Vol. 38, No. 1, 1971

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Counterexamples to a conjecture of G. N. de Oliveira

Darald Joe Hartfiel

Vol. 38 (1971), No. 1, 67–68
Abstract

G. N. de Oliveira gives the following coniecture.

Conjecture. Let A be an n×n doubly stochastic irreducible matrix. If n is even, then f(z) = perm(Iz A) has no real roots; if n is odd, then f(z) = perm(Iz A) has one and only one real root.

In this paper we give counter examples to this conjecture.

Mathematical Subject Classification 2000
Primary: 15A51
Milestones
Received: 10 July 1970
Published: 1 July 1971
Authors
Darald Joe Hartfiel