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In this paper Banach algebras A which are ideals in a
Banach algebra B are studied. The main results concern the
relationship between the norms of A and B and the relation-
ship between the closed ideals of A and B.

There are many examples of Banach algebras in analysis which
are ideals in another Banach algebra. When G is a locally compact
group, then the Segal algebras which are studied in H. Reiter’s book
[7] are ideals in LYG). J. Cigler considers more general Banach
algebras which are ideals in L'(G) in [2]. In the theory of operators
on a Hilbert space 5%, the C, algebras discussed in [4, pp. 1088-
1119] are ideals in the algebra of compact operators on 27 (C, is
the ideal of trace class operators and C, the ideal of Hilbert-Schmidt
operators). Also as we point out in §4, every full Hilbert algebra
is a dense *-ideal in a B*-algebra.

When A is a Banach algebra which is an ideal in a Banach
algebra B, we consider the relationship between the algebras A and
B. First we prove that the norms of A and B are related by certain
inequalities. As a consequence, if B is semi-simple, then A4 is a left
and right Banach module of B [Theorem 2.3]. Also in this case our
results show that A is an abstract Segal algebra with respect to B
as defined by J. T. Burnham in [1]. Secondly we relate the closed
left and right ideals of A to those of B. Of special interest here
is the case where A contains a bounded approximate identity of B
[Theorem 3.4]. Finally in §4 we consider the special case where A
is a *-ideal in a B*-algebra B. The results of this section apply to
full Hilbert algebras.

1. Preliminaries and notation. When B is any Banach algebra,
we denote the Banach algebra norm on B by {|-||;. If M is a closed
left ideal in the Banach algebra B, B— M = {b+ M|be B} is the
quotient module B modulo M. B — M is normed by the norm

1o+ Ml; = inf{||b — m|ls [ me M}.

Throughout this paper A is a given Banach algebra. We always use
the term “ideal” to mean two-sided ideal. A is usually an ideal in
a Banach algebra B. In this case when E is a subset of A, cl(E) is
the closure of ¥ in B.
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At this point we prove a proposition of a purely algebraic nature
which is useful in what follows.

PROPOSITION 1.1. Assume that R is a ring and I is an ideal of
R. Assume that M 1is a wmodular maximal left [right] ideal of R
such that I¢ M. Then

(1) I acts strictly irreducibly on B — M, and

(2) INMis a maximal modular left [right] ideal of I.

Proof. We prove (1) first. Assume wu e R has the property R(1—
uyC M. Let K={beR|Ibc M}. K is a left ideal of R, MC K,
and u¢ K (if wue K, Ic M, a contradiction). Therefore K = M. It
follows by the definition of K, that when b¢ M, Ib + M properly con-
tains M, and therefore Ib + M = R. This suffices to prove (1).

Now consider IN M. If ael and aue M, then ac I N M. There-
fore INM ={ecl|afu+ M) =0+ M}. By (1) we can choose vel
such that v(vu + M) = u + M. Then I(1 —v) CIN M by the charac-
terization of I N M given above. Assume thataecl, ae¢IN M. Given
bel we can choose c¢el such that b —cac M by (1). Then b =
ca+ (b—ca)ela+INM. Therefore I=1Ia+ INM. Which proves (2).

2. The basic norm inequalities. In this section we assume
that A4 is a subalgebra of a Banach algebra B. There is a close
connection between certain inequalities involving ||- ||, and ||-||; and
the algebraic property that A is an ideal in some closed subalgebra
of B. The next proposition has been noted by other authors.

ProposiTION 2.1. Assume that

(1) there exists D > 0 such that D l|lall, = |lallz for all ac A,
and

(2) there exists C >0 such that |labll, < Cmax{||a|l, |||z
lalls b1} for all a, be A.

Then A is an ideal in cl(A).

Proof. Assume that ae A and becl(4) are given. Choose {,}C
A such that [|b, — bil; — 0. Then [[ab, — ab,|ls = Clla|li b, — balls,
so that {ab,} is Cauchy in A. Then there exists ce A such that
llab, — ¢|ls—0. By @) [lab, — ¢|[z— 0, and since ||ab, — abl|z —0,
we have ab = ¢. This proves that 4 is a right ideal of B. The

proof that A is a left ideal of B is similar.

Together the next two results establish a converse to Proposition
2.1.
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PROPOSITION 2.2. Assume that A is o dense ideal in a semi-
simple Banach algebra B. Then there exists D > 0 such that Dijaif,
= |la]lz for all ac A.

Proof. We prove that the embedding (4, ||+ ]l) — (B, 1|1z 1s a
closed, and hence continuous, map. Assume that {a,}C A, be B,
lla,|ls—0 and |la, — b|[z— 0. Let M be a modular maximal left
ideal of B with A¢ M, and let w ¢ B have the property that B(1—w)C
M. Given ac A4, let T, act on B— M by T.(b + M) = ab+ M. By
Proposition 1.1 (1), a — 7, is a stricly irreducible representation of
A on B— M. Let P be the kernel of this representation. P is a
primitive ideal of A, and therefore P is closed in A. A/P is a Banach
algebra with norm ||a + P|/,, ac A. Given ac A, define S,. ,(b+M)=
ab -+ M,be M. Then a + P— S,., is a faithful strictly irreducible
representation of A/P into the bounded operators on B — M. Then
a theorem of B. E. Johnson [6, Theorem 1, p. 537] implies that a +
p—S,.p is a continuous map. Since ||a,+ P|/,—0, then ||a,u+ M |;=
[[Sa,+p(w + M)y — 0. Also |{{a, — b)(w+ M), —0. It follows that
bu + M =0, and thus b =bu + (b — dbu)e M. Then b must be in
every modular maximal left ideal of B, so that by the semi-simplicity
of B, b =0.

THEOREM 2.3. Assume that A is an ideal in ¢ Banmach algebra
B. Assume that there exists D > 0 such that Dllalls = |lall, for «all
ac A. Then there exists C > 0 such that

(1) Jablly = Cllall,libllz for all ae A, be B, and

(2) llablly = Cllalls [[b]ls for all ac B, be A .

Proof. We prove only (1). Let L,, ac A be the operator mapping
B into A given by L,(b) = ab, bc B. We prove that L, is continuous
by showing that L, is a closed map from B into A. Assume that
{b} < B, ce A, and [|b,|[z — 0, || L.(b,) — ¢||,— 0. Then |Jab, —c|l,—0,
and since the A-norm dominates the B-norm, ||ab, — ¢||;— 0. Also
llab, || — 0, and therefore ¢ = 0.

Now since L, is continuous, for each ac A there exists M, > 0
such that ||ab||, < M,||b|ls, be B. Given be B, let R, be the operator
mapping A into A defined by R,(a) = ab, ac A. We prove that R,
is a closed, and hence continuous, map from A to A. Assume that
{a,}c A, ce A, |la,lls—0, and [|Ry(@,) — ¢|l;— 0. Then {a,|;—0
and [|a,b — ¢|[z — 0. Thus ¢ = 0. Therefore for each be B, R, is a
continuous operator. Set |R,| = sup{||R.(@)||,|ac A4, ||la||, =1}. Let
& ={R,|beB, ||bllz =1}. We have that ||R,(a)|l; < M, for each
ac A and R,€.$Z Then by the Uniform Boundedness Theorem there
exists C > 0 such that |R,| < C for all R,e &% Thus
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IR@L < ¢
llellsa

for all ae A, a++ 0, and all be B, ||b|[; < 1. Finally it follows that

llablls = Cllalld |15l

for all ae 4 and be B.

We remark that if A satisfies the hypotheses of Theorem 2.3,
then by (1) and (2) A is a left and right Banach module over B; see
[5, Definition (32.14), p. 263].

3. Closed left and right ideals. Now assuming that A4 is an
ideal of B, we relate the closed left and right ideals of A to those
of B. The most comprehensive results in this direction are obtained
when A has an approximate identity. However in the general case
we do have the following theorem concerning modular closed left
and right ideals of A.

THEOREM 3.1. Assume that A is a dense ideal of a Banach
algebra B and that there exists D > 0 such that Dllall, = |||z for
all ae A. Let M be a closed modular left [right] ideal of A. Then
M= AnclM).

Proof. By Theorem 2.3 there exists C> 0 such that {labd|[,< C|lal[5//l4
for all a, be A. Assume that M is a closed modular left ideal of
A. Then there exists ue A such that AQl—u)c M. Given ac A,
a=au + (@ —au) and a — au€ M. Therefore ||a+M| = |lauw+M]|[,.
Also |law + M|, £ |lauw — bull, for any be M (note that when be M,
then bue M). Therefore for all be M,

lla + M|y < |law — bu|l, = Clla — bz [{ulla .

Then |ja + M|[; < (Clluily) lle + M |[5.

Assume that ae Ancl(M). Choose {a,} M such that ||a,—a|/;—
0. Then |/(a, —a) + M||;— 0, and therefore ||(a, — a) + M|, — 0.
Thus there exists {b,}c M such that |[(@, —a) — b,||l.— 0. Since
{a, — b} M, we have ac M. Thus ANcl(M)c M. The opposite
inclusion is immediate, so that M = A N cl(M).

The next theorem provides a sufficient condition on A that every
closed left [right] ideal of A is the intersection of A with a closed
left [right] ideal of B. This theorem is proved by J. T. Burnham in

[1, Theorem 1.1] (Theorem 2.3 removes one of Burnham’s hypotheses).

THEOREM 3.2. Assume that A is a dense ideal of B with the
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property that there exists D >0 such that Dlla|l, = ||allz for all ac A.

Furthermore assume that for all ac A, acAa [acad] where “—7
denotes closure in A. Then

(1) of N is a closed left [right] ideal of B, them NN A is a
closed left [right] ideal of A, and

(2) 4f M is a closed left [right] ideal of A, then M= A N cl(M).

In many of the examples in harmonic analysis A is an ideal in
LYG) which contains a bounded approximate identity of L'(G). We
prove that under these circumstances 4 has an approximate identity.

PROPOSITION 3.3. Assume that A is a dense ideal in a Banach
algebra B and that there exists D > 0 such that Dllall, = ||alls for
all ae A. Then if {e.} is a left [right] bounded approvimate identity
for B and {e,} C A, {e.} is a left [right] approximate identity for A.

Proof. By Theorem 2.3 A is a left Banach module of B. There-
fore by Cohen’s Theorem [5, Theorem (32.22), pp. [268] given ac A
there exists be B and ce A such that a = bc. Then

llbe — eabels = Cl[b — ebllz el — 0.

Therefore {e,} is a left approximate identity for A.
Combining several previous results, we have the following theorem
which applies to many interesting examples in harmonic analysis.

THEOREM 3.4. Assume that A is a dense ideal in a semi-simple
Banach algebra B. Assume that A contains a bounded approximate
identity of B. Then

(1) for every closed left [right] ideal M of A, M = A N cl(M),
and

(2) if B has the property that every proper closed left [right]
ideal of B is contained in a modular mazximal left [right] ideal of
B, then A has the property that every proper closed left [right] ideal
of A s contained in a modular maximal left [right] ideal of A.

Proof. (1) follows from Proposition 2.2, Proposition 3.3, and
Theorem 3.2. Then (1) and Proposition 1.1 imply (2).

4, *.ideals in a B-*algebra. Assume that A is a full Hilbert
algebra; see [9]. Then A is a pre-Hilbert space with the corre-
sponding (linear) norm ||-]|, on A. Also given ac A, the operator
U, defined by U,(b) =ab for be A is a bounded operator on (A4, ||+]L).
For ae A left |a| denote the operator bound of U,. Then |-| is an
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algebra norm on A with the B*-property. Let ||al|l, = |la|, + |a|.
M. Rieffel proves that [|-||, is a complete algebra norm on A [9,
Proposition 1.15, p. 270]. Certainly |jal|l, = |a| for all ae A. Also
for all a, be A4,

llablly = [labll, + |ab]
= la| 6]l + [a][b]
= la||[b]ls-

Similarly ||ab|l, < |la}l, 0] for all a, be A. Let B be the completion
of A in the norm |[-|. B is a B*-algebra and A is a *-subalgebra of
B. Then by Proposition 2.1 A is a *-ideal in B. Therefore every
full Hilbert algebra is a *-ideal in a B*-algebra. In this section we
consider briefly algebras A which are *-ideals in B*-algebras.

The next proposition is true in much more generality than we
present here. When C is a Banach algebra, we denote the spectrum
in C of an element ae C by Sp.(a). Also for ac C we let

Ve(@) = inf([[a" [[/") .

ProPOSITION 4.1 Assume that A is a demse *-ideal in a semi-
stmple Bamach *-algebra B. Then every *-representation of A on a
Hilbert space 57 extends uniquely to a *-representation of B on S#°

Proof. First note that by Johnson’s Uniqueness of Norm Theorem
[6, Theorem 2, p. 539] there exists K > 0 such that

16% ||, < K*||b]|, for all be B.

Assume that ¢ — 7(a) is a *-representation of A into the bounded
operators on a Hilbert space 5~ If T is a bounded operator on
577, we denote the operator norm of T by |T|. By [8, Lemma (4.4.6),
p. 208] |7w(a)fF =< v, (a*a) for all ae A. Since A is an ideal of B,
then Sp,(a) U {0} = Sps(e) U {0} for all ae A. Then |7(a) [ < v (a*a) =
y,(a*a) < |la*all; < K*|la|z for all ace A. Thus |z(a)|< K||a||y for
all e A. Therefore © extends uniquely to a *-representation of B

on 77
Now we prove the main result of this section.

THEOREM 4.2. Assume that A is a dense *-ideal in a B*-algebra
B. Then

(1) A has an approximate identity consisting of self-adjoint
elements.

(2) For every closed left [right] ideal M of A, M = A N cl(M).

(3) Every proper closed left [right] ideal M of A in the inter-



BANACH ALGEBRAS WHICH ARE IDEALS IN A BANACH ALGEBRA 7

section of modular maximal left [right] ideals of A.
(4) Every *-representation of A on a Hilbert space 57 extends
uniquely to a *-representation of B on S#.

Proof. Construct the net {d;}, »e 4, in A as in the proof of
[8, Theorem (4.8.14), p. 245]. Then by this theorem and the fact
that A is dense in B, {d;}, v € 4, is a self-adjoint bounded approximate
identity for B. Then by Proposition 3.3, {d;}, » € 4, is an approximate
identity for A. This proves (1). (2) follows from (1), Proposition
2.2, and Theorem 3.2.

Assume that M is a closed left ideal of A. Then by (2) M=
ANecl(M). By [3, Theorem 2.9.5, p. 48] cl(M) = N,., N, where I"
is an index set and each N, is a modular maximal left ideal of B.
By Proposition 1.1 A N N, is a modular maximal left ideal of A for
each veI'. Then M = AN (cl(M)) = Nyer (AN N;). This proves (3).
Finally (4) follows from Proposition 4.1.
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