VON NEUMANN ALGEBRAS GENERATED BY OPERATORS SIMILAR TO NORMAL OPERATORS

WARREN R. WOGEN
VON NEUMANN ALGEBRAS GENERATED BY OPERATORS SIMILAR TO NORMAL OPERATORS

W. R. WOGEN

A normal operator generates an abelian von Neumann algebra. However, an operator which is similar to a normal operator may generate a von Neumann algebra which is not even type I. In fact, it is shown that if \mathcal{A} is a von Neumann algebra on a separable Hilbert space and \mathcal{A} has no type II finite summand, then \mathcal{A} has a generator which is similar to a self-adjoint and \mathcal{A} has a generator which is similar to a unitary. The restriction that \mathcal{A} have no type II finite summand can be removed provided that it is assumed that every type II finite von Neumann algebra has a single generator.

Let \mathcal{H} be a separable Hilbert space and let \mathcal{A} be a von Neumann algebra on \mathcal{H}. \mathcal{A}' denotes the commutant of \mathcal{A}. For $n \geq 2$, let $M_n(\mathcal{A})$ denote the von Neumann algebra of $n \times n$ matrices with entries in \mathcal{A}. If T is a bounded operator, the $\mathcal{B}(T)$ is the von Neumann algebra generated by T.

We begin with some lemmas.

Lemma 1. Let $\mathcal{A} = \mathcal{B}(C)$ and suppose $n \geq 3$. Let $\{\lambda_1, \ldots, \lambda_n\}$ be sequences of complex numbers such that the λ_k are distinct, each $\lambda_k \neq 0$, and $\|C\| < 1/2$. Define $A = (A_{i,j})_{i,j=1}^n \in M_n(\mathcal{A})$ by $A_{i,i} = \lambda_i I$, $A_{i,i+1} = a_{i} I$, $A_{i,j} = 0$ otherwise. Define $B = (B_{i,j})_{i,j=1}^n \in M_n(\mathcal{A})$ by $B_{i,i} = \lambda_i I$ and $B_{i,j} = 0$ if $i \neq j$. Then A and B are similar, and $\mathcal{B}(A) = M_n(\mathcal{A})$.

Proof. It follows from [11, Lemma 1] that $\mathcal{B}(A) = M_n(\mathcal{A})$. To show that A and B are similar we need only that the λ_k are distinct. We must find an invertible operator S such that $AS = SB$. Such an S of the form $S = I + N$, where N is lower triangular and nilpotent, can be computed easily. Merely perform the matrix multiplications and solve for the entries of S. We omit the details.

Remark 1. If the operator $S = I + N$ in Lemma 1 is computed, we see that we can make the entries of N small by choosing $\|C\|$, $|a_1|$, $|a_2|$, \cdots, $|a_{n-1}|$ suitably small. Hence we can suppose that $\|N\| < 1/2$. Then $\|S\| = \|I + N\| < 3/2$ and $\|S^{-1}\| = \|I - N + N^2 - \cdots \pm N^{s-1}\| < 2$. Note also that by choosing $\|C\|$, $|a_1|$, $|a_2|$, \cdots, $|a_{n-1}|$ suitably, we can assume that $\|A\| \leq \|B\| + 1$.

539
The following is a corollary of Lemma 1.

COROLLARY 1. If \mathcal{A} is a properly infinite von Neumann algebra on \mathcal{H}, then \mathcal{A} has a generator which is similar to a self-adjoint operator.

Proof. If \mathcal{A} is properly infinite, then it is well-known that \mathcal{A} is *-isomorphic to $M_3(\mathcal{H})$. \mathcal{A} has a single generator C by [10]. Construct a generator A of $M_3(\mathcal{H})$ as in Lemma 1, with λ_1, λ_2, and λ_3 real. Then A is similar to self-adjoint operator by Lemma 1. (Another easy proof of Corollary 1 can be deduced from methods in the proof of Corollary 1 in [1].)

It has been shown that if \mathcal{A} is properly infinite, then \mathcal{A} is generated by three projections [9] and by two idempotents [4]. A related result is

COROLLARY 2. If \mathcal{A} is a properly infinite von Neumann algebra on \mathcal{H}, then \mathcal{A} is generated by three commuting idempotents.

Proof. If A is the generator of \mathcal{A} constructed in Corollary 1, let E be the (idempotent valued) spectral measure of A. Then $E(\lambda_1)$, $E(\lambda_2)$, and $E(\lambda_3)$ are the required commuting idempotents.

Let $\sigma(C)$ denote the spectrum of the operator C.

LEMMA 2. Let $\mathcal{A} = \mathcal{R}(C)$. Let
\[
A = \begin{bmatrix} C & 0 \\ aI & \lambda I \end{bmatrix}, \quad B = \begin{bmatrix} C & 0 \\ 0 & \lambda I \end{bmatrix},
\]
where $a \neq 0$ and $\lambda \in \sigma(C)$. Then A is similar to B, and $\mathcal{R}(A) = M_3(\mathcal{H})$.

Proof. A routine computation shows that
\[
\mathcal{R}(A)' = \left\{ \begin{bmatrix} T & 0 \\ 0 & T \end{bmatrix} : T \in \mathcal{H} \right\}.
\]
It follows that $\mathcal{R}(A) = \mathcal{R}(A)'' = M_3(\mathcal{H})$. Let
\[
S = \begin{bmatrix} I & 0 \\ a(C - \lambda I)^{-1} & I \end{bmatrix}.
\]
Then S is invertible and $AS = SB$.

LEMMA 3. Let $\{A_k\}_{k=0}^{\infty}$ be a uniformly bounded sequence of operators. Suppose that the A_k have pairwise disjoint spectra. Then
\(\mathcal{R} \left(\bigoplus_{k=0}^{\infty} A_k \right) = \bigoplus_{k=0}^{\infty} \mathcal{R}(A_k) \).

Proof. The proof given here is due essentially to Rosenthal [8, Th. 3]. (See also [3, Lemma].) Let \(A = \sum_{k=0}^{\infty} \bigoplus A_k \). Suppose \(C = (C_{i,j})_{i,j=0}^{\infty} \) commutes with \(A \). Then
\[
C_{i,j}A_j = A_iC_{i,j} \quad \text{for all } i,j.
\]
If \(i \neq j \), then \(\sigma(A_i) \) and \(\sigma(A_j) \) are disjoint, so by a theorem of Rosenblum [7], \(C_{i,j} = 0 \). It follows that \(\mathcal{R}(A) = \sum_{k=0}^{\infty} \bigoplus \mathcal{R}(A_k)' \), so that \(\mathcal{R}(A) = \mathcal{R}(A)' = \sum_{k=1}^{\infty} \bigoplus \mathcal{R}(A_k) \).

Theorem 1. If \(\mathcal{A} \) is a von Neumann algebra on a separable Hilbert space such that \(\mathcal{A} \) has no type II finite summand, then \(\mathcal{A} \) has a generator which is similar to a self-adjoint operator.

Proof. Write \(\mathcal{A} = \sum_{n=0}^{\infty} \mathcal{A}_n \), where \(\mathcal{A}_0 \) is properly infinite and for each \(n \geq 1 \), \(\mathcal{A}_n \) is an \(n \)-homogeneous type I summand (see [2]). (Note that some of these summands may be absent.) Let \(\{I_n\}_{n=0}^{\infty} \) be a pairwise disjoint sequence of nonempty subintervals of \([0,1]\).

By Corollary 1, we can choose \(A_0 \) and an invertible operator \(S_0 \) such that \(\mathcal{R}(A_0) = \mathcal{A}_0, S_0 A_0 S_0^{-1} \) is self-adjoint, and \(\sigma(A_0) \subset I_0 \).

For each \(n \geq 1 \), \(\mathcal{A}_n \) is \(*\)-isomorphic to \(M_n(\mathbb{C}_n) \), where \(\mathbb{C}_n \) is the center of \(\mathcal{A}_n \) (see [2]). \(\mathbb{C}_n \) is abelian, so \(\mathbb{C}_n \) has a self-adjoint generator by [5]. Let \(A_i \) be a self-adjoint generator of \(\mathcal{A}_i = \mathbb{C}_i \). By translating and scaling, if necessary, we can assume \(\sigma(A_i) \subset I_i \). Let \(S_i \) be the identity in \(\mathcal{A}_i \).

Let \(C \) be a self-adjoint generator of \(\mathcal{C}_2 \) with \(\sigma(C) \) properly contained in \(I_2 \). Let \(\lambda \in I_2 \) with \(\lambda \in \sigma(C) \). Let \(a \neq 0 \) and let
\[
A_2 = \begin{bmatrix} C & 0 \\ aI & \lambda I \end{bmatrix}.
\]

Then by Lemma 2, \(\mathcal{R}(A_2) = \mathcal{A}_2 \) and for some invertible \(S_2, S_2 A_2 S_2^{-1} \) is self-adjoint. Also, \(\sigma(A_2) = \sigma(C) \cup \{\lambda\} \subset I_2 \).

For \(n \geq 3 \), use Lemma 1 to construct \(A_n \) and an invertible \(S_n \) such that \(\mathcal{R}(A_n) = \mathcal{A}_n, S_n A_n S_n^{-1} \) is self-adjoint, and \(\sigma(A_n) \subset I_n \). Moreover by Remark 1, we can suppose that the sequences \(\{A_n\}, \{S_n\} \), and \(\{S_n^{-1}\} \) are uniformly bounded.

Let \(A = \sum_{n=0}^{\infty} \bigoplus A_n \), and let \(S = \sum_{n=0}^{\infty} S_n \). Then \(A \) and \(S \) are bounded operators, \(S \) is invertible, and \(SAS^{-1} \) is self-adjoint. Finally \(\mathcal{R}(A) = \sum_{n=0}^{\infty} \bigoplus A_n \) by Lemma 3.

It has long been conjectured that every von Neumann algebra on a separable Hilbert space has a single generator. Results in [6] and
reduce the proof of the conjecture to showing that (S) Every type II finite von Neumann algebra on a separable Hilbert space has single generator. (See [4] for a partial solution to this conjecture.)

Theorem 2. If (S) is true and \(\mathcal{A} \) is a von Neumann algebra on a separable Hilbert space, then \(\mathcal{A} \) has a generator which is similar to a self-adjoint operator.

Proof. Write \(\mathcal{A} = \mathcal{A}_1 \oplus \mathcal{A}_2 \), where \(\mathcal{A}_1 \) has no type II finite summand and \(\mathcal{A}_2 \) is type II finite. By Theorem 1, \(\mathcal{A}_1 \) has a generator \(A_1 \) which is similar to a self-adjoint operator. Construct a generator of \(\mathcal{A}_2 \) as follows: Choose a projection \(E \in \mathcal{A}_2 \) such that \(\mathcal{A}_2 \) is spatially \(*\)-isomorphic to \(M(E, \mathcal{A}_2) \). \(E, \mathcal{A}_2 \) is type II finite, so \(E, \mathcal{A}_2 \) has a single generator by assumption. Now use Lemma 1 to construct a generator \(A_2 \) of \(\mathcal{A}_2 \) which is similar to a self-adjoint and such that \(\sigma(A_1) \) and \(\sigma(A_2) \) are disjoint. Then \(A_1 \oplus A_2 \) is similar to a self-adjoint operator, and \(\mathcal{B}(A_1 \oplus A_2) = \mathcal{A}_1 \oplus \mathcal{A}_2 \).

We now indicate briefly how the previous results can be obtained with “similar to a self-adjoint” replaced by “similar to a unitary,”

Corollary 1’. If \(\mathcal{A} \) is a properly infinite von Neumann algebra on \(\mathcal{H} \), then \(\mathcal{A} \) has a generator which is similar to a unitary operator.

The proof is the proof of Corollary 1, except that \(\lambda_1, \lambda_2, \) and \(\lambda_3 \) must be chosen on the unit circle. (See [1] for another proof.)

Theorem 1’. If \(\mathcal{A} \) is a von Neumann algebra on a separable Hilbert space such that \(\mathcal{A} \) has no type II finite summand, then \(\mathcal{A} \) has a generator which is similar to a unitary operator.

Proof. Proceed as in the proof of Theorem 1. Write \(\mathcal{A} = \sum_{a=0}^\infty \oplus \mathcal{A}_a \). Use Lemmas 1 and 2 and Corollary 1’ to construct generators \(A_a \) of the \(\mathcal{A}_a \) which have pairwise disjoint spectra on the unit circle. Then each \(A_a \) will be similar to a unitary operator. To handle the summands \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \), we need the following: If \(C \) is a self-adjoint generator of \(\mathcal{C} \), then \(e^{i\lambda} \) is a unitary generator of \(\mathcal{C} \) and \(\sigma(e^{i\lambda}) = \{ e^{i\lambda} : \lambda \in \sigma(C) \} \). The rest of the proof is clear.

Finally we have

Theorem 2’. If (S) is true and \(\mathcal{A} \) is a von Neumann algebra on a separable Hilbert space, then \(\mathcal{A} \) has a generator which is similar to a unitary operator.
REFERENCES

Received October 23, 1970.

UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

C. R. HOBBY
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLE
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFILE CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Compton Alexander, Semi-developable spaces and quotient images of metric spaces</td>
<td>277</td>
</tr>
<tr>
<td>John A. Beekman and Ralph A. Kallman, Gaussian Markov expectations and related integral equations</td>
<td>303</td>
</tr>
<tr>
<td>Frank Michael Cholewinski and Deborah Tepper Haimo, Inversion of the Hankel potential transform</td>
<td>319</td>
</tr>
<tr>
<td>John H. E. Cohn, The diophantine equation</td>
<td>331</td>
</tr>
<tr>
<td>Philip C. Curtis, Jr. and Henrik Stetkaer, A factorization theorem for analytic functions operating in a Banach algebra</td>
<td>337</td>
</tr>
<tr>
<td>Doyle Otis Cutler and Paul F. Dubois, Generalized final rank for arbitrary limit ordinals</td>
<td>345</td>
</tr>
<tr>
<td>Keith A. Ekblaw, The functions of bounded index as a subspace of a space of entire functions</td>
<td>353</td>
</tr>
<tr>
<td>Dennis Michael Girard, The asymptotic behavior of norms of powers of absolutely convergent Fourier series</td>
<td>357</td>
</tr>
<tr>
<td>Paul C. Kainen, Universal coefficient theorems for generalized homology and stable cohomotopy</td>
<td>397</td>
</tr>
<tr>
<td>Aldo Joram Lazar and James Ronald Retherford, Nuclear spaces, Schauder bases, and Choquet simplexes</td>
<td>409</td>
</tr>
<tr>
<td>David Lowell Lovelady, Algebraic structure for a set of nonlinear integral operations</td>
<td>421</td>
</tr>
<tr>
<td>John McDonald, Compact convex sets with the equal support property</td>
<td>429</td>
</tr>
<tr>
<td>Forrest Miller, Quasivector topologies</td>
<td>445</td>
</tr>
<tr>
<td>Marion Edward Moore and Arthur Steger, Some results on completability in commutative rings</td>
<td>453</td>
</tr>
<tr>
<td>A. P. Morse, Taylor’s theorem</td>
<td>461</td>
</tr>
<tr>
<td>Richard E. Phillips, Derek J. S. Robinson and James Edward Roseblade, Maximal subgroups and chief factors of certain generalized soluble groups</td>
<td>475</td>
</tr>
<tr>
<td>Doron Ravdin, On extensions of homeomorphisms to homeomorphisms</td>
<td>481</td>
</tr>
<tr>
<td>John William Rosenthal, Relations not determining the structure of L</td>
<td>497</td>
</tr>
<tr>
<td>Prem Lal Sharma, Proximity bases and subbases</td>
<td>515</td>
</tr>
<tr>
<td>Larry Smith, On ideals in $\Omega^_n$*</td>
<td>527</td>
</tr>
<tr>
<td>Warren R. Wogen, von Neumann algebras generated by operators similar to normal operators</td>
<td>539</td>
</tr>
<tr>
<td>R. Grant Woods, Co-absolutes of remainders of Stone-Čech compactifications</td>
<td>545</td>
</tr>
</tbody>
</table>