<, §). So Tr@nm,

P Rgﬁ( <, €) is not recursive.

A <Y <

THEOREM 3. Tr,, (<) is recursive.

w <y
Proof. Omitted. We recommend the interested reader examine

the proof in [7].

Hence Tr<°”>1(’<9x’”»z{>(<’§) Ly Tr<0na,<m,pRm>(<). So & is not Turing

determined by <. So by the above arguments we have

COROLLARY 4. If ZF is consistent, then there are models N, A’ =
ZF with (Ong, <g> ~ {Ong,, <o but {Lg, ey> F# {Lyy, g e

To extend this result to preserve various functions on the ordin-
als in the isomorphism, we need results similar to Theorem 8 in order
to COHCIU-de _-I(TT<O"QI’<%[’PR3I>(<’ A, é) éT TT<O"52I’<‘ZI’PR’JI>(<’ A)) fOI‘ ap-
propriate classes A of primitive recursive functions. Also we will
wish to consider nonprimitive-recursive functions in A. So we will
have to expand PRy, i.e., we will have to change it to ARITHy, the
arithmetic functions on the ordinals of ¥ which we will shortly define.

Theorem 3 will be extended by application of

LemMA 5. Let A be a set of primitive recursive functions.

If there is a model U of ZF and an ordinal ayeOny such that

1. {Ong, <gy, Ay = {ay, <g, Ay and

2° TT(Onm,<m,I’RQI>(<r Ar é) :{_T TT<H’)/I’<Q['PR§(>(<’ A)'
then the structure of L is not determined up to = by the stru:ture
of the ordinals with the class A of primitive recursive functions on
them.

Proof. For by 1, 2 above we have & is not Turing determined
by A. So by Proposition 2 we are done.

We will show results of the form (Ong, <g, Ag = {ay, <qp Ag
by use of a technique of Ehrenfeucht [7]. Given models 2, 2, he
defines 2 person finite games G,(2(, ,), H, (U, ) and shows that if
for all » the second player has a winning strategy in G,(2, 2,) then
9, = 2,. A similar slightly stronger result holds for H,(2, 2,). So
to generalize Corollary 4 we must merely by the above argument meet
the hypothesis of the following lemma:
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LEMMA 6. Let A be a set of primitive recursive functions.
If there is a model A of ZF and an ordinal aycOngy such that
1. "Player 11 has a winning strategy in

H,({Ongp, <gpp Ags {0y <gpp Ag)y Y1

2. As in Lemma 5,
then the same conclusions as in Lemma 5 hold.

In particular, Ehrenfeucht has shown by these techniques that
THEOREM 7.
{Ong, <gp +op @y = 05", g Fgp X -

Proof. [7].
Let 2 be an arbitrary w-model of ZF, i.e., an arbitrary model of
ZF such that wy = @. One can readily show that

<w§£umy <§)[y +\)1y xz),[>~<wwwmy <y +7 ><>
which has a Ji-truth set. On the other hand,

Thy <, T/r<0n,2[,<m,1"}391>(<) +, X, &)

and Thy is not 4} (for any w-model of ZI7 includes a definable w-
model of analysis whose truth set is well-known to be not 4}).

So T, mz_){>(<, +, X, &) £y T, (<, +, X).

2 S9p <y Ty

COROLLARY 8. If ZF has w-medels there ave models 2, A, = ZF
with <OMy, <o Fonr Xgp2 2 <Oy <y Fop Xy bt

<L’211’ E‘)[l> 7% <L‘)I2’ 6’2(2> .

Further extensions of these results involve the use of non primi-
tive recursive functions. So we now define arithmetic functions and
give certain elementary properties of them that are needed. A more
detailed exposition, including the proofs of the elementary properties
is presented in our dissertation [14].

A predicate A(a, ---a,) of ONT is called arithmetic if and only
if there is a primitive recursive predicate B(a,--- a,x, --- 2,) and
quantifiers @, -+ @, such that

}W(A(al et an) - (Q1ﬂ51) e (szx1n>B(a1 R 2 T xm)) .

The constant, relation and function symbols of ONT’ (theory of
arithmetic functions on the ordinals) are those of ONT and the arithmetic
function symbols described below. For each arithmetic predicate
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A(a, -+ a,,,) such that |773!a,,)A(a, -+- a,.,) we introduce a func-
tion symbol f, whose intended meaning is to be the function defined
by fu(a, <+ a,) = a,., if and only if A(a, +++ a,,,).

The axioms of ONT’ are those of ONT allowing, however, in all
schema arithmetic function symbols together with the “definitions” of
the arithmetic function symbols, i.e., if f, is an arithmetic function
such that |7w(3!a,.)A(a, --- a,,,), then

fala, cora,) = ey — Ay » 0 Qpiy)

is an axiom of ONT".

A predicate A(a, --- a,) of ONT' is called arithmetic if there is
an arithmetic predicate B(a, --- a,) of ONT such that

lovr(Ala, «++ a,) — Bla, «++ a,)) .
A predicate A(a, +-- a,.,) of ONT’ is called a function if
o (3l @) A0y« =+ Unsy)
It is called an arithmetic function if
loxmA(a, «+ @pi) = flay o n) = sy

for some arithmetic funection symbol f.
One can readily show using results and techniques of Takeuti
for primitive recursive functions.

LEMMA 9a. Ewery primitive rezursive function is arithmetic.

LEMMA 9b. Ewvery predicate of ONT' s arithmetic, i.e., every
predicate comststing only of arithmetic function symbols, constant,
relation and function symbols of ONT’, =, —, A, V, 3, V is arithmetic.

LEMMA 9¢. If Afa), --+, A (a) are arithmetic predicates such
that |serAfa) V -\ Aa) and |gzm—(4A(a) A Aja)) for 1+ 5 and
if fi(@) -« fi(a) are arithmetic functions, then there exists an arithmetic
Sunction f(a) such that

xr A (Aia) — fla) = fila) .

i<n

As the arithmetic functions are definable in terms of the primi-
tive recursive predicates and in terms of the primitive recursive func-
tions we have that the results in Lemma 1b, 1lc of Takeuti continue
to hold, i.e.,
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LeMMA 9d. If{On, <, Arith) = ONT’, then A = {On, &, => = ZF,
V=L and {On, <, Arithy ~ {Ony, <g, Arithy).

LEMMA 9e. If A ZF, then (Ong, <y, Arithy) = ONT".
Hence as with ONT we may conclude by use of ONT’ that

LEMMA 10. Let A be a set of arithmetic functions.
If there is a model A of ZF and an ordinal ayeOny such that

(1), (2) as wn Lemma 5

then the structure of L is mot determined up to = by the structure
of the ordinals with the class A of arithmetic functions on it.

The above completes the necessary treatment of arithmetic func-
tions. In the following extensions of Corollary 4, we will encounter
cases where although {(On,, <y, 4y = {ay, <g, Ay for an appropri-
ate ordinal ay, it is not the case that Th<“~.11’<~21’ agp is 4} or another
similarly classified set which we can show Th, is not. Hence to
handle this situation we put restrictions on the model ¥ in the hypo-
thesis of Lemma 10; we require 2l to be a nameable standard model of
ZF [10]. (A nameable model is one all of whose sets are definable.

If EF/ is a “nice”, e.g., finite or recursive, extension of ZF, then
the minimal standard model of ZF is nameable.)

LEMMA 11. Let A be a set of arithmetic functions.

If there is a nameable standard model N of ZF and an ordinal
ay € Ony such that

1. as in Lemma 10
then the same conclusion as in Lemma 10 holds.

Proof. As U is nameable, Thy g2 (or else it would be definable
contradicting the Tarski theorem on the definability of truth predica-
tes [11]).

Thy = Tr @) <, Tr v ) .
h")l anI’(QI’A””*ll)( ) =7 <oy 4 tth>(<v )

,<9Iy4

So as standard models are closed under <, Tr«,n%_ <qpArit ">JI>( <,8) e
Hence this last set is £ Truy, < arienyp(<, A), i.e., condition 2 of
Lemma 10 is met.

The restriction in Lemma 11 to nameable models will often be
unessential as we see in Lemma 12 and its applications.

LEMMA 12. Let A be a set of arithmetic functions.
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If there is a formula F with 1 free variable such that
(1) there s a standard model A of ZF,3!z)(F(x) A Ord(x)),
V = L (call this ZF)

1
(2) VYn,|7% Player 11 has a winning strategy in
H,(KOn, <, A, <a, <, AD)

Jor aeOn such that F(«), then the structure of L is mot determined
up to = by the structure of the ordinals with the class A of arithmetic
functions on it.

Proof. As ZF has a standard model, it has a nameable model
B. [10].

So B E Al x)(F(x) A Ord(x)). Let B:Ony such that B = F[B].
By assumption 2, B = Player II has a winning strategy in

Hn(<0n’ <9 A>s <Bv <9 A>) M

So condition 1 of Lemma 11 is true in B.

REMARK. This lemma also holds for finite extensions of ZF.
Doner and Tarski (Doner and Tarski 67) define higher exponential
functions O, as follows:
(1) aOp=a+ g if v =0.
(2) a0, = lim,;;¢., (@0,7)0) if v = 1.
Let O(a, B, 7) = a0,
Ola, B,v)if vy<0

o° )y Py - .
@ 5,7) 0 otherwise .

LEmmA 13. Ole, B, 7) s arithmetic.

Proof. We, in fact, illustrate a general method of proving that
the arithmetic functions are closed under recursion. The approach is
to realize that given & = we have a model of ZF in {(On, Arith) in
which we can by suitable means define the higher exponential func-
tions on ordinals of this model of set theory. Then by means of the
isomorphism of

<On(0n,§,:>! é’ Arith(()n,’é»=>> Ei <Onv < A?"Zth,>

we can convert these into the functions on On.

First we give several predicates needed in the discussion of {On,
g€, => and the map from Ong,:-, to On. The reader may readily
confirm that these are all arithmetic (usually by the use of some
of the previous ones):
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M(x) = ;4 Ad) (& = a). (« is a set of On, & =>. We, thus,
successfully isolate a singll representative for each member of the model
{On,é =) of ZF. We let M denote {xsOn|M(x)}. In particular
=NMx Mis =).

e =g,eNM <X M =F=,,=NMx M (= ordinary =).

UP(x) =,;« is an unordered pair in sense of (M, &*, =*).

x = {y, 2}* =, = {y, 2} in sense of M, ¥, =*>,

OP,(x) =, « is an ordered pair in sense of (M, e*, =*).

x =y, )" =,,¢ =y, 2y in sense of (M, e*, =*>.

OP,(x) =47« is an ordered n-tuple in sense of (M, &*, =*).

v =L o)t =40 = -, in sense of (M, ¥, =*).

Rel,(x) =,;2 is a m-ary relation in sense of (M, ¢*, =*).

Fen,(v) =472 is a m-ary function in sense of (M, e*, =*).

= Y oY) =40 = f(Y,+++ ¥,) In sense of (M, e*, =*).

The following is primitive recursive

Ord(z) =, M(x) N (YY) (Y2) co(ye™ 2 A 28*2
—(ye*z V ze*y V2 = y) N\ (YY) .(V2),
(ys*z V ze*y — ze*x) ,

i.e., Ord(x) if and only if = is an ordinal of (M, ¢*, =*) in sense of
(M, e*, =*>. As a result by a standard application of primitive
recursion /i(x) defined on (M, ¢*, =*) ordinals as follows is primitive
recursive:

M) = (1) o (Vy)y*ew — h(y) < a)) .

That is % is the map of (M, ¢*, =*)-ordinals isomorphically to On.

Hence as + on On is primitive recursive, + for {M,¢*, =*) is
also primitive recursive. We denote it as +*. Solet Exp(f) be the
predicate expressing that f is an initial piece of higher exponential
functions on (&, ¢*, =*> with all needed induction information to
compute any of f’s values, i.e., let Exp(f) =,

Fen,(f) — f is a 3-ary function

A (Y2)ora i (Y vrainr (YW oran (3W)ora

(w = f@, 9, 2)") = (YY) (VZ) . QW) gra s QW) g1

w = fx, ¥, 2)* ANw” = f(w, x, 2')*)) — initial segment clause
N (Yo)(Vy)V2)(Vw)(w = f(x, ¥, 2)* — Ord(x) A Ord(y)

N Ord(z) A\ Ord(w)) — range and domains in ordinals

A (Y8)oran (YW ora Aw)(w = f(@, ¥, 0)* —w = x +*y)

for z=0,(x,y,2) = + ¥y
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A (Y)oraw (YW oraw (Y2)oraw s VW) (W = f(, ¥, 2)*

= ((V2) (VY ) (f (2, ¥/, &)%) 2, ) ¥ V = w)

A = QW) e u(V2) e, (VY ) (f (f (2, ¥, 207, @, 2) P V= w')))
for z # 0, f(=, ¥, ?) :y,<1yi,rzrl1<zf(f(x, Y, 2), % 2) .

Clearly this is arithmetic.

So Ole, B, 7) = 6 — (A)Fx)Ay)(32)Aw)ExP(f) A h(w) = a A W(y) =
BN h(z) =7 N\ RMw)=0ANw= f(z,y, 2)*) is arithmetic.

Hence by Lemma 9¢, O’ is arithmetic if § is definable.
THEOREM 14. [5]. (On, <, 0) = {p(w*, 0,), <, O">

Proof. [5]. (¢{a, O,) is defined as

(0, 0;) = 0
e + 1, 0) = (¢8)s piayop(Y0)(V0,)(0;, 9; < 8 — 0,(0,, ) < B)
1N, 0)) = lim p(ex, O,) ,

i.e., #{a, O,) is the a-th critical (or main) value of O,).
COROLLARY 15. Say there is a standard model of
ZF, Al x)(F(x) A Ord(x)), V= L.

Then there are models A, A, = ZF, (3! x)(F(x) A Ord(x)), and a; € A;
such that:

(i) U E Fla;) A Ord(a,).

(if) <Oy, <y OFeze, ~ <Oy, <gppr 02 isey:

(iii) Ly, &y, % {Ly,, Sgp0-

Proof. Let ZF* = ZF J{@3! 2)(F(x) A Ord(x))}. We reason as
follows in ZF* U{V = LJ.

Let « be the unique ordinal satisfying F. So there is a unique
ordinal 2 satisfying the predicate x = p(w®, 0,), i.e., satisfying the
predicate (AVNF(v) A x = w”, 0,)) = G(x).

Furthermore, given n-Player Il has a winning strategy in

H,({On, <, 0%, {pw”, Od), <, 0%)

by proof of Theorem 14.
So |zmor=5(3! 2)(G(z) A Ord(xz)). So if
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ZF = ZF* 0V = L, 31 a(G(@) A Ord(x))}

then ZF has a standard model.
Also Vu, |zmgw=g player 1I has a winning strategy in

H,({On, <, 0>, {u(w?, O,), <, O%)
where F(a) and Ord(a).
So Vn, 7%, this fact. These are the hypotheses of Lemma 12.

REMARK. Corollary 15 may be improved for O;, { < v where 7 is
a recursive ordinal. (The subsequent notation and results in recursion
theory to be used in this remark all appear in [13].) In that event
we may weaken the hypothesis of Corollary 15 to the assumption of
the existence of an w-model of ZF.

As v is recursive, there exists <, a recursive linear order order-
isomorphic to < [@. In particular as <, is recursive, <¥ = <, for
every w-model N of analysis and hence of set theory. Let

F(z) = (< Maa~<y) A Ord(®)) .

Let 2 be an w-model of ZF. So A = (A x)F(x). Say A = Fla]
(asN). By Theorem 14,

<On§)1y <QI! O§I> = Qu(a)", Oa,‘),[)y <91a Oa?,{> .

Now p(w”, O,,g) is itself a recursive ordinal. This is best seen by
using Doner and Tarski’s result that

w?, Oy) = (@, Oy1y) = 00,,0° .

Hence to show that p(w®, O,) is recursive, it suffices to show that
a0, is recursive for «, B, v recursive. This is best done by defining
O(e, B,7v) on O, the universal system of notations.

Let g(a, 2, v, 2) =

T +oY ifz=1

1 ifz=1l,y=1

x ifzxl,y=2
PPz, v, 2), X, W) ifz=2%9y=2
3.5% ifz=2385,9y=2

where @, = (We)(Pu(Pa(®, v, 2), @, P.(1))
3.5 if y = 3.5°
where @,, = (\n)(P.(%, P.(n), ¥))
0 Otherwise.
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So ¢ is recursive. So there is a recursive funection % such that
g(ar T, Y, z) = q)h(a)(xa Y, z) .

By the recursion theorem there is an = such that ¢, = @,.,. Let
f= @,

So f(z, y,2) =2 + .y ifz=1

1 ifz+l,y=1

2 ifz+1ly=2
Jf(f(z, v, 2), , w) ifz=2%y=2"
3.5% ifz=385y=2

where @, = (Wn)(f(=, v, 2), x, P.(n))
3.5¢ ify = 3.5°

where @,, = (\n)(f (%, P.(n), ¥))

0 Otherwise.
By another theorem of Doner and Tarski we have,
a0p =a+ g
a0,0 =0 ifyr=1
a0,1 = «a ify=1

aorﬂ(lg + 1) = (20,,,8)0,«

a0, + 1) = lim, (a0,8)0,« if lim (\)

aO N = lim,;(0,R8) if lim (\).

So by induction on O, we have if x, y, z¢ O, then

[y, 2o = 210011,y o and f(x, y,2) €0 .

So if «, B, 7 are recursive ordinals, then aO,8 is a recursive ordinal.
In particular p(w®, O,,q) is a recursive ordinal. Let <; be a recursive
linear ordering such that <y O, o~ <s. Then define Oy according
to <y by induction on < . It has an arithmetic definition. So as

{U@°y Oag)y <gp O3 ~ (Dom (<), <5, Oy according to <gp,

{Ony, <y, 03> = (Dom (<s), <s 03, according to <> which has a
4} truth-set as Dom (<), <, O according to < are all arithmetic.

On the other hand, as 2 is an w-model of set theory, P(w)y is
an w-model of analysis and Thp, " =: Thy. But the former is not 4
and so neither is Thy or Tr<onm,<m,AthI>(<y 0% é). 8o as in the proof of
Corollary 8, if there is an w-model 2 of set theory, then there are
models 2, A, = ZF, 3! 2F(x) and ordinals a; e ; such that

(1) W E Fla]

(i) (Ony, <oy OFDecs, m {Onyy, <gpp O,

(iii) <Ly, &g # (L, &g
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(provided that in any w-model, the unique ordinal a such that F(«)
is recursive).

Let v be a definable ordinal. Given an arithmetic function f we
define f, as follows:

f(al e an) if oy v amf(al an) < vy
f}"(al °ee an) = .
0 otherwise.

So by Lemma 9c, each f, is arithmetic.

Let Arith, = {f,|f e Arith).

We now proceed to show that appropriate ordinals can be found
so that we can show {a, <, A', Arith,) = {(On, <, A’, Arith,) for vari-
ous A’ & Arith. Once if we have shown this (provided that « is
provably less than On, so that it is less than On in all models) we
immediately can obtain not determined up to = results as in Coroll-
ary 15 above.

In order to obtain such appropriate @ we must briefly consider
H, in greater detail. H, is an n move finite 2 person game. At
move 1, player 1 choses a model %, an integer k() and k() points
alf® o ally,; in model ;. Player 2 responds by choosing k() points
ol in the other model. At the end Player 2 is said to win just
in case the correspondence al;—a’ i=1-++m, J=1---k() is a
partial isomorphism (with respect to the relations and operations of
A, and 20,).

So in a game H,({w, <, A, {On, <, A") if 2’s winning strategy
can be constructed to preserve ordinals < v, then it is clear that the
partial isomorphism will also extend to Awith ..

LemmaA 16.  Player 2 has a winning strategy in H,({p(v + w®), <)
preserving ordinals <.

Proof. 2’s strategy is as follows:

For ordinals <v he leaves them fixed. For the w® segment be-
tween v and v + w* “versus” the On segment =v, 2 uses his win-
ning strategy from H,((w®, <>, {On, <)) “shifted over by .

Let v* = lim, ., w*+n. Then clearly v* = v (for v > 0).

a<ly
LEMMA 17. Player 2 has a winning strategy in

H,(o", <, +,{0n, <, +7)

preserving ordinals <<v*.

Proof. One simply observes that in the winning strategy for 2
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defined by Ehrenfeucht in this game from the winning strategy for
2 in the game H,Kv + w*, <>, {On, <>) if ordinals <7 are preserved
in the latter game, then ordinals <~v* are preserved in the former.

LemMA 18. Player 2 has a winning strategy in

H,o ", <, +, x>, {0n, <, +, x)

preserving ordinals <-v**,
Proof. As in Lemma 17.

THEOREM 19.

Lo <, +, x, Arith,y = {On, <+, X, Arith,> .
Proof. As described above.

COROLLARY 20. Say there is a standard model of
ZF, (! 2)(F(x) N\ Ord(z)), V = L.

Then there are models N, W, = ZF, a;€ A, such that
(1) %A = Fla;) N Ord(ay)
(if) (Omgy, <q, +qp X g Arith¥
~ Ong,, <g,0 top X Am'tth)
(iii) Ly, # Lgy,.

Proof. As in Corollary 15.

REMARKS. (1) If F(x) is a predicate of the form < [z~ <,
for some recursive well-ordering <, then the hypothesis of corollary
20 may be weakened as were those of corollary 15 to supposing the
existence of w-models of ZF.

(2) Doner claims that Lemma 18 may be extended to the state-
ment that 2 has a winning strategy in

H,({p(0 + w*, 07), <, 0, {0n, <, 0)

preserving ordinals <é. Hence we may conclude by similar arguments
to those above that the constructible sets are not determined up to =
by <, Arith;, O" where 0, v are definable ordinals. Again, as usual
the hypothesis may be weakened if both 4, v are recursive ordinals.
(8) The pairing function p of Godel [8] can be shown by a
long tedious computation to be definable in terms of +, x. Hence in
any result where we have shown that the structure of L is not de-
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termined up to = by <, A’ where +, xeA’ we may conclude that
the structure of L is not determined up to = by <, A’ U {p}. Feferman
has pointed out to us that the pairing function g(a, B8) = 2*(8 + 1) is
immediately definable in terms of -+, x and exponentiation (0,), and
hence if the structure of L is not determined up to = by <, A’ where
0, O, O,cA’ then A’ might as well contain gq.

(4) As (Ong, <g, +g¢p Xgp = 04", <gp +g Xg» and as
Theug" <qp v g

is not recursive for any model U of ZF, we may conclude that

T70n, <. arin( <y 5 %) Z1 Troncoarieny(<) -

Hence if ZF is consistent, then there are models A, A, of ZF with
{Ongy, <g» ~ {Ong,, <q,> but

<OnQI1’ <QI1’ +QI1’ ><911> * <OnQI2’ <QI2’ +912’ XQI2> .

Identically we may conclude that if ZF is consistent then +¢, x* are
not determined up to = by < where

a+ pif < w
0 otherwise

w(a, 8) = |

a-Bif a, < w
0 otherwise

w(a, ) = |

and hence likewise the structure of L is not determined up to = by
<, +¢, z¢ (if ZF has w-models). Now let HFS be the hereditarily
finite sets. Then it is easily seen that there is a one-to-one onto de-
finable map of HFS into @ such that the image of ¢ and = are
arithmetic in the sense of recursion theory and hence in particular
definable in terms of +,, x,. Also +,, X, are definable in terms of ¢
on HFS simply by the use of their recursive definitions. Hence if ZF
is consistent then the structure of HFS is not determined up to =
by <, and if ZF has w-models then the structure of L is not deter-
mined up to = by the structure of HFS.

(5) On the other hand, as & gives us in (Ony, <, Arithyy (for
any model 2 of ZF) a model of ZF we may in this model give ex-
plicit definitions of all primitive recursive functions which are of course
definable in terms of & and hence arithmetic and as % the function
mapping ordinals of this model isomorphically to Onyg is also primitive
recursive, we can pull these functions over to arithmetic functions
on Ong. By the axiom schema of transfinite induction in ONT’ these
are the original primitive recursive functions. So if 7:{On,, <, E> =
{Om,, <, &) then let @' = hyih;' (Where h;: Ong,, ¢,.=,, = On;) and one
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may immediately conclude that ¢': {On,, Arith,> = {On,, Arith,y. So
all arithmetic functions are determined up to ~ by &.

(6) Finally we observe, if we restrict the question if the strue-
ture of L is determined up to ~ by < merely to standard models,
then the answer, as is well-known, is yes because to show the L's
are isomorphic we have available “real” transfinite induction in the
“real” world, i.e., in our metalanguage outside our models.
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