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In this paper we provide a definition of a proximity-base
(subbase); this enables us to prove results analogous to those
in topological and uniform spaces, For example we prove
that the set of all proximities on a set X forms a complete
lattice. Another consequence is that a proximity on a set X
can be defined as a certain collection of pseudometrics on X,
A pseudometric approach to proximities is discussed in [4].
Two definitions of a ‘‘proximity base’” have been given in
literature, one by Csaszar and Mrowka [1] and the other by
Njasted [3]. Neither of these definitions is perfectly satis-
factory; the first does not determine a wunique proximity
whereas for the second (i) it is not known whether every
proximity has such a base and (ii) a proximity itself is not
a base unless it is discrete,

2. Notations and terminology. The terminology used in this
paper, with the exception of the definition of a proximity base is
same as in [5]. By J, we denote the set of the first m natural
numbers. If xze X then for {x#} we briefly write z. By P(X), we
denote the powerset of a set X. The collection of all topologies on
a set X is ordered by inclusion. The ordering .7, = &, is expressed
by saying that &7 is finer than .7,, or that &, is coarser than ..
For any collection {7, ae I} of topologies on a set X, the notations
Sup {7,:ael} and Inf {F,:ael} have their usual meanings. If
{ 7. ael} is a collection of completely regular topologies on a set X
then Sup CR {9, aecl} denotes the coarsest completely regular
topology on X which is finer than each &, for ae . Similarly the
notation Inf CR {Z,:aec I} stands for the finest completely regular
topology on X which is coarser than each &, for acl. If {F,:aecl}
is a collection of completely regular topologies on a set X then

(1) Sup CR {F.:acl}=S8up {7,:ael},
and

(2) Inf CR {Fo:acl}<=Inf {F,:ael}.

The following example shows that the inclusion between the two
topologies in (2) above may be proper.

ExampPLE. Let P =1 x I where I is the unit interval [0, 1].
Fix a point (¢, y) in P. A base for a topology .7 .., is described as
follows: For each (u, v) € P such that (u, v) == (x, y) the set {{u, v)} is
open. A set G containing the point (x, %) is open iff P— G is a
finite set. It is easily seen that the topological space (P, 77,,) is
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T, and hence completely regular. Let 9 = F4, 0N Zu1,y. The
topological space (P, .7) is not even regular because the point (0, 0)
has no proper .7-closed neighbourhood.

We give the definition of a proximity.

DEFINITION. A proximity on a nonempty set X s a binary
relation 0 on P(X) satisfying the axioms (P. 1) through (P.5) given
below:

P.1) (¢, X)go

(P.2) If AnB= ¢ then (4, B)ed

(P.3) (A,B)ed if (B, A)eo

(P. 4 (A, BUC)eo iff (A,B)ed or (4,C)ed

(P. 5 If (A B)¢d then there exists a set £ < X such that
(A, E)¢ o and (X — FE, B) ¢ 0.

A proximity é on X is separated if (x, y) e 6 implies = = y.

DEFINITION. Let X be a nonempty set. If 4, and 64, are two
binary relations on P(X), then 6, = 6, iff 4, < 6,. The ordering 6, = 4,
is expressed by saying that 6, is finer than 6, (or 6, is coarser than
8,).

If ¢ is a proximity on X then .7 (6) denotes the topology on X
induced by 6. The proximity on X induced by a pseudometric d is
denoted by d(d).

3. Base and subbase for a proximity. Let X be a nonempty
set. A proximity-base on X is a binary relation <& on P(X) satisfy-
ing the axioms (B. 1) through (B. 5) given below:

B. 1) (¢, X)¢.F

(B.2) If AnB = ¢ then (A4, Bye %

(B.3) (A, Byes iff (B,A)e F

(B. 4 If (A, Bye<#Z and A S A*, B< B* then (A* B*) e %

(B. 5) If (A, B)¢ && then there exists a set £ < X such that
(A, E)¢ &% and (X — E, By¢ <%.

A proximity-base <% on a set X is separated if ({z}, {y}) e &
implies « = y for all z, ye X.

THEOREM 3.1. Let <& be a proximity-base on a set X and let a
binary relation 6(<Z) on P(X) be defined as follows:

(A, B) € () if, given any finite covers {A;: 1€ J,} and {B;:j€J,}
of A and B respectively, then there exists a pair (1,7) J, X J, such
that (A;, B;) e <.

Then 0(<#) is the coarsest proximity on X finer than the relation
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7. Moreover, the proximity o0(<#) is separated iff the proximity-
base <& is separated.

Proof. 1t is obvious that §(<7) = .2Z. Moreover 0(<Z) easily
satisfies the proximity axioms (P. 1), (P. 2) and (P. 3). Also, if
(A, Bye (&) then (A, BUC)ed(<#), because any finite cover of
B U C is, as well, a finite cover of B. Now suppose that (4, B) € §()
and (4, C)eod(<Z). Then there exists finite covers

{Gz 1€ Jm}v {Hj: .7 € Jn}y {Lk: ke Jr}

and {M;:leJ,} of A, B, A and C respectively such that (G;, H;)e &
for any (1,5)ed, xJ, and (L,, M))e <% for any (k,l)ed, x J,. Let
Siw=GnNL, and H,,= M, Then ({S,.: (4, ked,xJ,} and
{H,:ped,.,} are finite covers of A and B U C respectively. By axiom
(B. 4) and the above construction, it is clear that (S, ,, H,) ¢ .<Z for
any (i, k)ed, xJ, and ped,.,. Therefore (4, BU C)¢d(<#). Thus
0(<#) satisfies the proximity axiom (P. 4) also. Now let (A4, B) ¢ d(<%).
So there exist finite covers {A;:teJ,} and {Bj;jeJ,} of A and B
respectively such that (4,, B)) ¢ <& for any (i,j)eJ, X J,. By axiom
(B. 5) we can find a set E; & X for each (4,5)eJ, xJ,, such that
(A;, Bij)e &Z and (X — E;, B)e =z. Let E; = N{E;:1¢€J,} and let
E= U{E;:jed,}. Then (4, E;)¢ &% for any (i,j)ed, xJ, and so
(A, E)e6(=7). Also X — E= N{X — E;:jelJ,) and

(X— EJ) = U{X‘* E,;j:'l:et]m} .

From this we get (X — E;, B;)¢€0(<#). Since (%) satisfies the
axiom (P. 4), we obtain (X — F, B;)e 6(<#) for any jeJ, and so
(X — E,B)¢o(<Z) (By (P. 4) again). Thus d(<#) is a proximity on
X.

Let ¢ be any proximity on X such that ¢ = <& and let (A4, B) €o.
If {A:ied,} and {B;:jeJ,} are any finite covers of A and B respec-
tively then there exists a pair (¢, 7)€, X J, such that (4,, B;)<o.
Therefore (A4;, B;) € 4. By definition of d(<%), we have (A, B) € 6{(.<%).
This proves that ¢ = §(<#). Hence 0(<F) is the coarsest proximity
finer than the relation .. It is obvious that 6(<#) is separated iff
% is separated. The proof of the theorem is now complete.

If <& is a proximity-base on a set X then we say that the
proximity 0(<#) is generated by the base <z.

DEFINITION. Let X be a nonempty set. A proximity-subbase on
X is a binary relation s on P(X) satisfying the axioms (S. 1) and
(S. 2) given below:

S. 1) AN B= @ implies (4, B €s
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(S. 2) If (A, B)¢s then there exists a set £ < X such that
(A, E)¢s and (X — E, B)¢s.
A proximity-subbase s on X is separated if s satisfies the following
axiom.

(8. 3) If 2,y are two distinct elements of X and ({x}, {y}))es
then there exist two subsets P and Q such that e P,yc@Q and
either (P, Q)¢ s or (Q, P)¢s.

THEOREM 3.2. If s is a proximity-subbase on a set X, then there
exists a coarsest proximity o(s) on X finer than the relation s. More-
over 0(s) is separated iff s is separated.

Proof. Define a binary relation <#(s) on P(X) as follows:

(A, B e & (s) iff A + ©, B+ @ and for any sets A* 2 A, B* =2 B,
both

(A*, B*) and (B*, A*) are elements of s.

Obviously <#(s) = s. We claim that <#(s) is a proximity-base
on X. The axioms (B. 1) through (B. 4) are easily satisfied by < (s).
To prove that <# (s) satisfies the axiom (B. 5), suppose (4, B) ¢ <& (s).
Then two cases arise:

Case I. A= @. Take E = X. Then (4, F)= (g, X)e¢ Zs);
and (X — E, B) = (0, B) ¢ &#(s). Similarly, when B = @, but A + &,
we take E = @& and we are through.

Case II. A+ @,B+* @. There exist sets A* 2 A4 and B*2 B
such that either (A* B*)¢s or (B* A*)¢s. If (A* B*)¢s then by
axiom (S. 2), there exists a set EF S X such that (4% E)¢s and
(X — E,B*)¢s. Therefore (A, E)¢ <#(s) and (X — E, B) ¢ <& (s).
Similar arguement applies when (B*, A*)¢ s.

Thus <#(s) is a proximity-base on X. Let d(s) be the proximity
generated by <#(s). Then d(s) = < (s) = s. Let 6 be any proximity
on X such that 6 = s. From the definition of <& (s) it easily follows
that 6 = <#(s). So by theorem 3.1 we obtain ¢ = d(s). Thus d(s) is
the coarsest proximity on X which is finer than the relation s.
Moreover it is obvious that s is separated iff <#(s) is separated.
Hence the theorem is proved.

If s is a proximity-subbase on a set X then the proximity base
“(s) as defined in the proof of Theorem 3.2 above, is the coarsest
proximity base on X, which is finer than the relation s. We say
that the proximity oJ(s) is generated by the proximity-subbase s.
Similarly <7 (s) is the proximity-base generated by the subbase s.

THEOREM 3.3. Let {0,:acl} be a mnonempty collection of prox-
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imities on a set X. Then there exists a coarsest proximity 6 on X
such that 0 1is finer than 4, for each aec I.

Proof. Let <# = N{0,: acI}. Then &Z is a proximity-base, and
so it generates a proximity 06(<#). Obviously o(<#) fulfills the
requirements of the theorem. Hence the theorem is proved.

NotaTiON. If {0,:ae I} is a nonempty collection of proximities
on a set X then the coarsest proximity on X finer than each J, for
a €l is denoted by Sup {9,: a e I}.

COROLLARY 3.1. Let {0,:ac I} be a monempty collection of prox-
imities on a set X. Then 7 [Sup {0,: a€ I}] = Sup {7 (0,): ac I}.

The proof follows from the fact that the finest proximity compatible
with Sup {7 (0,): ae I} is finer than ¢, for each aeI.

THEOREM 3.4. Let {0,: a € I} be a nonempty collection of proximities
on a set X. Then there exists a finest proximity 0 on X such that 6
1s coarser than 6, for each aecl.

Proof. Let « be the collection of all proximities on X such that
0, € « implies that 6, = 9, for each a e I. The collection « is nonempty
because the indiscrete proximity on X is a member of it. Let
0 = Sup{d,: 6,€ a}. Now we want to prove that J, = 0 for each ac .
So take an ael and let (4, B)ed,. If {A;:1eJ,} and {Bj:jeJ,} are
arbitrary finite covers of A and B respectively then there exists a
pair (¢,7)ed, xJ, such that (A, B;) cd,. Therefore for the same
pair (3, 7), (4;, B;)€d, for each d,e . So (4;, Bj)e % = N{0,:0,ea}
and since <% is a proximity-base for d, we get, (4, B)€d. Therefore
0, = 0. This is true for each acI. Moreover ¢ is finer than each
member of a. Thus § is the finest proximity on X coarser than each
member of the collection {§,: a € I}. Hence the theorem is proved.

NoraTioN. If {6,: ac I} is a nonempty collection of proximities
on a set X then the finest proximity on X which is coarser than each
o, for aeI is denoted by Inf {0,: ac I}.

The following corollary is obvious.

COROLLARY 3.2. If {6, ael} is a nonempty collection of prox-
imities on a set X, then 7 [Inf {0,: a € I}] S Inf CR {7 (0,): ac I}.

The following example shows that the inclusion between the two
topologies of Corollary 3.2 can sometimes be proper.
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ExaMpLE. Let (X, 77) be a Tychonoff space (completely
regular + 7}) which is not locally compact. Let {6,:aecI} be the
collection of all proximities on X which are compatible with & Let
8 = Inf {0,: ac I} and denote by .7, the topology induced on X by
8. Since .97 = .7 (9,) for each acl, so Inf CR {7 (d,):acl} is 7
itself. But since (X, ¢7) is not locally compact so & cannot be com-
patible with &7 Thus 7, is properly contained in ..

Combining Theorems 3.3 and 3.4 we get the following:

THEOREM 3.5. The collection of all proximities on a monempty
set X forms a complete lattice under the ordering =.

From Corollary 3.1 it follows that the collection of all proximities
on a set X compatible with a completely regular topology on X forms
a complete sup-semilattice.

Moreover if (X, 77) is a Tychonoff space, then the collection of
all proximities on X compatible with &~ forms a complete lattice iff
the topology & is locally compact. Thus we have

THEOREM 8.6. The collection K of all T,-compactifications of a
Tychonoff space (X, 77) forms a complete sup semi-lattice. The collec-
tion K forms a complete lattice iff the topology 7~ s locally compact
also.

THEOREM 3.7. Let (X,0) and (Y,d,) be two proximity spaces
and let s be a provimity-subbase for the provimity 0,. A function
fi(X,0)—(Y,d,) s p-continuous 1iff (A, B)es wmplies (f'(4),
f(B))eo,.

Proof. Let f be p-continuous. Suppose (4, B)¢s. Then (4, B) ¢ 0,
and therefore (f~'(4), f(B))€0,.

Now we prove the ‘if’ part. So assume that, if (4, B)¢s then
(f~Y(A), fY(B)) ¢o,. Let &#(s) be the proximity-base on Y generated
by the subbase s. Suppose (4, B)¢d,. We must show that (f'(4),
fU(B)ed,. If A= @ or B= O or (4, By¢s then we are through.
Also if there exist two sets, A* and B* such that A* 2 Aand B*2 B
and either (4* B*)¢s or (B*, A*)¢s even then we are through. In
other words we have shown that if the pair (4, B) is not in <& (s)
then (f'(4), f~'(B))¢é,. Lastly suppose that (A4, B)e & (s) — 0.
Then these exist finite covers {4;:ied,}, {By:jed,} of A, B with
(4;, B)) ¢ & (s) for any (3,7)eJ, X J,. This implies that (U f~'(4.),
Ur fY(By)ed, for any (i,5)eJ, xJ,: and so (f'(4), f7(B))€o.
Therefore f is p-continuous. Hence the theorem is proved.
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THEOREM 3.8. Let X be a nonempty set and let F' be a non-void
family of functions, each member of F being on X into a proximity
space (Y, 0;). Then there exists a coarsest proximity on X such that
each member of F 1s p-continuous.

Proof. Define a binary relation <# on P(X) as follows:
(A, By e ez iff (f(A), f(B))eo, for each feF .

We claim that <7 is a proximity-base on X. Only the axiom (B. 5)
requires verification. Suppose (A, B)¢ 5. Then there exists some
feF such that (f(4), f(B)¢d,. So there is a set K, S Y, such
that (f(4), E))ed,and (Y, — E;, f(B)€d,. Let E = f(E;). Then
(A, E)¢ <& and (X — E, By¢ <. Thus &7 is a proximity-base on X.
The proximity 6(<#) on X generated by the base <# is the required
proximity. Hence the theorem is proved.

It is possible to generalise the above theorem by replacing any
proximity d, by a base <7; of it.

In fact the following stronger form can be proved with the aid
of Theorem 3.7.

THEOREM 3.9. Let X be a nonempty set and let F be a mon-void
family of functions, each member f of F being on X onto a proximity
space (Y;,0;). For each feF, let S; be a proximity subbase for 6.
Then a proximity subbase S for the coarsest proximity on X which
makes each feF p-continuous is defined by:

(A,B)eS iff (f(A), f(B)eS, for each feF.

By making use of proximity-bases (proximity-subbases) several
theorems in proximity-spaces can be drastically simplified. For example,
the following theorem provides a much simpler definition of the
product proximity.

THEOREM 3.10. Let {(X,, d,):aclI} be a nonempty collection of
proximity spaces, and let Z = II {X,:ael}. The binary relation <7
on P(Z) defined by

(A, Bye &# iff (PJ(A), P,(B)ed, for each projection P,,
is a proximity-base on Z for the product proximity.
The proof follows from Theorem 3.8.

In view of Theorem 8.9, it follows that if S, is a proximity
subbase for 6, then a proximity-subbase S for the product proximity
on Z can be defined as follows:
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(A, B eS iff (P,(A), P.(B)eS, for each projection P, .

The analogues of our next theorem are well-known in topological and
Uniform spaces.

THEOREM 3.11. Let {(X,,0,):acl} be a mnonempty collection of
proximity spaces and let (Z,0,;) be the product proximity space. A
function f on a proximity space (X,0) to the product (Z,d;;) 1is
p-continuous iff its composition P,of is p-continuous for each projec-
tion P,.

Proof. If f is p-continuous then P,o f is p-continuous for each
a € I, because each projection P, is p-continuous. Now suppose P,o f
is p-continuous for each acl. Let <& Dbe the proximity-base on Z
defined by: (4, B)e & iff (P,(A), P.(B))ed, for each ael. Suppose
(4, B¢ <. Then there exists an ael such that (P,(A4), P,(B))¢3.,.
As P,o f is p-continuous, so ((P,o f)'P,(A4), (P, f)'P,(B))¢d. More-
over A S P;* P,(A) and B< P P,(B). Therefore (f~'(4), f~(B))¢ad.
Thus by Theorem 3.7. f is p-continuous. Hence the theorem is
proved.

THEOREM 3.12. If 0 is any proximity on a set X, then there
exists a nonempty collection {0,: a€ I} of pseudometric proximities on
X such that 6 = Sup {d,: a e I}.

Proof. Suppose (A, B)¢o. Then there exists a p-continuous
function f,; on X to [0,1] such that f,,(4) =0 and f,,(B) = 1.
Define a pseudometric d(f,z) = d on X by:d(x, y) = | fus(®) — fux(y)| for
all ,y in X. Let d(d) be the proximity on X induced by d. We
claim that 6 = d(d). Suppose (P, Q)¢ d(d). Then d(P, Q) = ¢ where
e >0. So, for any peP,gecQ we have d(p, ¢) = ¢. Therefore if d,
is the unique proximity on [0, 1] then (f(P), F(@)) ¢ d, and since f is
p-continuous so (P, Q) ¢ o.

Thus we have shown that ¢ = 6(d), where d = d(f.s). It follows
that 6 = Sup {0(d): d = d(f.s) and (A, B) ¢4d}. Moreover, if (4, B)¢d
then (4, B) ¢ d(d) where d = d(f4s), Thus we get 6 = Sup {6(d): d =
d(f.s) and (4, B)¢ ). Hence the theorem is proved.

The following corollary is now obvious.

COROLLARY 3.3. Let 0 be a proximity on X and let D be the
collection of all pseudometrics on X such that 6 = o(d) for each de D.
Then we have

5= n{0(d):deD}.
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The analogue of the following theorem 1is well-known in uniform-
spaces.

THEOREM 3.13. Ewvery proximity space is proximially-isomorphic
to a subspace of a product of pseudometric proximity spaces.

Proof. Let 0 be a proximity on X and let P be the collection of
all pseudometrics on X such that § = d(d) for each de P. By Corollary
3.3 we have 0 = N{o(d):deP}. Let Z=1II {X:de P} and let f be
the mapping of X into Z defined by P,(f(x)) = % for each xe¢ X and
each projection P,. Let Z be given the product proximity 0* where
the dth coordinate space of the product has the proximity d(d). The
composition of f with each projection is the identity map on X.
Therefore, by Theorem 3.9 the mapping f on (X, d) to (Z, 0% is
p-continuous. Moreover if (A4, B) ¢ 0 then there exist d € P such that
(4, B) ¢ 6(d); and so (f(A), f(B)) ¢ 6* by definition of product proximity.
Thus f is a proximal isomorphism of (X, 0) into (Z, 6*). Hence the
theorem is proved.

A clue to a pseudometric approach to proximities (see [4]) is
provided by Theorems 3.12 and 3.13.

4. Remoteness chains. If §, and §, are two proximities on a
set X such that J§, = J, then .7 (d,) = 97(3,). Conversely if 77 and
7, are two completely regular topologies on X such that o7 = .7,
and if 0, is any proximity on X compatible with .7, then there always
exists a proximity 4, on X compatible with &7 such that ¢, = é,.
For example, for §, we could take the proximity of functional indistine-
tion for .&7. The following problem arises:

Problem I. Given 9, and &, are two completely regular
topologies on a set X such that .77 = .7 and also given a proximity
0, on X compatible with 7. TUnder what conditions will there exist
a proximity d, on X compatible with 7, such that 4, = 4,?

The following example shows that such a proximity d, need not
always exist.

ExAMPLE. Let R be the real line and let &7, 7, respectively
be the discrete topology and the usual topology on R. Let 8, be the
coarsest proximity on R compatible with .7,. Take two sets 4 = [1, 2]
and B = [3, 4]. Then (A, B) €0, because both A and B are .7 -closed
and .7;-noncompact. Let d, be any proximity on R compatible with
Z,. Since A is .7,-compact and both A and B are .7,-closed, disjoint
sets, so (4, B) ¢ 6,. Hence for any proximity d, on R compatible with
T4 it would be impossible to have ¢, = 0,.
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THEOREM 4.1. Let 7, and &7, are two completely regular topologies
on o set X such that 7, = 7, Let 0, be a proximity on X com-
patible with 7, and denote by 6** the proximity of functional
indistinction for 7,. A mecessary and sufficient condition for the
existence of a proximity 0, on X compatible with 7, and satisfying
0, = 0, s that the proximity Inf {5, 6**} must be compatible with
2

Proof. The sufficiency part is obvious. To prove the necessity
part suppose there exists a proximity 0, on X compatible with 7,
such that o, = 0,. Then we have 6** = Inf {§, 0**} = 0,. Since both

the proximities ¢6** and 0, induce the topology .7,, so Inf {J,, 0%*}
must be compatible with ;. Hence the theorem is proved.

NoTATION. By D we denote the set of all diadic numbers which
lie in the interval [0, 1]. Explicitly D = {m.27™: m and » are integers
and 0 = m < 27}

DEFINITION. Let (X, d) be a proximity space and let a« = {E;: ¢ € D}
be a collection of subsets of X such that (X — E;, E;)¢¢ for any
1,5 € D satisfying 7 < j. Then « is called a J-remoteness sequence
for the pair (X — E,, E)). Moreover the collection a* = {(A, B): either
(A, BDS(X—E,E)or (BA) S(X— E, E,;) for some 7,5 D such
that 7<j} is called a 0-remoteness chain for the pair (X — E,, E).
Sometimes we say that «* is a remoteness chain for (X — E,, F,) with
regard to the proximity . If (X, 0) is a proximity space and (4, B)gd
then at least one d-remoteness chain for (A, B) will surely exist. This
can be shown by first constructing a d-remoteness sequence for the
pair (X — E,, E)) = (4, B) by applying the proximity axiom (P. 5)
successively and then by defining a remoteness chain from the
remoteness sequence.

THEOREM 4.2. Let .7, and 7, be two completely regular topologies
on a set X such that 7, = ., Let o, be any proximity compatible
with 77 and let 6** be the proximity of functional indistinction for
T, A mecessary and sufficient condition for the proximity J, = Inf
{0,, 0%*} to be compatible with 7, is that for each pair (x, A) such that
x ¢ 7,-cl(A) there exists a common remoteness chain a for (x, A) with
regard to both the proximities 0, and 0**.

Proof. Necessity part: Suppose that 6, is compatible with 7.
Take any pair (2, 4) such that z¢ .7,-Cl(4). Then any 6,-remoteness
chain for (x, A) is a common remoteness chain for (x, A) with regard
to both the proximities §, and o**.
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Sufficiency part. Suppose (x, A) is a pair such that xze F,-cl(4).
Then there is a common remoteness chain « for (x, A) with regard
to both 6, and 6**. If 0, denotes the indiscrete proximity on X, then
the collection &% = §, — « is a proximity base on X and generates a
proximity o(<#). Moreover we have 6, = d(<#) and o6** = §(F)
because 6, = =& and ¢** = <% Therefore 6, = d(<#). Since (x, A) ¢
() so (v, A)ed,. This can be done for each pair (x, A) such that
xe 7,-cl(4). It follows that 0, is compatible with .&,. Hence the
theorem is proved.

A solution to problem I is provided by Theorems 4.1 and 4.2
taken together. A comparison between Corollaries 3.1 and 3.2 raises
the following problem:

Problem II. Let {6,: ael} be a non-void collection of proximities
on a set X. Under what conditions will the topologies 7 [Inf {d,: a € I}]
and Inf CR {Z (0,): a€ I} be same?

An example has already been given to show that the two topologies
can be distinet. The following theorem solves this problem.

THEOREM 4.3. Let {0,: a € I} be a non-void collection of proximities
on a set X and let & * = Inf CR {9 (0,): ael}, and denote by o*
the proximity of functional indistinction for 7 *. A mecessary and
suflicitent condition for the proximity o = Inf {0,: ac I} to induce the
topology 7~ * s that for each pair (v, A) such that x¢ 7 *-cl A, there
is a o0*-remoteness chain o for (z, A) so that « is also a remoteness
chain for (x, A) with regard to 6, for each acl.

The proof of this theorem is similar to those of Theorems 4.1
and 4.2, and is thus omitted.

Several interesting problems on proximities can be solved by
making use of proximity bases (subbases).

The author wishes to thank Professor S. A. Naimpally for helpful
suggestions.
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