ON THE OTHER SET OF THE BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE LAGUERRE POLYNOMIALS

TILAK RAJ PRABHAKAR
ON THE OTHER SET OF THE BIORTHOGONAL POLYNOMIALS SUGGESTED BY THE LAGUERRE POLYNOMIALS

TILAK RAJ PRABHAKAR

Recently Konhauser considered the biorthogonal pair of polynomial sets \{Z_l(x; k)\} and \{Y_l(x; k)\} over \((0, \infty)\) with respect to the weight function \(x^a e^{-x}\) and the basic polynomials \(x^k\) and \(x\). For the polynomials \(Y_l^a(x; k)\), a generating function, some integral representations, two finite sum formulae, an infinite series and a generalized Rodrigues formula are obtained in this paper.

Biorthogonality and some other properties of \(Z_l^a(x; k)\) and \(Y_l^a(x; k)\) for any positive integer \(k\) were discussed by Konhauser ([1], [2]). For \(k = 2\), the polynomials were discussed earlier by Preiser [4]. For \(k = 1\), the polynomials \(Y_l^a(x; k)\), as also \(Z_l^a(x; k)\), reduce to the generalized Laguerre polynomials \(L_l^a(x)\).

In a recent paper [3], we obtained generating functions and other results for the polynomials \(Z_l^a(x; k)\) in \(x^k\). The present paper is concerned only with the polynomials \(Y_l^a(x; k)\) in \(x\) which form the other set of the biorthogonal pair. The results of the paper reduce, when \(k = 1\), to some standard properties of \(L_l^a(x)\). Simplicity of the procedure for deriving the generating relation (2.1) which may be regarded as our principal result, seems to be of some passing interest.

2. A generating function for \(Y_l^a(x; k)\). We begin with the contour integral representation [2, (26)]

\[
(2.1) \quad Y_l^a(x; k) = \left(\frac{k}{2\pi i}\right) \int_C e^{-xt}(t + 1)^{\alpha+k}[t + 1 - 1]^{-(\alpha+1)} dt
\]

where we take \(C\) as a closed contour enclosing \(t = 0\) and lying within \(|t| < 1\). If we make the substitution \(u = 1 - (t+1)^{-k}\), we get another integral representation for \(Y_l^a(x; k)\), viz.

\[
(2.2) \quad Y_l^a(x; k) = (2\pi i)^{-1} \int_{C'} (1 - u)^{-(\alpha+1)/k} \exp[x(1 - (1 - u)^{-1/k})] u^{\alpha-1} du
\]

\(C'\) being a circle with centre \(u = 0\) and a small radius. By standard arguments of complex analysis we obtain the generating relation

\[
(2.3) \quad \sum_{n=0}^{\infty} Y_n^a(x; k) u^n = (1 - u)^{-(\alpha+1)/k} \exp[x(1 - (1 - u)^{-1/k})]
\]

for \(\text{Re} (\alpha + 1) > 0\), \(|u| < 1\) and positive integers \(k\).
Since the generating relation (2.3) is of the form

\[A(u) \exp [xH(u)] = \sum_{n=0}^{\infty} Y_n^\alpha(x; k)u^n, \]

it at once follows ([6], [5]) that the set \(\{Y_n^\alpha(x; k)\} \) is of Sheffer A-type zero. One of the several immediate consequences of this fact [5, Theorems 73-76] is that there exists a sequence \(\{h_i\} \) independent of \(x \) and \(n \) such that

\[\frac{D}{dx} Y_n^\alpha(x; k) = \sum_{m=0}^{n-1} h_m Y_{n-m}^\alpha(x; k). \]

In (2.2) putting \(s = x^k(1 - u)^{-1} \), we are led to still another integral representation

\[Y_n^\alpha(x; k) = (2\pi i)^{-1}e^{x^k(1 - u)^{-1}}\int_{\sigma} e^{s^{n-1}}s^n e^{-(s^{1/k})(s - x^k)^{-n-1}} ds \]

where \(\sigma \) denotes the circle \(|s - x^k| = r \) with small \(r \). Evidently \(\sigma \) may be any small closed contour encircling \(s = x^k \).

Evaluating the integral in (2.5) by the residue theorem, we obtain a generalized Rodrigues formula:

\[Y_n^\alpha(x; k) = (n!)^{-1}e^{x^k(1 - u)^{-1}} [D^n e^{-(s^{1/k})}]_{s=x^k}. \]

For \(k = 1 \), it reduces to the Rodrigues formula for \(L_n^\alpha(x) \).

3. Applications. In this section we apply the generating relation of the previous section to obtain two finite sum formulae for \(Y_n^\alpha(x; k) \) and also to prove a result involving an infinite series of these polynomials.

a. Two finite sums involving \(Y_n^\alpha(x; k) \). From the generating relation (2.3) and the simple relation

\[(1 - u)^{-(\alpha + 1)/k} = (1 - u)^{-(\beta + 1)/k} \sum_{m=0}^{\infty} (m!)^{-1}\left(\frac{\alpha - \beta}{k}\right)_m u^m, \]

if follows that

\[Y_n^\alpha(x; k) = \sum_{m=0}^{n} (m!)^{-1}\left(\frac{\alpha - \beta}{k}\right)_m Y_{n-m}^\beta(x; k) \]

where \(\alpha \) and \(\beta \) are arbitrary.

Also from (2.3), on using

\[
(1 - u)^{-(\alpha + \beta + 1)/k} \exp [(x + y)(1 - (1 - u)^{-1/k})] \\
= (1 - u)^{-(\alpha + 1)/k} \exp [x(1 - (1 - u)^{-1/k})] \cdot (1 - u)^{-(\beta + 1)/k} \\
\times \exp [y(1 - (1 - u)^{-1/k})]
\]

we get that
for arbitrary α and β.

b. A series of polynomials $Y^\alpha_n(x; k)$. We show that

$$
\sum_{m=0}^{\infty} \frac{(n + m)!}{n! m!} Y^\alpha_{n+m}(x; k) u^n
$$

$$
= (1 - u)^{-\alpha+1/k} \exp [x(1 - (1 - u)^{-1/k})] Y^\alpha_n(x(1 - u)^{-1/k}; k).
$$

Using the obvious result

$$
1 - u - v = (1 - u)(1 - v(1 - u)^{-1})
$$

we have that

$$
F(u, v) \equiv (1 - u - v)^{-\alpha+1/k} \exp [x(1 - (1 - u - v)^{-1/k})]
$$

$$
= (1 - u)^{-\alpha+1/k} \exp [x(1 - (1 - u)^{-1/k})] \cdot (1 - v(1 - u)^{-1})^{-\alpha+1/k} \exp [x(1 - u)^{-1/k}(1 - (1 - v(1 - u)^{-1})^{-1/k})]$$

$$
= (1 - u)^{-\alpha+1/k} \exp [x(1 - (1 - u)^{-1/k})] \cdot \sum_{m=0}^{\infty} Y^\alpha_m(x(1 - u)^{-1/k}; k)[v(1 - u)^{-1}]^m,
$$

applying (2.3). But using (2.3), we also find that

$$
F(u, v) = \sum_{n=0}^{\infty} Y^\alpha_n(x; k)(u + v)^n
$$

$$
= \sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{n!}{m!(n - m)!} u^{n-m} v^m Y^\alpha_n(x; k)
$$

$$
= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{(m + n)!}{m! n!} Y^\alpha_{n+m}(x; k) u^m v^m.
$$

Comparing the coefficients of v^m in the two expansions obtained for $F(u, v)$, we obtain (3.3).

This result is analogous to a property possessed by almost all the classical orthogonal polynomials [5; 95(7), 111(1), 120(9), 144(23)] except possibly by the Jacobi polynomials.

REFERENCES

Received June 29, 1970.

Ramjas College
University of Delhi
Mohammad Shafqat Ali and Marvin David Marcus, *On the degree of the minimal polynomial of a commutator operator* ... 561
Howard Anton and William J. Pervin, *Integration on topological semifields* ... 567
Martin Bartelt, *Multipliers and operator algebras on bounded analytic functions* ... 575
Donald Earl Bennett, *Aposyndetic properties of unicoherent continua* 585
James W. Bond, *Lie algebras of genus one and genus two* .. 591
Mario Borelli, *The cohomology of divisorial varieties* .. 617
Carlos R. Borges, *How to recognize homeomorphisms and isometries* 625
J. C. Breckenridge, *Burkill-Cesari integrals of quasi additive interval functions* ... 635
J. Csima, *A class of counterexamples on permanents* .. 655
Carl Hanson Fitzgerald, *Conformal mappings onto ω-swirly domains* 657
Newcomb Greenleaf, *Analytic sheaves on Klein surfaces* .. 671
G. Goss and Giovanni Viglino, *C-compact and functionally compact spaces* ... 677
Charles Lemuel Hagopian, *Arcwise connectivity of semi-aposyndetic plane continua* .. 683
John Harris and Olga Higgins, *Prime generators with parabolic limits* 687
David Michael Henry, *Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings* ... 697
Raymond D. Holmes, *On contractive semigroups of mappings* 701
Shûichirô Maeda, *On point-free parallelism and Wilcox lattices* 725
Gary L. Musser, *Linear semiprime (p; q) radicals* .. 749
William Charles Nemitz and Thomas Paul Whaley, *Varieties of implicative semilattices* .. 759
Jaroslav Nešetřil, *A congruence theorem for asymmetric trees* 771
Robert Anthony Nowlan, *A study of H-spaces via left translations* 779
Gert Kjærgaard Pedersen, *Atomic and diffuse functionals on a C*-algebra* 795
Tilak Raj Prabhakar, *On the other set of the biorthogonal polynomials suggested by the Laguerre polynomials* ... 801
Leland Edward Rogers, *Mutually aposyndetic products of chainable continua* .. 805
Frederick Stern, *An estimate for Wiener integrals connected with squared error in a Fourier series approximation* ... 813
Leonard Paul Sternbach, *On k-shrinking and k-boundedly complete basic sequences and quasi-reflexive spaces* ... 817
Pak-Ken Wong, *Modular annihilator A*-algebras .. 825