Vol. 38, No. 1, 1971

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1  2
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Blocks and F-class algebras of finite groups

William Francis Reynolds

Vol. 38 (1971), No. 1, 193–205
Abstract

For an arbitrary field F of characteristic p 0, the usual partitioning of the p-regular elements of a finite group G into F-classes (F-conjugacy classes) is extended to all of G in such a way that the F-classes form a basis of a subalgebra Y of the class algebra Z of G over F. The primitive idempotents of E FY , where E is an algebraic closure of F, are the same as those of Z. By means of this fact it is shown that if p > 0 the number of blocks of G over F with a given defect group D is not greater than the number of p-regular F-classes L of G with defect group D such that the F-class sum of L in Z is not nilpotent; equality holds if Op,p,p(G) = G or if D is Sylow in G. The results are generalized to arbitrary twisted group algebras of G over F.

Mathematical Subject Classification 2000
Primary: 20C05
Milestones
Received: 10 October 1970
Published: 1 July 1971
Authors
William Francis Reynolds