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The Burkill-Cesari B-C integrals arising in L. Cesari’s
theory of quasi additive vector-valued set functions need not
be additive as functions of sets, It is shown in the present
paper that these integrals satisfy quasi additivity and
overadditivity properties. These properties are used to prove
Banach-type differentiation theorems for B-C integrals defined
on Euclidean spaces, Variants of Cesari’s basic quasi
additivity hypothesis and some simplifications in the formula-
tion of the general theory are also discussed.

The theory of quasi additive vector-valued interval functions z
and associated B-C integrals S[z, A] over an abstract space A was

introduced by Cesari [2]. The integration processes of Cauchy-Riemann
and Lebesgue-Stieltjes were shown to be included in this theory.
More importantly, it was proved that the property of quasi additivity
is preserved by parametric integrands f(p,q) and that Cesari-
Weierstrass integrals over a variety T are the B-C integrals

[F(T, z), A] of the corresponding composite functions. In [3] Cesari

extended these concepts to subsets of A and determined conditions
under which the Cesari-Weierstrass integral can be represented as a

Lebesgue integralg F(T, 0)dp with respect to a suitable measure p
A

and vector # of Radon-Nikodym derivatives. Further developments
in the theory have been discussed by Nishiura [4], Stoddart [6], and
Warner [7,8,9]. In particular, Warner extended the theory to
include quasi additive functions with values in locally convex spaces
and showed that many other integration processes, including those of
Perron and Pettis, are contained in the theory.

In this paper we discuss properties of B-C integrals as functions
defined on the subsets of a given space A. It is convenient to follow

the original setting of Cesari. Thus the B-C integral S[z, M] of =z

over an arbitrary subset MM of A exists whenever z is quasi additive
on M. We differ from Cesari’s procedure, however, by formulating
all quasi additivity relations relative to a single directed system.
This technical device, used by Nishiura [4] in surface area theory,
simplifies Cesari’s formulation and allows us to prove, in §1, that if

2 is quasi additive on M and if the B-C integral S[]zi, M] is finite,
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then z is quasi additive on every subset M’ of M; hence S[z, M'] exists

for every M' C M.
Structure theorems for B-C integrals are discussed in §2. In
addition to the theorems already proved by Cesari, we prove that if

¢ is quasi additive on M and S[lz|,M] is finite, then the interval

function S[z, -] is also quasi additive on M and

0= [ 1)

if, in addition, z is real valued and nonnegative, then S[z, M] is the

total variation of S[z, -] over M.

The structure theorems of § 2 are used in § 3 to prove Banach-
type differentiation theorems for the case in which A is an open set
in Euclidean space. It is shown that if z is quasi additive on 4 and

S[fz], A] is finite, then the interval function S[z, -] admits a “hard

analysis” vector-valued derivative J such that S[|z|, Al = S |J(w) | dw;

equality holds if and only if S[|z|, -] is AC in the sense of [1, p. 411].

This result, which we shall use in a later paper, is obtained by
extracting essential elements in Cesari’s presentation of the theory
of generalized Jacobians associated with a parametric surface of finite
area [1].

Stronger types of quasi additivity relations are discussed in §4.
Necessary and sufficient conditions in terms of the interval function

S[Iz[, .] are determined for the basic quasi additivity hypothesis to

be equivalent to a stronger hypothesis used by Cesari [3, p. 130].
The connection between the present formulation and that of
Cesari is discussed in § 5. It is observed that Cesari’s representation

theorem, S[ f(T, 2), A] = S F(T, 6)dse, holds in the present setting also.

1. Definitions and first properties. Let A be a nonempty set,
{I} be a nonempty collection of subsets I of A, {D} be a nonempty
family of nonempty finite systems D = [I] of sets I in {I}, and 0 be
a real-valued function defined on {D}. We refer to the sets in {I} as
intervals and to the function ¢ as a mesh. The axioms

(a): A is a topological space,

(b): each interval I has a nonempty interior,
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(c): the intervals of each system D are nonoverlapping, i.e.,
int (I)Nnel(/J) = el(I)Nint(J) = ¢ whenever I, Je D, I+ J,

(d): 0<d(D)< = for each system D and, given ¢ > 0, there
are systems with d(D) < ¢,
will be assumed. In order to treat some trivial examples in a
uniform manner we allow (D) = 0 if only the zero (real or vector-
valued) interval function (see below) is being considered.

The norm of a point ¢ = (¢, ---, ¢,.) in the real Euclidean m-space
E, is denoted by |q| = [2, ¢2]'?, where X, ranges over r =1, <+« m.
We set a* = (Ja| £+ a)/2 for any real number a.

Let z: {I}—>FE,, 2= (2, *++,%,), be an interval function and M
be a subset of A. Associated with z are the nonnegative interval
functions |z|, |2,], 2 ,and 27, » =1, ---,m. When needed, 2z’ denotes
a second interval function having the same range space as z.

Given a system D, = [I],let S[z, M, D,] = ¥ ,s(I, M)z(I), where
Y, ranges over all Ie D, and s(I, M) = 1 or 0 according as I ¢ M or
I¢ M. If D= [J] is also a system, then Sz, M, D] — S|z, M, D,] =
Yrs(L, M)[Y, s(J, I)2(J) — 2(I)] + X, s(J, M)[1 — X, s(J, I)s(1, M)]z(J);
the second term on the right is nonnegative whenever z is non-
negative.

The B-C integral of z over M is defined as

S[z, M] = lim S[z, M, D]

provided this limit, taken as (D) — 0, exists in E,. If z is real-
valued, then oc is also allowed as a value for this integral.

DEFINITION 1.1. 2 14s quasi additive on M if for each ¢ >0
there exists 7 = 7(¢, M) > 0 such that if D, = [I] is any system
satisfying o(D,) < 7, then there also exists N = \e, M, D,) > 0 such
that the relations

(qa)): 2, s(I, M)| 2, s(J, D(J) — 2(I)| < e,

(qaz): 3, s(J, ML — 2, s(J, D)s(I, M)] [2(J)] < e,
hold for every system D = [J] with d(D) < . If z is real-valued and
if (qa,) and (qa,) are replaced by the single relation

(gsa): 2, s(I, M)[2, s(J, I)z(J) — z(I)]” < &,
then z is quast subadditive on M.

ProrosiTION 1.2. (i) If z is quasi additive on M, then the
B-C integral X[z, M] exists in KE,.
(i1) If z is nonnegative and quasi subadditive on M, then S[z, M]

exists, 0 < S[z, M) £ oo, If, in addition, this B-C integral is finite,
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then z 1is quast additive on M.
(iii) If z and 2’ are quasi additive on M, then az + bz’ is quast
additive on M for every pair of real mumbers a and b, and

S[az + b2, M] = a S[z, M)+ b S[z’, M.

(iv) If z and 2’ are monnegative and quasi subadditive on M and
M, respectively, and if 2" <z, M' C M, then S[z’, M < S[z, M].

(v) z 1s quast additive on M if and only if its components z,,
r=1,-++,m, are all quast additive on M.

(vi) If z is quasi additive om M, then |z|,|%.|, 25, and =z;,
r=1, -+, m, are all quast subadditive on M.

The proofs of the preceding statements are analogous to the
proofs given in [2, pp. 97-99] for the case M = A.
If z is quasi additive on M and if there exist systems of arbitrarily

small mesh, none of whose intervals are contained in M, then S[z, M]
is the zero vector. In particular, z is automatically quasi additive
on the empty set and S[z, @] is the zero vector.

It follows from relation (gsa) that if z is quasi subadditive on
M, then it is quasi subadditive on every subset of M.

PROPOSITION 1.3. If 2 is quasi additive on M and if S[iz], M]

18 finite, then z is quasi additive on every subset of M.

Proof. Let M’ < M be given. We shall refer to the statements
of (1.2). By (vi), |z| is quasi subadditive on M and therefore also

on M’. By (ii) and (iv), S[IzI,M’] exists and is dominated by

S[Iz\, M] < . Thus |z]| is quasi additive on M’ by (ii). Given ¢ > 0
we can determine the parameters of (1.1) so that the relations (qa,)
and (ga,) are simultaneously satisfied relative to z on M and |z] on
M’'. Thus

2ps(L, M') |3, s(J, I)a(J) — 2(I)]
< X,8(I, M) |3, (], Dz(J) — 2(I)] < ¢,

2ys(J, ML — 2 s(J, Ds(I, M)] [2(])| <e,

and we conclude that z is quasi additive on M’.
It is convenient to set
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Fon = [z, M), F.OD = ([1z, 1,
Fron) = (=, M1, FA0) = [z, M1,
FM) = [z, M1,

whenever these B-C integrals exist and are finite, and to set
F(M) = 0, etec., otherwise. We also define

F (M) = (F(M), -+, Fu(M)) .

As a consequence of the definitions and preceding propositions we
have the following result.

PrOPOSITION 1.4. Suppose that z is quasi additive on M and
that S[[z},M] is finite. Let M'C M be given. Then z,2, |zl |2,

+

25, and z7,r =1, <+, m, are all quasi additive on M’, and
Fi(M) — F;(M'y=Z7.(M") ,
Fr(M + F;(M'y = F.(M"),

|7 (M) = F.(M') = F(M') ,

| (M) = [3, F(M'" = F(M') < 2, F (M) ,

for each r. Given ¢ >0, there ewists p = p(e, M'), 0 < pt < ¢, such
that of D, = [I] is any system with o(D,) < r, then

| (M) — Slz, M', Di]| <e, |[F(M'") — S[|z|, M', Dj]| < ¢,
and analogously for #,, F,, F'; and F'; for each r. Finally, there exists
X = Ne, M', Dy), 0 < N < pt, such that the relations (qa,) and (ga,) of

(1.1) (applied to M') hold simultaneously for z, z,, |21, |2,], 2, and 27 for
every r and every system D = [J] with o(D) < \.

2. B-C integrals as interval functions. The total variation
(relative to {D}) of z over M is defined as

Vlz, M] = sup Sl|z|, M, D]
where the supremum is taken over all systems De{D}. We have
0= Viz, @l = Vz, M1 £ Viz, M] £ V]z, A] < = whenever M’ c M.
If z is quasi additive on M, then S[{zl, M] £ Vg, M] and strict ine-
quality may hold.

ProposiTioN 2.1. If {D} s the family of all monempty finite
systems of monoverlapping intervals Ie{I}, then
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(i) Viz, M)l = >, V]z, M,] for every sequence {M,} of mon-
overlapping subsets M, of M,
(ii) 4f each interval Ie{I} is connected, then

Viz, Gl = 3, VIz, G.]

whenever {G,} 1s a sequence of disjoint open subsets of A such that
G - U :::1 G’IL'

These two properties of the total variation are well-known (ef.
[1, 9.8]). The connectedness of the intervals is assumed in (ii) to
assure that if I < G, then I G, for one and only one value of #.

In the next two results we assume that z is nonnegative (real-
valued). In this case we have & = F.

THEOREM 2.2. If z is nonnegative and quasi additive on M, then
the nterval function F' is also quast additive on M, and

(1) F(M') = VIF, M'] = S[F, M]
for every subset M’ of M.

Proof. In view of (1.3), it suffices to take M’ = M. We first
prove the equalities in (1). For any two systems D, = [I] and D = [J]
we have

0= 3580, ML — 2L s(J, Ds(I, M)lz(J)
= 280, M)z(J) — 23 8(J, M) 3., s(J, D)s(I, M)z(J)
= Sz, M, D] — X, s(I, M) 3, s(J, I)z(J)
= Sz, M, D] — X, s(I, M)S[z, I, D] .

As 6(D) — 0 we obtain

0= FM)— >,s(I, M)F(I) = F(M) — S[F, M, D,] .
Thus
(2) F(M) =z VIF, M] =z S[F, M, D]

for every system D,. If ¢ >0 and if D, and D are as in (1.1), then
we also have 0 =< S[z, M, D] — >\, s(I, M)S[z, I, D] < e. As 6(D)—0
we thus obtain

(3) 0<F(M)— S[F, M,D,] < ¢

for all systems D, of sufficiently small mesh. The equalities (1) follow
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from (2) and (3) since ¢ > 0 was arbitrary.
It remains to show that F' is quasi additive on M. Let ¢ >0 be

given and let D, = [I] be a system. If S[z, M] = 0, then the problem

is trivial. We thus assume that S[z, M] > 0 and that 6(D,) is small

enough that the set M contains at least one interval IeD,. Let N
be the number of intervals Ie D, with I < M. By (1) there exists
A = Me, M, D,) > 0 such that

(4) 0 < VIF, I] — S[F, I, D] < ¢/N

for every system D = [J] with d(D) < » and for every interval I D,
with < M. Since VI[F,I] = F(I) for each of these intervals, we
have

s, M), s(J, )F(J) — F(I)]” < N(¢/N) = ¢
by (4). This proves that F is quasi subadditive on M. By (1) we

have F(M) = S[F, M] and this B-C integral is finite. Thus F is
quasi additive on M by statement (ii) of (1.2).

PropoSITION 2.3. If z is nonmegative and quasi additive on M,
then F(M) = Sy, F(M,) for every sequence {M,} of mnonoverlapping
subsets M, of M.

Proof. Let {D’} be the family of all nonempty finite systems of
nonoverlapping intervals Ie{I} and let ¢’ be the mesh on {D'} defined
by ¢'(D') =d(D’) if D'e{D} and o'(D') =1 if D'e{D'} - {D}). =z is
obviously quasi additive on M relative to ({D'}, ¢’), and F(M’) = lim
S[z, M', D'] as ¢'(D')— 0 for every set M’'c M. The proposition is
now a consequence of (2.1) and (2.2) applied to ({D'}, ¢’).

Examples (see [1, p. 400]) show that strict inequality may hold
in the above proposition even if M is the union of extensively
overlapping sets M,.

We now return to the case in which z = (¢, ---, 2,) is vector-
valued.

PROPOSITION 2.4. Assume that each interval Ie{I} is commected.
Let {G,} be a sequence of disjoint open subsets of A and let

G= U3 G,. If z is quasi additive on G and if S[IzI,G] s finite,

then 7 (G) = >3-, .7 (G,) and the series 1is absolutely convergent.
Amnalogous statements hold for & ,F,F, F}, and F,,r =1, «+-, m.
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Proof. As shown in the proof of the preceding proposition, it is
not restrictive to assume that {D} is the family of all finite systems
of nonoverlapping intervals. The desired equalities thus hold for
F,F, F}, and F; by (2.1) and (2.2). These equalities extend to
“#, and & by virtue of the relations &, = F} — F; and & =
(F1, »++, Fn). Absolute convergence for the latter series holds since
[ =F,and | & | < F.

Another proof of (2.4) has been given under slightly different
hypotheses by Cesari [3, p. 118].

THEOREM 2.5. If z is quasi additive on M and if S[{zl, M] is
finite, then the interval fumction # s quasi additive on M and

(M) = S[ﬁ" M’] for every subset M’ of M.

Proof. The interval functions F; and F,, r=1, .-+, m, are
quasi additive on M by (2.2). The functions &, = F — F; are thus
quasi additive on M by (1.2) (iii). Hence & 1is quasi additive on M
by (1.2) (v). From (1.4) and (2.2) we have

F00) = F;00) — Fr0) = {175, ) = (177, w1 = (177, M
and we conclude that & (M) = S[/f M'] for every subset M’ of M.

THEOREM 2.6. If 2 4s quasi additive on M and if g[}zl, M] is
finite, then
F(M') = lim, p,)-0 > s(I, M")[>., FHD]
for every subset M' of M. Here, D, = [I]e{D}.
Proof. By (1.8) it suffices to take M’ = M. Let ¢ > 0 be given. Let

p= e, M) with 0 < < ¢, D, = [I] with d(D,) < ¢, » = Ne, M, D,)
with 0 <X < 4, and D = [J] with (D) < A be as in (1.4). Then

| F(M) — 281, M) 2(J) | — 2D <e,
28I, M) |2, s(J, D] z(J)| — 2D <e,

for each » =1, -+, m. For each » and Iec D, let
a.(I) = 3, 8(J, I) [2.(J)| — [2.(I)] .

By substitution and Minkowski’s inequality we obtain
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F(M) < 3,s(I, M) |2(I)| + ¢
= 2 s, M){X, [2(D) P} + ¢
= s, M){3, [, 8¢, I) |2,(J)| — a (D]} + ¢
= s, )X, [20, 80, I) |2,()) | + |a. (I) [P} + ¢
= 2 s, MU, [, 8¢, I) |2,() I}
+ 2 s, M){S la (D) [FYE + e
= s, M)3., [0, 80, 1) [2.(T) [P}
+ 25 20 s, M) Ja(I)| + ¢
< s, M3 (3, 8(, I) |2,(0) [} + (m + 1)e .

As 6(D) — 0 and with the help of (2.2) we obtain
F(M) = 35 s(1, M3, FXD]'" + (m + 1)e

for all systems D, = [I] with o(D,) < (e, M) <e. As ¢>0 was
arbitrary, we have

F(M) < lim; . 25 s, M)[3, FXD]'?, Dy = [1] .
By (2.2) and (1.4), on the other hand, we have
F(M) =z >, s8I, M)F(I) = >, s(1, M)[33, FX(I)]'"

for every system D, = [I]. This competes the proof.
Note that we have also proved

F(M) = sup 33, s(I, M)[3, FXI)]'"®
where the supremum is taken over all systems D, = [I].

3. Derivatives. Points of FE,, k=1, will be deroted by
w = (w, ++-, w,). The interior and frontier of a set E in E, will be
denoted by E° and E*, respectively. The term a.e. (almost every-
where) will be used relative to k-dimensional Lebesgue measure L,
on K.

Throughout this section A will denote a nonempty open subset
of E, and {I} the collection of all nondegenerate closed intervals
I={weE:a;=w;,<b,t=1,---, k} contained in A. {D} will denote
the family of all non-empty finite systems D = [I] of nonoverlapping
sets Ie{I}. We assume that a mesh 6 on {D} is given. The defini-
tions and results of this section may also be used if {I} is replaced
by the collection of all polyhedral regions or simple polyhedral regions
(see [4]) contained in A.

We recall some definitions. A real-valued interval function z is
said to be

(1) overadditive if z(I) = 3; 2(1;) for each set Ie{I} and each
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finite subdivision I = U;I; of I into nonoverlapping sets I; e {I},

(ii) additive if equality holds in (i),

(iii) BV if the total variation V][z, A] (relative to {D}) is finite,

(iv) AC if (a) z is additive, and (b) for each ¢ > 0 there exists:
7 > 0 such that S[|z|, 4, D] < ¢ for each system D with S[L,, 4, D] <7.
Conditions (a) and (b) in (iv) are independent [1, p. 216].

Given we A, let @ be generic for a closed k-cube, @ C A, with
faces parallel to the coordinate hyperplanes of E, and with we Q°.
The derivative of a real-valued interval function z at the point w is.
defined as

(1) D(w, z) = lim 2(Q)/L«(Q)

provided this limit, taken as L,(Q) — 0, exists and is finite; otherwise
we set D(w, z) = 0. For the following theorem, see [1, Section 27]
and [5, Section III. 2].

THEOREM 3.1. Suppose z is nmonnegative, overadditive, and BYV.
Then the limit (1) exists and s finite a.e. in A, D(w,z) is Borel

measurable and L-integrable on A, and V]z, Al = S D(w, z)dw. The
A
same inequality holds if A is replaced by any open set G C A or by
anwy set Ie{I}. The equality V|z, A] = S D(w, z)dw holds if and only
A

if z is AC and, in this case, the same equality holds if A is replaced
by any G or I as above.

Let z = (2, + -+, 2,) be vector-valued. If zis quasiadditive on 4 and

if K[;z;, A] is finite, then the nonnegative interval functions F, F,, F';,

J

and F;,»=1, ..., m, are overadditive and BV by (2.2) and (2.3).
It is convenient to use the notations
D(w) = D{w, F) , D (w) = D(w, F,),
Di(w) = D(w, F7;) , D7 (w) = D(w, F7) ,
J(w) = Di(w) — Dy{(w),  Jw) = (Ji(w), +--, J.(w)) .
From (1.4) we obtain |J,| = |D; — D7 | =< D; + D; =D, <D ae. in

A for each r.
In the next two results we assume that z is real-valued.

ProposITION 3.2. If z 1is real-valued and quasi additive on A
and if S[fz{, A] s finite, then D*(w)D~(w) = 0 and |J(w)| = D(w) a.e.
wm A.
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Proof. Let M, = {we A: D*(w) > 0} and M, = {we A: D~(w) > 0}.
Tor each integer n =12 +-., let M, = {we A: D*(w) > 1/n} and
M,, = {we A: D~ (w) > 1/n}.

Let ¢ >0 and n be given. Let g = u(¢/2n, A) be as in (1.4) and
let D, = [I] satisfy d(D,) < ¢. Let A, be the union of all e D, such
that z7(I) >0, and let A, be the union of all Ie D, such that
27(I) > 0. Then the sets G, = A — A, and G, = A — A, are open.
We show first that L,(G,NM,,) < ¢ and that L(G.NM,,) < e.

Let N = \¢/2n, A, D,) with 0 < A < ¢ be as in (1.4) and let D =[J]
be any system with 6(D) < ». Let H, be the closure of G, in A.
Thus G, c H, C A and z*(I) = 0 for every interval Ie D, with I C H..
Also, if JeD,JC H,, and J¢ I for any IeD, with IC H,, then
J ¢ I for any I€ D,. Hence,

0 < S[#+, G, D] < S[z*, H,, D] = >, s(J, H)z*(J)
= 3 s(I, H)[X; s(J, I)z*(J) — 27(I)]
+ 2 s(J, H)L — 35 s(J, Ds(I, Hy)lz*(J)
< s, A) |3, 80, DA(J) — 27(1)]
+ s, AL — s, Ds(I, A)lz(J)
< ¢g/2n + ¢/2n = g/n
and, as d(D)— 0, we obtain 0 < F'*(G)) < ¢/n. From (2.2) and (3.1)
we now have

0< L(G.NM,) < ng D (w)dw < n V[F*, G]
Gy
=nF(G) <L e.

An analogous argument shows that L/(G,NM,,) < e.
Since A C [G,UG,U(AF¥NAY)] and L (AFNASF) =0, we have

LM,.NM,,) = L(M,,NM,,NA)
= LM, N (M, N G)] + LM, 0 (M, N G)]
+ LM, 0 M,, N AF N AF)

= Li(M.NG) + L(M.,NG:) < 2¢ .
As ¢ >0 and n were arbitrary, we conclude that L,M,NM,) =0
for each #%. From the construction of the sets M,, and M, we
conclude further that L,(M,N M, = 0. Therefore D*D~ =0 a.e. in
Aand {J|= D" —-D"|=D"+ D =D ae. in A. This completes
the proof.

THEOREM 3.3. Suppose that z is real-valued and quasi additive
on A and that g[lzl, A] s finite. Then
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F(A) = SA Ja)ldw ,  FHA) = SAD+(w)dw :
F4) = | Dw)dw ,

and the same inequalities hold if A 1is replaced by any open subset G

of A or by any set Ic{Il}. The equality F(A) = S |J(w) | dw holds if
A

and only if F is AC. If F is AC, then

F(A) :g Jw)ldw,  F*(A) :S DHw)dw
A A
F-(4) :S D-w)dw, .7 (A) :S J(w)dw
A A
and the same equalities hold if A s replaced by any G or I as above.

Proof. Recalling that F,F*, and F~ are nonnegative and
overadditive and that F = F'* 4 F~, it is easily verified that F is
AC if and only if F* and F~ are both AC. The theorem now
follows from (2.2), (3.1), (3.2), and the relation & = F* — F~.

We return now to the case in which z = (¢, --+, 2,) is vector-
valued.

PROPOSITION 3.4. Suppose that z 1is quasi additive on A and
that g[[z], A] s finite. Then F is AC if and only if the fumnctions
F.or=1,+--,m, are all AC.

Proof. It is clear that F satisfies condition (b) in the definition
of AC if and only if each F, also satisfies this condition. It remains
to show that F' is additive if and only if each F', is additive. Let
I be an interval and I = U;I; be a finite subdivision of I into
nonoverlapping intervals I;. Let

d=FI)—->;FI), d,=F(I) —3;F(L).
For each system D = [J] let
d(D) = X5, s(J, DL — 355 8(J, I)|F(J)
= S[F: I’D] - ZiS[F: Ij’ D] ’
d/(D) = X5, s(J, D1 — 335 s(J, [)]F.(J)
= S[Fra Iy D] - Zj S[Fm ij D] .

As o(D) — 0, we have d(D)—d and d.(D)—d, by (2.2). From the
inequalities F,.(J) < F(J) < 3, F.(J) we obtain d,.(D) < d(D) < 3,d.(D)
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and, after a passage to the limit, d, <d < >,d,.. Since F, is
overadditive and d, = 0, we conclude that d = 0 if and only if d, = 0
for each ». This completes the proof.

PROPOSITION 3.5. Suppose that z s quast additive on A and
that S[{zl, Al 1s finite. Then D(w) = |J(w)| a.e. in A and equality
holds if F' s AC.

The proof is essentially the same as given in parts (a) and (b)
of the proof of [1, 30.1 (ii)]: simply replace the letter V by F' and
the references to [1, 9.1] and [1, 12.1] by a reference to (2.6) in the
present paper.

THEOREM 3.6. Suppose that z is quast additive on A and that
g[[zi, Al 1is finite. Then F(A) = S [J(w)|dw and the same inequalities
hold if A 1is replaced by any open ;ubset G of A or by any set Ie{I}.
The equality F(A) = SAIJ('w) |dw holds if and only if F is AC and,

wn this case, the same equality holds if A is replaced by any set G
or I as above.

This theorem is a consequence of (2.2), (3.1), and (3.5).

4. t-quasi additivity., We assume axioms (a)-(d) of § 1 throughout
this section. In addition, let there be associated with each subset E
of A a set E' satisfying the condition

(t,): E'is contained in the interior of E,

(t,): E'cC G' whenever £ C G C A.

DEFINITION 4.1. =z 1s t-quast additive on M if, under the circum-
stances of Definition (1.1), z satisfies

(tqay): s, M) |35, s(J, IN2(J) — 2(I)| <e,

(tqas): 3, s(J, M)[L — 35 s(J, I')s(I, M)] [2(]) ] < e.

An analogous definition of “t-quasi subadditivity” may be for-
mulated if z is real-valued. The statements of §1 remain valid if
the terms “quasi additive”, “quasi subadditive”, and “s(J, I)” are
consistently replaced by “t-quasi additive”, “t-quasi subadditive”, and
“s(J, I')”, respectively. (We do not modify the definition of the B-C
integral.)

PROPOSITION 4.2. If z 4s t-quast additive on M, then z is also
quast additive on M.
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Proof. For any two systems D, = [I] and D = [J] we have
2. s(I, M)I; s(J, I)z(J) — 2(I)]
(1) = ;S(L M)[ZJ; s(J, I'z(J) — 2(I)]
+ 5718(1, M); s(J, DL — s(J, I]z(J) .
Let ¢ > 0 be given and let 7 = n(¢/2, M) > 0, D, = [I] with o(D,) < 7,

=X\ (g2, M, D) >0, and D = [J] with (D) < be as in the
definition of ¢-quasi additivity. Then

(2) 8L, M) [ 380, I2() — «(D)| < /2,
(3) 28], ML — 3 s(J, I)s(I, M)] [2(T) [ < /2.

The last term in (1) is less inclusive than the term in (8) and from
(1)-(8) we obtain

(2) 2is(I, M) |30, Da(l) — 2()| <e¢f2+¢f2=c¢.

The term in (3)" below is also less inclusive than the term in (3) and
hence

(3) 28], MOIL — 35 s(J, Ds(, M)] l2()] < e/2.
Relations (2)' and (3)’ show that z is quasi additive on M.

PROPOSITION 4.3. Assume that each interval Ie{I} is commected.
If z is t-quast additive on M and if S[}z], M] is finite, then F(M*) =
F(M).

Proof. Let ¢ > 0 be given and let p = p(¢/2, M), D, = [I] with
0(Dy) < py N =Me/2, M, D), and D = [J] with d(D) <\ be as in the
t-quasi additivity version of Proposition (1.4). Then

|F'(M) — Sllz], M, Di]| < e¢/2,
|\F(M) — S[|z], M, D]| < ¢/2,
28I, M) 13580, IN12(J) | = |(D)[] <e/2 .

Let M’ denote the union of the sets I* such that Ie D, and I C M.
Then M’ c Mt c M. Since each I' is contained in the interior of I
and since the intervals J are connected, each interval Je D with
J C M’ is contained in I’ for one and only one interval Ie D, with
I < M. Hence
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Sis(], M) |2(J)| = 35 s(I, M35 s(J, I') [2(J) |

and therefore
F(M) — 38, M) [2(]) ]
= |F(M) — 3 s(L M) [2(D) i
+ 180, M) 20) | — Ss(L, M) | (D)
<ef2 4 3s(L, M) [ 3s(d, I912(J) | — &) ]
<e¢2+¢2=c¢.

Thus, given ¢ > 0, there is a set M’ = M'(s), M' ¢ M* < M, and a
number \ = \e) > 0 such that

F(M) — e < S[lz], M', D] < S[|z|, M*, D] = S[|z|, M, D] < F(M) + ¢
for every system D with §(D) < \. Thus, F(M*) = F(M).

PROPOSITION 4.4. If z is quasi additive on M, g[]zi, M is

finite, and F(MY) = F(M), then .7 (M') = .7 (M) and similarly for
G F, Fi,and F7or =1, -+, m.

Proof. We show that & (M') = & (M); the other parts are
proved in an analogous manner. All limits below are taken as
0(D)— 0, D = [I]. Since

F(M) = lim;s(l, M) |2(I)]
= lm {3 s(Z, M) [2(D)| + 35 s(L, M)IL — s(I, M) |2(I) ]}
and
F(M) = F(M*) = lim;s(I, M) |z(I)| < oo,
we conclude that

Hm 3% (Z, M)IL — (I, M9)] lz(D)| = 0,

and therefore
limﬁl‘, s(I, M)[1 — s(I, MH)]z(I) =0 .
Hence,
Z (M) = lim {; s(I, M*)z(I) + IZ s(I, M)H[1 — s(I, M"]=(I)}
=7 (M) .
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THEOREM 4.5. Assume that each interval Ie{Il} 1is connected,
z 1s quast additive on M, and g[lz], M] s finite. Then z s t-quast
additive on M if and only if F(I') = F(I) for each interval I < M.

Proof. The condition is necessary by (4.3). Assume now that
F(I') = F(I) for each interval I < M. We must show that z is
t-quasi additive on M. Let D, = [I] and D = [J] be any two systems.
Then

208(L, M) |32 s(J, I92(J) — 2(D)]
= {38, M) |35 s(J, I=() — 7 (D)
+ X8, M) | (D) = 3], D2(d) |}
+ {2, M) |38, D) — (D) [}
=8 + 8+ s,
and
2is(J, ML — 3L s(J, T)s(L, M)] [2(]) ]
= S\s(J, M) [2(J) | — 3 SLs(], T)s(L, M) [(])!
= (IS8, M)|20) | = 338, Ds(L, M)[2(7) )
+ {23, Ds(L, M) 2() | — 35 s(, M)F(D) [}
+ {130 s(L MF(I) — 3. 3% s(J, I)s(L, M)[2(T) [}
=8, + 8 + S .

Let ¢ > 0 be given and let 7, = 1(z, ¢/3, M) and n, = n(|z|, ¢/3, M) be
as in Definition (1.1). Let » = min [n, 7] and let D, = [I] satisfy
o(D,) < 7. Let N = N3z, ¢/3, M, D) and N\, = (2], ¢/3, M, D,) be as
in Definition (1.1) and let » = min [A, \,]. Let N be the number of
intervals Ie D, and let ¢ = ¢/N. For each IeD, with I M let
¢ = (3, I) and pf = p(e'/3,I) be as in (1.4). Let g = min
N, o, i Ie Dy I < M} and let D = [J] satisfy (D) < A. Then

(4) |7 I — Sz, I', D]| < €'/3 for each Ie D, with I ¢ M,

(5) |#I)— Slz, I, D]| < €'/3 for each Ie D, with I c M,

(6) >irs(I, M) |3, s(J, Da(J) — 2(I)| < ¢/3,

(7) s, ML — 3 s(J, Ds(I, M)] [2(])] < ¢/3,

(8) |F(I)— S[lz|, I, D]| < €'/3 for each Ie D, with I c M,

(9) |F(I") — S[lzl, I*, D]| < ¢'/3 for each Ie D, with I c M.
Hence,
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0= s =3I, M)| 2], I2(J) — & (D)
= 28, M) |3 s(J, I)2(J) — 7 (1]

< N(¢'/3) = ¢/3 by (4.4) and (4),
0= s, = Sis(L, M) |7 (1) = S5, D))

< N(¢'/3) = ¢/3 by (5),
0= s = 28(1, M) IZJLS(J, Iz(J) — 2(I)| < ¢/3 by (6) ,

0= 5 = 580/, M)|2) | = 3 S s(, Ds(L, )| 2(T)]|

< Sys(/, M)[L — S s(J, Ds(, M) [2J)| < ¢/3 by (T)
0= 5 =SS, Ds, M)|2()) | — S s(T, MF(D)]

< S8, M) | s, 1) | #J) | — F(T)|

< N(E'f3) = ¢/3 by (8),
0= s = [3is(I, MYF(I) — 3, 3 s(J, Is(1, M) [ 2(]) ]

J

< Ss(0, M) [F() = S50, )| 2()) |
= Ss(I, M) [F(IY) = S (7, 19| 2()) |
< NE[3) = </3 by (9) .

Thus s, + 8+ 8, <é& s+ s +s,<¢ and we conclude that z is
t-quasi additive on M.

We remark that the connectedness of the intervals Ie{I} is not
used in the sufficiency part of the above proof.

5. Remarks. Definition (1.1) was used under axioms (a)-(d) by
Cesari [2] for the case M = A. In [3] Cesari extended the notions
of B-C integral and quasi additivity to a class {G} of nonempty
subsets of A as follows. For each G in {G} let {D}; be the family
of all systems D, = {Ie D:IcC G} obtained as D ranges over the
family {D}, and let d, be a mesh satisfying axiom (d) relative to {D},.
In addition, assume the axiom

(e): given 7 > 0, there exists v = v(z, G) > 0 such that if D is
any system in {D} with (D) < v, then the associated system
D, ={IeD:Ic G} is nonempty and d,(D;) < 7.

Cesari then defined B-C integrals over G and quasi additivity on G
relative to the directed system ({D} d;); axiom (e) was used to
obtain properties of the B-C integrals as set functions.

To see that Cesari’s formulation is contained in that of the
present paper we observe the following two statements.
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(i) lim;p S[z, G, D] = lim ;5,0 S[z, G, D;] whenever axiom
(e) holds and the limit on the right exists.

(ii) If 2z is quasi additive [subadditive] on G relative to ({D},, 0.)
and if axiom (e) holds, then z is quasi additive [subadditive] on G
relative to ({D}, 0).

Statement (i) was proved by Cesari [3, p. 117], and (ii) may be
proved in an analogous manner. Since simple examples show that if

g[lzl, G] = 0 there may no mesh J, satisfying axiom (e), some improve-

ment is gained by formulating all quasi additivity relations relative
to the single directed system ({D}, 0) as in the present paper. The
theorems proved by Cesari [3] carry over to the present setting,
moreover, with only the obvious changes in the mesh conditions
required. For the sake of completeness, we shall next restate the
most important of these theorems.

Let .7~ denote the topology on A, ¥ be a topology on A coarser
than 7, and <2 be the o-algebra on A generated by <. In addition
to the axioms (a)-(d) of §1, assume the following four additional
hypotheses.

(H): # is quasi additive on 4 and S[{z[, A] is finite.

(H,): Each interval Ie{I} is .-connected.

(Hy): If G = U,G, is a countable union of sets G, <, then
F(G) £ >.F(G,), and analogously for F,., F'j, and Fy,r =1, «+-, m.

(H): If GeZ, then F(G) = sup F(G') where the supremum is
taken over all sets G'e & whose Z-closure is contained in G, and
analogously for F,, F';, and F;,r =1, --+, m.
Neither (H;) nor (H, is a consequence of the axioms or preceding
hypotheses. Finally, for each subset M of A, define

(M) = inf F(G) , (M) = int F(G) ,
#:(M) = inf F3(@) 1:(M) = int FA(G) ,
V(M) = prr(M) — (M), w(M) = (M), -+, (M)

where the infima are taken over all sets Ge & with M c G.
With the help of (H,) and Theorem (1.4), we see that

‘U,,(M) = 1’“!;—(M) + #;—(M) !
V(M) = (M) = (M)
@) = [Xm0DN” = (M) = 3 e (M)

for each » and M. Moreover, the set functions g, x,., ptf, 17, v,, and
y agree on ¥ with the set functions F, F, F}, F;, &, and &,
respectively.
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ProprosITION 5.1. Under hypotheses (H,)-(H,), the set fumctions
U e 5, and pr,r =1, <« m, are outer measures on A and are
finite measures on £z.

It follows that the set functions v, are signed measures on <&
which are absolutely continuous with respect to the measure p.
Thus we may define the Radon-Nikodym derivatives

0, = d)J,,./d‘U } 0 = (01, R 6m) .

As Cesari observed, the relations v, = p¢f — ;7 need not represent
Jordan decompositions of the signed measures v,. This situation is
rectified by replacing (H,) by the slightly stronger hypothesis

(H)': =z is t-quasi additive on A and S[sz, A] is finite, where ¢

denotes the interior operator for the topology <.
By (4.5), (H))' and (H,) are equivalent to (H)), (H,), and the statement
that F(I) = F(I') for every interval I.

PROPOSITION 5.2. Assume (H,) and (H,)-(H,). Then

(1) v, = pf — p7 represent Jordan decompositions,

(ii) (B) = sup 3%; [3%, t£(B)]'"* = sup >;v(B))l, where B 1is an
arbitrary set im <& and the suprema are takenm over all finite
decompositions B = U;B; of B into sets B; in <7,

(iii) |0l =1 ¢ — a.e. in A.

We turn now to Cesari’s theorem on the existence and representa-
tion of Cesari-Weierstrass integrals. Let T: A — K, x = T(w), be a
mapping from A into a metric space K, and let f: KxFE, — E,
a = f(z, q), be a real-valued function defined on the product space
KxE, Let S*'={qekFE,:|qf =1 be the unit sphere in FE,.
Finally, let w, denote an arbitrary point of I for each interval Ie {I}.

THEOREM 5.3. Suppose

(i) max {diameter T(I): Ie D} < 6(D) for each D € {D},

(ii) f s bounded and wniformly continuwous on KxS™7,

(iil) f(x, tq) = tf(x, q) for all t = 0,2€ K, and q€ K,.
Then, under hypothesis (H,), the real-valued interval function

Z(I) = fIT(w)z(I)]

is quast additive on A, the parameters of Definition (1.1) can be
determined independently of the choice of w;e I, and the value of the
B — C integral

(1,2, 41 = 12, 4)
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18 independent of the choice of w,c I. Further, under the hypotheses

(H)' and (H,)-(H,), the function f|T(w), 6(w)], we A, is p-integrable
on A and

(T, 2), 41 = | F1T0), ow)dze

The proof, given in [2, 3] for K a subset of some Euclidean space,
is valid if K is simply a metric space.
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