Vol. 38, No. 1, 1971

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Counterexamples to a conjecture of G. N. de Oliveira

Darald Joe Hartfiel

Vol. 38 (1971), No. 1, 67–68
Abstract

G. N. de Oliveira gives the following coniecture.

Conjecture. Let A be an n×n doubly stochastic irreducible matrix. If n is even, then f(z) = perm(Iz A) has no real roots; if n is odd, then f(z) = perm(Iz A) has one and only one real root.

In this paper we give counter examples to this conjecture.

Mathematical Subject Classification 2000
Primary: 15A51
Milestones
Received: 10 July 1970
Published: 1 July 1971
Authors
Darald Joe Hartfiel