STRATIFIABLE SPACES, SEMI-STRATIFIABLE SPACES, AND THEIR RELATION THROUGH MAPPINGS

David Michael Henry
It is shown that the image of a stratifiable space under a pseudo-open compact mapping is semi-stratifiable. By strengthening the mapping from compact to finite-to-one the following results are also obtained. The image of a semi-stratifiable (semi-metric) space under an open finite-to-one mapping is semi-stratifiable (semi-metric).

Notation and terminology will follow that of Dugundji [6]. By a neighborhood of a set A, we will mean an open set containing A, and all mappings will be continuous and surjective.

Definition 1.1. A topological space X is a stratifiable space if, to each open set $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^\infty$ of open subsets of X such that

(a) $\bar{U}_n \subset U$,
(b) $U_n^{n=1} = U$,
(c) $U_n \subset V_n$ whenever $U \subset V$.

Definition 1.2. A topological space X is a semi-stratifiable space if, to each open set $U \subset X$, one can assign a sequence $\{U_n\}_{n=1}^\infty$ of closed subsets of X such that

(a) $U_n^{n=1} = U$,
(b) $U_n \subset V_n$ whenever $U \subset V$.

Ceder [3] introduced M_s-spaces and Borges [2] renamed them “stratifiable”, while Creede [4] studied semi-stratifiable spaces. A correspondence $U \rightarrow \{U_n\}_{n=1}^\infty$ is a stratification (semi-stratification) for the space X whenever it satisfies the conditions of Definition 1.1 (1.2).

Lemma 1.3. A space X is stratifiable if and only if to each closed subset $F \subset X$ one can assign a sequence $\{U_n\}$ of open subsets of X such that

(a) $F \subset U_n$ for each n,
(b) $\cap_{n=1}^\infty \bar{U}_n = F$,
(c) $U_n \subset V_n$ whenever $U \subset V$.

Lemma 1.4. A space X is semi-stratifiable if and only if to each closed set $F \subset X$ one can assign a sequence $\{U_n\}$ of open subsets
of X such that
\begin{enumerate}[(a)]
 \item $F \subseteq U_n$ for each n, \\
 \item $\bigcap_{n=1}^\infty U_n = F$ \\
 \item $U_n \subseteq V_n$ whenever $U \subseteq V$.
\end{enumerate}

A correspondence $F \to \{U_n\}_{n=1}^\infty$ is a dual stratification (semi-stratification) for the space X whenever it satisfies the three conditions of Lemma 1.3 (1.4). For convenience in the proofs which will be encountered, each member in the range of a correspondence will also be called a dual stratification (semi-stratification) of the closed set to which it is associated.

2. Mappings from stratifiable spaces. We now exhibit a natural way in which semi-stratifiable spaces may arise.

Definition 2.1. A mapping $f: X \to Y$ is pseudo-open if for each $y \in Y$ and any neighborhood U of $f^{-1}(y)$, it follows that $y \in \text{int}[f(U)]$.

Definition 2.2. A mapping $f: X \to Y$ is compact if $f^{-1}(y)$ is compact for each $y \in Y$.

Theorem 2.3. If X is stratifiable and $f: X \to Y$ is a pseudo-open compact mapping, then Y is semi-stratifiable.

Proof. Let $F \subseteq Y$ be a closed set. Then $f^{-1}(F)$ is closed in X and, hence, by Lemma 1.3, has a dual stratification $\{U_n\}$. We will show that the correspondence $F \to \{\text{int}[f(U_n)]\}$ is a dual semi-stratification for Y by proving that the collections $\{\text{int}[f(U_n)]\}$ satisfy the requirements of Lemma 1.4.

Part (c) of Lemma 1.4 is easily shown to be satisfied. For if F and G are closed subsets of Y such that $F \subseteq G$, then $f^{-1}(F) \subseteq f^{-1}(G)$, and denoting the dual stratifications of $f^{-1}(F)$ and $f^{-1}(G)$ by $\{U_n\}$ and $\{V_n\}$, respectively, we must have by Lemma 1.3(c) that $U_n \subseteq V_n$ for each n. Therefore, $\text{int}[f(U_n)] \subseteq \text{int}[f(V_n)]$.

With regard to part (a), it follows that $F \subseteq \text{int}[f(U_n)]$ for each n. This is because each U_n is a neighborhood of $f^{-1}(y)$ for every $y \in F$, and therefore $y \in \text{int}[f(U_n)]$ for every $y \in F$ by hypothesis of f being a pseudo-open mapping.

All that remains to be shown is that $\bigcap_{n=1}^\infty \text{int}[f(U_n)] = F$, and this will verify (b). From the preceding paragraph we know that $F \subseteq \bigcap_{n=1}^\infty \text{int}[f(U_n)]$. To get inclusion in the reverse direction, assume $z \in \bigcap_{n=1}^\infty \text{int}[f(U_n)]$. Then $z \in \text{int}[f(U_n)]$ for every n; hence, there exist points $x_n \in U_n$ such that $f(x_n) = z$. Since f is a compact mapping, the sequence $\{x_n\}$ has an accumulation point x. Therefore, given any
neighborhood V of x, there exist infinitely many integers n_i such that $x_{n_i} \in V$. Thus, V has a nonempty intersection with infinitely many U_n, and since we may assume that the collection \{${U_n}$\} is descending, this implies that $V \cap U_n \neq \emptyset$ for every n. That is, $x \in \bigcap_{n=1}^{\infty} \overline{U}_n$. But \{${U_n}$\} was a dual stratification for $f^{-1}(F)$ which implies that $\bigcap_{n=1}^{\infty} \overline{U}_n = f^{-1}(F)$. Thus, $x \in f^{-1}(F)$ and $f(x) \in F$. Furthermore, $f(x) = z$ because $x \in \{x_n\}$ and $\{x_n\} \subset f^{-1}(z) = f^{-1}(z)$. Hence, $z \in F$ and the proof is complete.

Corollary 2.4. If X is a stratifiable space and $f : X \rightarrow Y$ is an open compact mapping, then Y is a metacompact semi-stratifiable space.

Proof. The image of a paracompact space under an open compact mapping is metacompact by Theorem 4 of [1]. Since open mappings are pseudo-open, Y is also semi-stratifiable.

If the converse of Theorem 2.3 is true, then another characterization of semi-stratifiable spaces is available. Also, Corollary 2.4 is an analogue of the well-known result that an open compact image of a metric space is a space having a uniform base (metacompact and developable).

3. Mappings from semi-stratifiable and semi-metrizable spaces

Semi-stratifiable and semi-metrizable spaces are closely related in the sense that a first countable semi-stratifiable space is semi-metrizable, and conversely [4, Corollary 1.4]. Creede showed that semi-stratifiable spaces are preserved under closed mappings, but a similar result is not true for semi-metric spaces since there is no guarantee that the image will be first countable, even if the domain is a separable metric. Nor is the property of being semi-metrizable transmitted under an open mapping, for in this case, Creede [5, Theorem 3.4] has exhibited a non-semistratifiable Hausdorff space which is the open image of a separable metric space. However, by placing a suitable restriction on an open mapping, a class of open mappings can be found in which members preserve both semi-stratifiable and semi-metric spaces.

Theorem 3.1. If X is semi-stratifiable and $f : X \rightarrow Y$ is a pseudo-open finite-to-one mapping, then Y is semi-stratifiable.

Proof. Let $F \subset Y$ be an arbitrary closed set. Then $f^{-1}(F)$ is closed in X and has a dual semi-stratification \{${U_n}$\}. We will use
Lemma 1.4 to show that the correspondence $F \to \{\text{int}[f(U_n)]\}$ is a dual semi-stratification for Y.

Parts (a) and (c) are verified in the same manner as in the proof of Theorem 2.3. To verify (b), assume $z \in \bigcap_{n=1}^{\infty} \text{int}[f(U_n)]$. Then there exist points $x_n \in U_n$ such that $f(x_n) = z$ for every n. Since f is a finite-to-one mapping, there exists an integer m such that $x_m \in \bigcap_{n=1}^{\infty} U_n$. But $\bigcap_{n=1}^{\infty} U_n = f^{-1}(F)$ which implies that $x_m \in f^{-1}(F)$. Hence, $z \in F$ and the proof is complete.

COROLLARY 3.2. The image of a semi-stratifiable space under an open finite-to-one mapping is semi-stratifiable.

COROLLARY 3.3. The image of a semi-metric space under an open finite-to-one mapping is semi-metrizable.

REFERENCES

Received August 26, 1970 and in revised form November 2, 1970. This research was supported by a TCU Research Fellowship and represents a portion of the author’s doctoral dissertation, which was begun the direction of the late Professor H. Tamano and completed under D. R. Traylor and Howard Cook.

Texas Christian University
Mohammad Shafqat Ali and Marvin David Marcus, *On the degree of the minimal polynomial of a commutator operator* .. 561

Howard Anton and William J. Pervin, *Integration on topological semifields* ... 567

Martin Bartelt, *Multipliers and operator algebras on bounded analytic functions* ... 575

Donald Earl Bennett, *Aposyndetic properties of unicoherent continua* 585

James W. Bond, *Lie algebras of genus one and genus two* 591

Mario Borelli, *The cohomology of divisorial varieties* .. 617

Carlos R. Borges, *How to recognize homeomorphisms and isometries* 625

J. C. Breckenridge, *Burkill-Cesari integrals of quasi additive interval functions* ... 635

J. Csima, *A class of counterexamples on permanents* .. 655

Carl Hanson Fitzgerald, *Conformal mappings onto \(\omega \)-swirly domains* 657

Newcomb Greenleaf, *Analytic sheaves on Klein surfaces* 671

G. Goss and Giovanni Viglino, *C-compact and functionally compact spaces* ... 677

Charles Lemuel Hagopian, *Arcwise connectivity of semi-aposyndetic plane continua* .. 683

John Harris and Olga Higgins, *Prime generators with parabolic limits* 687

David Michael Henry, *Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings* .. 697

Raymond D. Holmes, *On contractive semigroups of mappings* 701

Joseph Edmund Kist and P. H. Maserick, *BV-functions on semilattices* 711

Shûichirô Maeda, *On point-free parallelism and Wilcox lattices* 725

Gary L. Musser, *Linear semiprime \((p; q)\) radicals* 749

William Charles Nemitz and Thomas Paul Whaley, *Varieties of implicative semilattices* .. 759

Jaroslav Nešetřil, *A congruence theorem for asymmetric trees* 771

Robert Anthony Nowlan, *A study of H-spaces via left translations* 779

Gert Kjærgaard Pedersen, *Atomic and diffuse functionals on a C*-algebra* 795

Tilak Raj Prabhakar, *On the other set of the biorthogonal polynomials suggested by the Laguerre polynomials* 801

Leland Edward Rogers, *Mutually aposyndetic products of chainable continua* ... 805

Frederick Stern, *An estimate for Wiener integrals connected with squared error in a Fourier series approximation* 813

Leonard Paul Sternbach, *On k-shrinking and k-boundedly complete basic sequences and quasi-reflexive spaces* 817

Pak-Ken Wong, *Modular annihilator \(A^*\)-algebras* 825