ON k-SHRINKING AND k-BOUNDEDLY COMPLETE BASIC SEQUENCES AND QUASI-REFLEXIVE SPACES

LEONARD PAUL STERNBACH
ON k-SHRINKING AND k-BOUNDEDLY COMPLETE BASIC SEQUENCES AND QUASI-REFLEXIVE SPACES

L. STERNBACH

A Banach space X is called quasi-reflexive (of order n) if $\text{codim}_{X^{**}} \pi(X) < +\infty$ ($\text{codim}_{X^{**}} \pi(X) = n$), where π denotes the canonical embedding of X into its second conjugate X^{**}. R. Herman and R. Whitley have shown that every quasi-reflexive space contains an infinite dimensional reflexive subspace. In this paper this result is extended by showing that if X is quasi-reflexive of order n and $0 \leq k \leq n$ then X contains a subspace which is quasi-reflexive of order k.

1. Preliminaries. Throughout this paper X will denote a Banach space, X^* its first conjugate and X^{**} its second conjugate.

The sequence $\{x_i\}$ in X is said to be basic if $\{x_i\}$ is a basis for $[x_i]$ (where $[x_i]$ denotes the closed span of $\{x_i\}$). The sequence of functionals $\{f_i\}$ in $[x_i]^*$ defined by $f_i(x_i) = \delta_{ij}$ (where $\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$) are called the functionals biorthogonal to $\{x_i\}$. We will write $\{x_i, f_i\}$ is a basic sequence. It is well known [10] that the sequence $\{x_i\}$ in X, $x_i \neq 0$ ($i = 1, 2, \cdots$), is basic if and only if there exists $K > 0$ such that

$$(1) \quad \left\| \sum_{i=1}^{n} a_i x_i \right\| \leq K \left\| \sum_{i=1}^{m} a_i x_i \right\|$$

for $1 \leq n \leq m < +\infty$ and any choice of scalars a_1, a_2, \cdots, a_m.

If $\{x_i\}$ is a basic sequence we call the sequence $\{z_n\}$, $z_n \neq 0$ ($n = 1, 2, \cdots$), a block basic sequence [1] of $\{x_i\}$ if there exists a sequence of scalars (a_i) and $0 = p_1 < p_2 < \cdots$ such that $z_n = \sum_{i=p_{n-1}+1}^{p_n} a_i x_i$. By (1), $\{z_n\}$ is a basic sequence.

If A and B are subspaces of X we will write $A \oplus B$ to denote the direct sum of A and B, when for each $x \in [A, B]$ (where $[A, B]$ denotes the closed span of $A \cup B$) there exists unique $\alpha \in A$, $\beta \in B$ such that $x = \alpha + \beta$. If $X = A \oplus B$ and $\dim B = n$ ($\dim B = +\infty$) we write $\text{codim}_X A = n$ ($\text{codim}_X A = +\infty$). We will also write $\text{codim}_X A = +\infty$ if X has no subspace B such that $X = A \oplus B$.

Lemma 1.1. If $X = [A, B]$ where A and B are closed subspaces of X and if $\dim B = n$ and $A \cap B = 0$ then $\text{codim}_X A = n$ and $X = A \oplus B$.

I. Singer has shown [8]:

817
Lemma 1.2. Let \(A \) be a closed subspace of \(X \).

1° The intersection of every \((n + 1)\)-dimensional subspace of \(X \) with \(A \) contains a nonzero element if and only if \(\text{codim}_X A \leq n \).

2° There exists an \(n \)-dimensional subspace of \(X \) whose intersection with \(A \) contains only the zero element if and only if \(\text{codim}_X A \geq n \).

2. \(k \)-shrinking and \(k \)-boundedly complete basic sequences.

Definition. A basic sequence \(\{x_i, f_i\} \) is \(k \)-shrinking if \(\text{codim}_{\{x_i\}} [f_i] = k \) [8].

We note that a basic sequence is \(0 \)-shrinking if and only if it is shrinking [3].

Lemma 2.1. If \(\{x_i, f_i\} \) is a basic sequence and \(f \in [x_i]^* \), then \(f \in [f_i] \) if and only if \(\|f|_{[x_{n+1}, x_{n+2}, \ldots]}\| \to 0 \) as \(n \to \infty \) (where \(f|_{[x_{n+1}, x_{n+2}, \ldots]} \) denotes the functional \(f \) restricted to \([x_{n+1}, x_{n+2}, \ldots]\)).

The proof is in [8].

Lemma 2.2. If \(\{x_i, f_i\} \) is an \(n \)-shrinking basic sequence and \(\{z^i\} \) is a block basic sequence of \(\{x^i\} \) then \(\{z^i\} \) is \(k \)-shrinking for some \(k \leq n \).

Proof. Let \(\{h_i\} \) be the functionals biorthogonal to \(\{z_i\} \). Suppose \([z_i]^* \) contains an \((n + 1)\)-dimensional subspace, spanned by the linearly independent elements \(g_1, g_2, \ldots, g_{n+1} \), which intersects \([h_i]\) in only the zero element. Let \(g'_i \in [x_i]^* \) be such that \(g'_i|_{[z_i]} = g_i \) \((i = 1, 2, \ldots, n + 1)\). Then by Lemma 2.1 the \((n + 1)\)-dimensional subspace of \([x_i]^* \) spanned by \(\{g'_i: 1 \leq i \leq n + 1\} \) intersects \([f_i] \) in only the zero element. This contradicts Lemma 1.2, 2°. Hence by Lemma 1.2, 1°, \(\text{codim}_{\{z_i\}} [h_i] \leq n \). This completes the proof.

Theorem 2.3. If \(\{x_i, f_i\} \) is an \(n \)-shrinking basic sequence and \(0 \leq k \leq n \) then there is a \(k \)-shrinking block basic sequence of \(\{x_i\} \).

To prove this theorem we need two lemmas.

Lemma 2.4. If \(\{x_i, f_i\} \) is a basic sequence and \(\{g_i: 1 \leq i \leq n\} \) is a linearly independent set in \([x_i]^* \) such that \(\{g_i: 1 \leq i \leq n\} \cap [f_i] = 0 \) then there is a \(\delta > 0 \) such that

\[
(2) \quad \left\| g_j |_{[x^i]_{i=m}^n} \cap \bigcap_{i \neq j} g_i^{-1} (0) \right\| > \delta
\]

for \(m = 1, 2, \ldots \) and \(j = 1, 2, \ldots, n \).
Proof. Without loss of generality let $j = n$. Let
\[B_m = [f_1, \ldots, f_{m-1}, g_1, \ldots, g_{n-1}]^L. \]
From the isometry between $[x_i]^*/[g_1, g_2, \ldots, g_{n-1}, f_1, f_2, \ldots, f_{m-1}]$ and B_m^* [9] we have
\[\|g_n \| B_m \| = \text{dist} (g_n, [g_1, g_2, \ldots, g_{n-1}, f_1, f_2, \ldots, f_{m-1}) \]
\[\geq \text{dist} (g_n, [g_1, g_2, \ldots, g_{n-1}, f_1, f_2, \ldots]) > \delta > 0 \]
for $m = 1, 2, \ldots$ and for some δ since $g_n \in [g_1, g_2, \ldots, g_{n-1}, f_1, f_2, \ldots]$.

Lemma 2.5. Let $\{x_i, f_i\}$ be a basic sequence and $\|x_i\| > \delta > 0$ for $i = 1, 2, \ldots$ for some δ. If $f \in [x_i]^*$ and $\sum_{i=1}^{\infty} |f(x_i)| < +\infty$ then $\|f \| [x_{n+1}, x_{n+2}, \ldots] \| \to 0$ as $n \to \infty$.

Proof. Let K satisfy (1) for the sequence $\{x_i\}$. Thus, since $|f_i(x)| < 2K\delta^{-1}$ where $\|x\| \leq 1$,
\[\sup \left\{ \left| \frac{1}{i-m+1} \sum_{i=m+1}^{\infty} f_i(x)x_i \right| : x \in [x_{n+1}, x_{n+2}, \ldots], \|x\| \leq 1 \right\} \]
\[\leq 2K\delta^{-1} \sum_{i=m+1}^{\infty} |f(x_i)|. \]

Proof of theorem. Since the basic sequence $\{x_i, f_i\}$ is n-shrinking there exists a linearly independent set $\{g_i : 1 \leq i \leq n\} \subseteq [x_i]^*$ such that
\[(3) \quad [x_i]^* = [f_i] \oplus [g_i : 1 \leq i \leq n]. \]

By (2) in Lemma 2.4 we can construct a block basic sequence $\{y_i\}$ of $\{x_i\}$ with the following properties:
\[(4) \quad \frac{1}{2} < \|y_i\| < \frac{3}{2}, i = 1, 2, \ldots, \]
\[(5) \quad |g_i(y_{nq+i})| > \delta > 0 \quad \text{for some } \delta, \text{ for } i = 1, 2, \ldots, n \]
and $q = 1, 2, \ldots$, and
\[(6) \quad |g_i(y_{nq+i})| < 1/2^q \quad \text{for } i \neq j. \]

Let $1 \leq k \leq n$ and let $\{z_i\}$ be a subsequence of $\{y_i\}$ consisting of the elements of the form y_{nq+i} where $i = 1, 2, \ldots, k$ and $q = 1, 2, \ldots$. Let $\{h_i\}$ be the sequence of functionals biorthogonal to $\{z_i\}$. If $f \in [f_i]$ then, by Lemma 2.1, $f \| [z_i] \| [h_i]$. Let $g_j = g_j \| [z_i]$ $(j = 1, 2, \ldots, n)$. Since every functional in $[z_i]^*$ is the restriction of some functional in $[x_i]^*$ we conclude by (3) that
\[(7) \quad [z_i]^* = [g_i', g_2', \ldots, g_n', h_1, h_2, \ldots]. \]
From Lemmas 2.1 and 2.5 and (4), (6) above it follows that $g_i' \in [h_i]$,
Assume there exist scalars $\alpha_i, \alpha_2, \ldots, \alpha_k$ and $h \in [h_i]$ such that $\sum_{i=1}^{k} \alpha_i g'_i = h$. Hence

$$\alpha_i g'_i = h - \sum_{i=2}^{k} \alpha_i g'_i.$$

But by (5) and (4), $\|g'_i[y_{ap+1}: p \geq m]\| > \delta$ for $m = 1, 2, \ldots$. Also by (4), (6) and Lemma 2.1, $\|\tilde{h} - \sum_{i=2}^{k} \alpha_i g'_i[y_{ap+1}: p \geq m]\| \to 0$ as $m \to \infty$. Therefore $\alpha_i = 0$. Similarly $\alpha_i = 0$ for $i = 2, 3, \ldots, k$. Thus we have shown that the set $\{g'_i: 1 \leq i \leq k\}$ is linearly independent and $[g'_i: 1 \leq i \leq k] \cap [h_i] = 0$. Thus by (7) and Lemma 1.1 we have codim$_B[h_i] = k$ and hence $\{z_i\}$ is k-shrinking.

The case $k = 0$ follows from [1, Thm. 3, p. 154] and the fact that a quasi-reflexive space contains an infinite dimensional reflexive subspace [5].

Definition. Let $\{x_i\}$ be a basic sequence. We define two spaces of sequences $B(x_i)$ and $C(x_i)$ by

$$B(x_i) = \left\{(a_i x_i): \sup_n \left\| \sum_{i=1}^{n} a_i x_i \right\| < +\infty \right\}$$

and

$$C(x_i) = \left\{(a_i x_i): \sum_{i=1}^{\infty} a_i x_i \text{ exists} \right\}.$$

Define a norm on $B(x_i)$ and $C(x_i)$ by $\| (a_i x_i) \| = \sup_n \| \sum_{i=1}^{n} a_i x_i \|$. With this norm $B(x_i)$ and $C(x_i)$ are Banach spaces and $B(x_i) \supseteq C(x_i)$. We say $\{x_i\}$ is k-boundedly complete if codim$_B[C(x_i)] = k$ [8].

We note that a basic sequence $\{x_i\}$ is 0-boundedly complete if and only if $\{x_i\}$ is boundedly complete [3].

Lemma 2.6. If $\{x_i\}$ is an n-boundedly complete basic sequence and $\{z_i\}$ is a block basic sequence of $\{x_i\}$ then $\{z_i\}$ is k-boundedly complete for some $k \leq n$.

Proof. Assume $B(z_i)$ has an $(n + 1)$-dimensional subspace W which intersects $C(z_i)$ in only the zero element. But then $\tilde{\psi}(W)$ would be an $(n + 1)$-dimensional subspace of $B(x_i)$ which intersects $C(x_i)$ in only the zero element, where $\tilde{\psi}$ denotes the natural embedding of $B(z_i)$ into $B(x_i)$ (i.e., $\tilde{\psi}(a_i z_i) = (b_i x_i)$ if for each n there is an $m \geq n$ such that $\sum_{i=1}^{n} a_i z_i = \sum_{i=1}^{m} b_i x_i$). This contradicts Lemma 1.2.1$^\circ$. By Lemma 1.2.1$^\circ$, codim$_B[z_i] C(z_i) \leq n$.

Theorem 2.7. Let $\{x_i\}$ be an n-boundedly complete basic sequence for $n \geq 1$. Then for $k \in \{0, 1\}$ there is a block basic sequence $\{z_i\}$ of $\{x_i\}$ which is k-boundedly complete.
Proof. For the case $k = 1$, it is clearly sufficient to show that
\{x_i\} admits a m-boundedly complete block basic sequence for some m,
$1 \leq m < n$ whenever $n > 1$. Since \{x_i\} is not O-boundedly complete
there is an element $(a, x_i) \in B(x_i) - C(x_i)$. Hence there exists
$0 = p_1 < p_2 < \cdots$ and $\delta > 0$ such that if
\[
y_n = \sum_{i=p_n+1}^{p_{n+1}} a_i \langle x_i, \|y_n\| > \delta \text{ for } n = 1, 2, \cdots.
\]
By Lemma 2.6 \{y_d\} is m-boundedly complete for some $m \leq n$.
Assume $m = n$. Then there exists
\[
\{(b_{ki}, y_i) : 1 \leq k \leq n - 1\} \subseteq B(y_i) - C(y_i)
\]
such that $B(y_i) = C(y_i) \oplus \{(b_{ki}, y_i) : 1 \leq k \leq n - 1\} \oplus \{y_d\}$. By (1) there
exists $M > 0$ such that $\|b_{ki}\| < M$ and thus $\|b_{ki}\| \leq M^{\delta^{-1}} (i = 1, 2, \cdots, 1 \leq k \leq n - 1)$. Hence there is an increasing sequence of
positive integers (n_i) and b_1, \cdots, b_{n-1} such that
$\lim_{i \to \infty} b_{kn_i} = b_k$ and $|b_k - b_{kn_i}| < 1/2^i (i = 1, 2, \cdots, 1 \leq k \leq n - 1)$. Let $c_{ki} = b_{ki} - b_i$ and
d_{ki} = c_{ki} - c_{ki}' where $c_{ki}' = c_{ki}$ for $j \in \{n_i\}$ and $c_{ki}' = 0$ for $j \notin \{n_i\}$. Then
\[(8) \quad B(y_i) = C(y_i) \oplus \{(d_{ki}, y_i) : 1 \leq k \leq n - 1\} \oplus \{y_d\}
\]
and $d_{kj} = 0$ for $j \notin \{n_i\}$. Let \{m_i\} be the sequence of positive integers complementary to \{n_i\}.
We will show that \{y_{m_i}\} is $(n - 1)$-boundedly complete. Let
$(e_{m_i}, y_{m_i}) \in B(y_{m_i})$. Therefore $(e_{m_i}, y_{m_i}) \in B(y_i)$ where $e_j = 0$ if $j \notin \{m_i\}$. Thus
by (8) there exist scalars $\alpha_i, \alpha_z, \cdots, \alpha_n$ and $(u_i, y_i) \in C(y_i)$ such that
\[(e_{m_i}, y_{m_i}) = (u_{m_i}, y_{m_i}) + \sum_{k=1}^{n-1} \alpha_k (d_{ki}, y_i) + \alpha_n (y_i).
\]
Thus we obtain $\alpha_n = 0$ and $u_j = 0$ for $j \in m_i$. Hence
\[(e_{m_i}, y_{m_i}) = (u_{m_i}, y_{m_i}) + \sum_{k=1}^{n-1} \alpha_k (d_{km_i}, y_{m_i}).
\]
Thus by Lemma 1.1, \{y_{m_i}\} is $(n - 1)$-boundedly complete.

The existence of a 0-boundedly complete block basic sequence
again follows from [1, Thm. 3, p. 54] and [5].

Lemma 2.8. Let the basic sequence \{x_i\} be 1-shrinking and
1-boundedly complete. Then there is a block basic sequence \{z_i\} of \{x_i\}
which is either 1-shrinking and 0-boundedly complete or 0-shrinking
and 1-boundedly complete.

Proof. Let \{y_i\} be the block basic sequence constructed as in
Theorem 2.7. Then \{y_i\} is 1-boundedly complete. If \{y_i\} is 0-shrinking
we are done. If not, then by Lemma 2.2, \(\{y_i\} \) is 1-shrinking. Thus by Lemma 2.1 there exists \(f \in [y_i]^* \) and \(0 = p_1 < q_1 < p_2 < q_2 < \cdots \) such that

\[
(9) \quad \|f\|_{[y_i; p_\alpha \leq i \leq q_\alpha]} > \delta > 0, \text{ for some } \delta \text{ and } n = 1, 2, \cdots.
\]

As in the proof of Theorem 2.7, the subsequence \(\{z_i\} \) of \(\{y_i\} \), formed by those elements in \([y_i; p_\alpha \leq i \leq q_\alpha] \) (\(n = 1, 2, \cdots \)) is 0-boundedly complete. But by (9) \(\{z_i\} \) is 1-shrinking.

For other results on \(k \)-shrinking and \(k \)-boundedly complete basic sequences see [4].

3. Quasi-reflexive spaces. We will write \(\text{Ord} (X) = n \) to mean \(X \) is quasi-reflexive of order \(n \).

Civin and Yood have shown [2]:

Theorem 3.1. If \(\text{Ord} (X) = n \) and \(Y \) is a closed subspace of \(X \) then \(Y \) and the quotient space \(X/Y \) are quasi-reflexive and \(\text{Ord} (X) = \text{Ord} (Y) + \text{Ord} (X/Y) \)

I. Singer has shown [8]:

Theorem 3.2. If \(\{x_i\} \) is a basic sequence then \(\text{Ord} ([x_i]) = n \) if and only if there exist natural numbers \(k_1 \) and \(k_2 \) such that \(\{x_i\} \) is \(k_1 \)-shrinking and \(k_2 \)-boundedly complete and \(n = k_1 + k_2 \).

Theorem 3.3. If \(\{x_i\} \) is a basic sequence and \(\text{Ord} ([x_i]) = n > 0 \) then there exist block basic sequences \(\{y_i\} \) and \(\{z_i\} \) of \(\{x_i\} \) such that \(\text{Ord} ([y_i]) = 1 \) and \(\text{Ord} ([z_i]) = 0 \).

Proof. The existence of \(\{z_i\} \) such that \(\text{Ord} ([z_i]) = 0 \) again follows from [1] and [5].

By Theorem 2.3 and Lemma 2.6 there exists a block basic sequence \(\{y_i\} \) of \(\{x_i\} \) which is 1-shrinking and \(k \)-boundedly complete for some \(k \leq n \). If \(k = 0 \) then \(\text{Ord} ([y_i]) = 1 \) by Theorem 3.2. If \(k > 0 \) there exists, by Lemma 2.6, a block basic sequence \(\{y'_i\} \) of \(\{y_i\} \) which is 1-boundedly complete. If \(\{y'_i\} \) is 0-shrinking we are done. If not then \(\{y'_i\} \) is 1-shrinking and we now apply Lemma 2.8 to complete the proof.

Theorem 3.4. Let \(\text{Ord} (X) = n > 0 \). There exists separable subspaces \(Y_0, Y_1, \cdots, Y_n \) of \(X \) such that \(\text{Ord} (Y_k) = k \) and \(Y_k \subseteq Y_{k+1} \) for \(k = 0, 1, \cdots, n - 1 \).
Proof. By [6, p. 546] a quasi-reflexive space of order n contains a basic sequence $\{x_i\}$ which is n-shrinking. Thus $\{x_i\}$ is 0-boundedly complete. Let $Y_n = [x_i]$. Thus by Theorem 2.2, there is a block basic sequence of $\{x_i\}$ which is $(n-1)$-shrinking and 0-boundedly complete. Hence there exists Y_{n-1} such that $\text{Ord}(Y_{n-1}) = n - 1$ and $Y_n \supseteq Y_{n-1}$. We construct $Y_{n-2}, Y_{n-3}, \ldots, Y_0$ similarly.

We note that we have also shown that each Y_k has a basis.

The author would like to thank the referee for his helpful suggestions.

REFERENCES

Received September 2, 1969 and in revised form September 15, 1970.

THE UNIVERSITY OF SOUTH CAROLINA
Mohammad Shafqat Ali and Marvin David Marcus, *On the degree of the minimal polynomial of a commutator operator* .. 561
Howard Anton and William J. Pervin, *Integration on topological semifields* ... 567
Martin Bartelt, *Multipliers and operator algebras on bounded analytic functions* .. 575
Donald Earl Bennett, *Aposyndetic properties of unicoherent continua* 585
James W. Bond, *Lie algebras of genus one and genus two* .. 591
Mario Borelli, *The cohomology of divisorial varieties* .. 617
Carlos R. Borges, *How to recognize homeomorphisms and isometries* 625
J. C. Breckenridge, *Burkill-Cesari integrals of quasi additive interval functions* 635
J. Csima, *A class of counterexamples on permanents* 655
Carl Hanson Fitzgerald, *Conformal mappings onto ω-swirly domains* 657
Newcomb Greenleaf, *Analytic sheaves on Klein surfaces* .. 671
G. Goss and Giovanni Viglino, *C-compact and functionally compact spaces* 677
Charles Lemuel Hagopian, *Arcwise connectivity of semi-aposyndetic plane continua* .. 683
John Harris and Olga Higgins, *Prime generators with parabolic limits* 687
David Michael Henry, *Stratifiable spaces, semi-stratifiable spaces, and their relation through mappings* .. 697
Raymond D. Holmes, *On contractive semigroups of mappings* 701
Shûichirô Maeda, *On point-free parallelism and Wilcox lattices* 725
Gary L. Musser, *Linear semiprime (p; q) radicals* .. 749
William Charles Nemitz and Thomas Paul Whaley, *Varieties of implicative semilattices* .. 759
Jaroslav Nešetřil, *A congruence theorem for asymmetric trees* 771
Robert Anthony Nowlan, *A study of H-spaces via left translations* 779
Gert Kjærgaard Pedersen, *Atomic and diffuse functionals on a C*-algebra* 795
Tilak Raj Prabhakar, *On the other set of the biorthogonal polynomials suggested by the Laguerre polynomials* .. 801
Leland Edward Rogers, *Mutually aposyndetic products of chainable continua* 805
Frederick Stern, *An estimate for Wiener integrals connected with squared error in a Fourier series approximation* 813
Leonard Paul Sternbach, *On k-shrinking and k-boundedly complete basic sequences and quasi-reflexive spaces* 817
Pak-Ken Wong, *Modular annihilator A*-algebras ... 825