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In this paper Banach algebras A which are ideals in a
Banach algebra B are studied. The main results concern the
relationship between the norms of A and B and the relation-
ship between the closed ideals of A and B.

There are many examples of Banach algebras in analysis which
are ideals in another Banach algebra. When G is a locally compact
group, then the Segal algebras which are studied in H. Reiter's book
[7] are ideals in &{G). J Cigler considers more general Banach
algebras which are ideals in &{G) in [2]. In the theory of operators
on a Hubert space Sίf, the Cp algebras discussed in [4, pp. 1088-
1119] are ideals in the algebra of compact operators on Sίf (d is
the ideal of trace class operators and C2 the ideal of Hilbert-Schmidt
operators). Also as we point out in §4, every full Hubert algebra
is a dense *-ideal in a I?*-algebra.

When A is a Banach algebra which is an ideal in a Banach
algebra B, we consider the relationship between the algebras A and
B. First we prove that the norms of A and B are related by certain
inequalities. As a consequence, if B is semi-simple, then A is a left
and right Banach module of B [Theorem 2.3]. Also in this case our
results show that A is an abstract Segal algebra with respect to B
as defined by J. T. Burnham in [1] Secondly we relate the closed
left and right ideals of A to those of B. Of special interest here
is the case where A contains a bounded approximate identity of B
[Theorem 3.4]. Finally in §4 we consider the special case where A
is a *~ideal in a I?*-algebra B. The results of this section apply to
full Hubert algebras.

l Preliminaries and notation. When B is any Banach algebra,
we denote the Banach algebra norm on B by || \\B. If M is a closed
left ideal in the Banach algebra J?, B - M = {b + M \ b e B) is the
quotient module B modulo M. B — Mφ is normed by the norm

||δ + Λf ||i - inf {||6 - m\\B \ meM} .

Throughout this paper A is a given Banach algebra. We always use
the term "ideal" to mean two-sided ideal. A is usually an ideal in
a Banach algebra B. In this case when E is a subset of A, cl(J57) is
the closure of E in B.
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At this point we prove a proposition of a purely algebraic nature
which is useful in what follows.

PROPOSITION 1.1. Assume that R is a ring and I is an ideal of
R. Assume that M is a modular maximal left [right] ideal of R
such that Iς£M. Then

(1) / acts strictly irreducibly on R — M, and
(2) IΠ M is a maximal modular left [right] ideal of I.

Proof. We prove (1) first. Assume ueR has the property R(l —
u)aM. Let K = {b e R | Ib c M}. Z is a left ideal of R, Ma K,
and uίK (if ueK, IaM> a contradiction). Therefore K = M. It
follows by the definition of K, that when b& M, Ib + M properly con-
tains M9 and therefore Ib + M = R. This suffices to prove (1).

Now consider I f) M. If a e I and au e M> then a e IΠ M. There-
fore / Π M = {a e 11 a(u + M) = 0 + M}. By (1) we can choose vel
such that viu + M) = u + M. Then /(I — v) c / Π M by the charac-
terization of / Π M given above. Assume that ae /, α £ IΠ M. Given
be I we can choose c e / such that 6 — m e Λ ί by (1). Then b =
ca+ (b-ca)ela + I Π M. Therefore / = /α + / Π M. Which proves (2).

2* The basic norm inequalities* In this section we assume
that A is a subalgebra of a Banach algebra 5. There is a close
connection between certain inequalities involving || ||^ and || | |β and
the algebraic property that A is an ideal in some closed subalgebra
of B. The next proposition has been noted by other authors.

PROPOSITION 2.1. Assume that
(1) t h e r e e x i s t s D > 0 s u c h t h a t D \ \ a \ \ A ^ \\a\\B f o r a l l a e A ,

a n d
( 2 ) there exists C > 0 such that \\ab\\A tί C max{\\a\\A\\b\\B,

\\a\\B\\b\\Λ} for all a, be A.
Then A is an ideal in c\(A).

Proof. Assume t h a t aeA and bec\(A) are given. Choose {δΛ}c
A s u c h t h a t \\bn - & I U - 0 . T h e n \\abn - abm\\A ^ C \\a\\A \\bn - bm\\By

so that {abn} is Cauchy in A. Then there exists ce A such that
\\a>K — C \ \ A — * 0 % ( 1 ) \ \ a K — o | U — > 0 , a n d s i n c e \\abn — ab\\B ~ > 0 ,
we have ab = c. This proves that A is a right ideal of B. The
proof that A is a left ideal of B is similar.

Together the next two results establish a converse to Proposition
2.1.
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PROPOSITION 2.2. Assume that A is a dense ideal in a semi-

simple Banach algebra B. Then there exists D > 0 such that D\\a\\A

^ ||α|U for att a e A.

Proof. We prove that the embedding (A, |] \\A) -> (B, || \\B) is a
closed, and hence continuous, map. Assume that {an} a A, be B,
l|α«lL—»0 and \\an - b{\B-+ 0. Let M be a modular maximal left
ideal of B with AςtM, and let u e B have the property that B(l — u)c:
M. Given aeA, let Tσ act on B - M by Tα(δ + M) = ab + M. By
Proposition 1.1 (1), α —* Tα is a stately irreducible representation of
A on B — M. Let P be the kernel of this representation. P is a
primitive ideal of A, and therefore P is closed in A. A/P is a Banach
algebra with norm \\a + P||'A, aeA. Given α e i , define Sα+P(b+Λf) =
αδ + j|f, δ e M. Then α + P —> 5α + P is a faithful strictly irreducible
representation of A/P into the bounded operators on B — M. Then
a theorem of B. E. Johnson [6, Theorem 1, p. 537] implies that a +
p—*Sa+r is a continuous map. Since ||αn + P||̂ -~>0, then ||αΛt6 + Λf ||i =
i|Sαn+p(u + Λf)||i-^0. Also |j(αΛ-6)(u + Λf)Hi-^O. It follows that
δu + M = 0, and thus b = bu + (δ — bu) e M. Then δ must be in
every modular maximal left ideal of B, so that by the semi-simplicity
of B, b = 0.

THEOREM 2.3. Assume that A is an ideal in a Banach algebra
B. Assume that there exists D > 0 such that D\\a\\A >̂ | | α | | β for all
aeA. Then there exists C > 0 such that

(1) \\ab\\A S C\\a\\A \\b\\B for all α e A, 6 e B , and
( 2 ) jjαδlL S C\\a\\B \\b\\A for all aeB, be A .

Proof. We prove only (1). Let La, ae Ahe the operator mapping
B into A given by La(b) — ab, beB. We prove that La is continuous
by showing that La is a closed map from B into A. Assume that
{6 } c B , c e A , a n d | | 6 J U - > 0 , | | L β ( 6 Λ ) - c | U - > 0 . Then \\abn-c\\A^0,
and since the A-norm dominates the P-norm, ||α6Λ — c\\B —> 0. Also
l |αb Λ | | B -*0, a n ( i therefore c = 0.

Now since La is continuous, for each aeA there exists Mα > 0
such that \\ab\\A<= Ma\\b\\B, beB. Given beB, let JS6 be the operator
mapping A into A defined by Rb(a) = ab, ae A. We prove that Rb

is a closed, and hence continuous, map from A to A. Assume that
k l c A , C G A , I K 1 U - 0 , and \\Rh(a%) - cj|A~> 0. Then | |α n[[B->0
and ||αΛδ - c | | B ->0. Thus c = 0. Therefore for each δe J?, Rb is a
continuous operator. Set \Rb\ = sup {|| 2?6(α) |U I α e A , | |α | | ^ g 1}. Let
Sf ^{Rb\beB, \\b\\B<,V\. We have that \\Rb{a)\\B ^ Ma for each
aeA and ί2δ e S^ Then by the Uniform Boundedness Theorem there
exists C> 0 such that |jR6| g C for all -K,e ^ r Thus
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for all aeA, aφ 0, and all beB, \\b\\B <; 1. Finally it follows that

for all aeA and be B.
We remark that if A satisfies the hypotheses of Theorem 2.3,

then by (1) and (2) A is a left and right Banach module over B; see
[5, Definition (32.14), p. 263].

3* Closed left and right ideals* Now assuming that A is an
ideal of B, we relate the closed left and right ideals of A to those
of B. The most comprehensive results in this direction are obtained
when A has an approximate identity. However in the general case
we do have the following theorem concerning modular closed left
and right ideals of A.

THEOREM 3.1. Assume that A is a dense ideal of a Banach
algebra B and that there exists D > 0 such that D\\a\\A ^ \\a\\B for
all aeA. Let M be a closed modular left [right] ideal of A. Then
M= And(Λf).

Proof. By Theorem2.3 there exists C>0 such that ||αδ|
for all a, be A. Assume that M is a closed modular left ideal of
A. Then there exists ueA such that A(l — u)dM. Given aeA,
a — au + (α — au) and a — aueM. Therefore \\a+M\\Ά— \\au + M\\'A.
Also \\au + M\\Ά ̂  \\au — bu\\A for any beM (note t h a t when beM,
then bueM). Therefore for all beM,

\\a + M\\'A ^ \\au - bu\\A ^ C\\a - b\\B \\u\\A .

Then \\a + M\\'A ^ (C\\u\\A) \\a + M\\'B.
Assume t h a t ae AΓ)cl(M). Choose {an}czM such t h a t \\an — a\\B—>

0. Then \\(an - a) + M\\B ->0, and therefore \\{an - a) + M||i — 0.
Thus there exists {bn}czM such that \\(an — a) — bn\\A—»0. Since
{an — bn}aM, we have aeM. Thus A Π cl(iW) c M. The opposite
inclusion is immediate, so that M = A Π cl(M).

The next theorem provides a sufficient condition on A that every
closed left [right] ideal of A is the intersection of A with a closed
left [right] ideal of B. This theorem is proved by J. T Burnham in
[1, Theorem 1.1] (Theorem 2.3 removes one of Burnham's hypotheses).

THEOREM 3.2. Assume that A is a dense ideal of B with the
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property that there exists D>0 such that D\\a\\A^ \\a\\B for all ae A.

Furthermore assume that for all ae A, ae Aa [a e aA] where "—"

denotes closure in A. Then
( 1 ) if N is a closed left [right] ideal of B, then N D A is a

closed left [right] ideal of A, and
(2) if M is a closed left [right] ideal of A, then M=A Π cl(ikf).

In many of the examples in harmonic analysis A is an ideal in
Lι(G) which contains a bounded approximate identity of Lι(G). We
prove that under these circumstances A has an approximate identity.

PROPOSITION 3.3. Assume that A is a dense ideal in a Banach
algebra B and that there exists D > 0 such that D\\a\\A^ | |α|U for
all ae A. Then if {ea} is a left [right] bounded approximate identity
for B and {ea} c A, {ea} is a left [right] approximate identity for A.

Proof. By Theorem 2.3 A is a left Banach module of B. There-
fore by Cohen's Theorem [5, Theorem (32.22), pp. [268] given aeA
there exists be B and ce A such that a = be. Then

\\bc - e a b c \ \ A ^ C\\b - e a b \ \ B \ \ c \ \ A - + O .

Therefore {ea} is a left approximate identity for A.
Combining several previous results, we have the following theorem

which applies to many interesting examples in harmonic analysis.

THEOREM 3.4. Assume that A is a dense ideal in a semi-simple
Banach algebra B. Assume that A contains a bounded approximate
identity of J5. Then

(1) for every closed left [right] ideal M of A, M= A Π cl(M),
and

(2) if B has the property that every proper closed left [right]
ideal of B is contained in a modular maximal left [right] ideal of
B, then A has the property that every proper closed left [right] ideal
of A is contained in a modular maximal left [right] ideal of A,

Proof. (1) follows from Proposition 2.2, Proposition 3.3, and
Theorem 3.2. Then (1) and Proposition 1.1 imply (2).

4* *-ideals in a J3-*algebra* Assume that A is a full Hubert
algebra; see [9]. Then A is a pre-Hilbert space with the corre-
sponding (linear) norm || ||2 on A. Also given aeA, the operator
Ua defined by Ua{b) — ab for be A is a bounded operator on (A, || | |2).
For aeA left |α | denote the operator bound of Ua. Then | | is an
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algebra norm on A with the i?*-property. Let \\a\\A = | |α | | 2 + \a\.
M. Rieffel proves that 11 - j(̂  is a complete algebra norm on A [9,
Proposition 1.15, p. 270]. Certainly | | α | U ^ > | α | for all aeA. Also
for all α, be A,

\\ab\\A = \\ab\\2+ \ab\

S \a\\\b\\A.

Similarly \\ab\\A ̂  | |α|U |&| for all α, be A. Let B be the completion
of A in the norm ( |. B is a Z?*-algebra and A is a *-subalgebra of
B. Then by Proposition 2.1 A is a *-ideal in B. Therefore every
full Hubert algebra is a *-ideal in a £*-algebra. In this section we
consider briefly algebras A which are *~ideals in J3*-algebras.

The next proposition is true in much more generality than we
present here. When C is a Banach algebra, we denote the spectrum
in C of an element aeC by Spc(a). Also for aeC we let

vc{a) =inf(| |α»| |!/ ) .

PROPOSITION 4.1 Assume that A is a dense ""-ideal in a semi-
simple Banach ^-algebra B. Then every *-representation of A on a
Hilbert space 3$f extends uniquely to a *-representation of B on

Proof. First note that by Johnson's Uniqueness of Norm Theorem
[6, Theorem 2, p. 539] there exists K > 0 such that

\ \ b * \ \ B S K * \ \ b \ \ B f o r a l l b e B .

Assume that a —> π(a) is a ^-representation of A into the bounded
operators on a Hilbert space £έf. If T is a bounded operator on
J%f, we denote the operator norm of T by \T\. By [8, Lemma (4.4.6),
p. 208] \π(a)\2 ^ vA(a*a) for all aeA. Since A is an ideal of B,
then SpA(a) U {0} = SpB(a) U {0} for all aeA. Then \π{a) |2 ^ vA{a*a) =
vB(a*a) ^ | |α*α | | 5 ^ K2 \\a\\2

B for all aeA. Thus |τr(α) | ^ Z" | |α|U for
all aeA. Therefore π extends uniquely to a *-representation of B
on 3ί?.

Now we prove the main result of this section.

THEOREM 4.2. Assume that A is a dense *-ideal in a B*-algebra
B. Then

(1) A has an approximate identity consisting of self-adjoint
elements.

(2) For every closed left [right] ideal M of A, M = A Π cl(Λf).
(3) Every proper closed left [right] ideal M of A in the inter-
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section of modular maximal left [right] ideals of A.
(4) Every *-representation of A on a Hilbert space £ίf extends

uniquely to a *-representation of B on

Proof. Construct the net {dλ}, λ e ^ , in 4 as in the proof of
[8, Theorem (4.8.14), p. 245]. Then by this theorem and the fact
that A is dense in B, {dλ}, λe Λ, is a self-adjoint bounded approximate
identity for B. Then by Proposition 3.3, {dλ}, λ e Λ, is an approximate
identity for A. This proves (1). (2) follows from (1), Proposition
2.2, and Theorem 3.2.

Assume that M is a closed left ideal of A. Then by (2) M =
AΠcl(ikf). By [3, Theorem 2.9.5, p. 48] cl(M) = ΠrerNr where Γ
is an index set and each Nr is a modular maximal left ideal of B.
By Proposition 1.1 A Π Nr is a modular maximal left ideal of A for
each 7 e Γ. Then M= An (cl(ikf)) = Γir6Γ (A Π Nr). This proves (3).
Finally (4) follows from Proposition 4.1.
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