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Every universal algebra is representable (in a trivial
way) as the algebra of all continuous sections of many
nonisomorphic sheaves (even over Boolean spaces), It is
shown that on algebra, satisfying certain conditions specified
below, can be represented as the algebra of all sections of a
special kind of sheaf called a reduced sheaf. In addition, it
is shown that the only reduced sheaf (up to isomorphism)
whose sections represent an algebra satisfying the specified
conditions is the one constructed in the standard way.

The construction used in [1], to represent a cylindric algebra as
the algebra of all continuous sections of a reduced sheaf uniquely asso-
ciated with the algebra, was intuitively patterned after the construction
used in R. 8. Pierce [3] to sectionally represent rings. This construc-
tion and the associated representation results are extended to a
reasonable class of universal algebras including rings with unit and
cylindric algebras. Whenever an algebra ¥ is represented as I'(X, S)
with X a Boolean space, U is a subdirect product of the stalks S,.
An advantage of considering such representations for (X, S) reduced
is that, frequently in this case, the algebras S, have a simplier nature
than 2. For examples of this, see [1] and [3].

The universal algebras to be considered here are those algebras
A satisfying the following two properties.

(I) The set 6,(%) of all factor congruence relations of A is a
sublattice of 4(A) which is a Boolean algebra.

(II)  Every congruence relation on 2l generated by a proper
Boolean ideal of 4,() is proper.

Condition (I) guarantees that the construction with yield a sheaf
over a Boolean space and condition (II) guarantees that the stalks of
this sheaf will be nontrivial when 2 is nontrivial. Among the
algebraic structures possessing properties (I), (II) are rings with
identity and cylindric algebras. In addition it is well known that (I)
holds whenever 4(2) is distributive and it is trivial that (II) holds
whenever the unit congruence relation 4 is compact in 6(A). Thus,
for example, lattices with 0 and 1 satisfy (I), (II).

K. Keimel has independently obtained in [2] a result similar to
Theorem 3.7. However, the algebras considered in [2] are more
special than those considered here since they contain a one element
subalgebra and it is assumed that outer direct products of these
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algebras correspond to inner direct products of subalgebras.

1. Preliminaries. We use standard universal algebra termi-
nology; in particular, 6(X) denotes the lattice of all congruence
relations on 9, ¢ € ) is a factor relation if there is a - € 6(R) such
that ¢ N+ = Id, and ¢|y = 2A. The subset of () consisting of all
factor relations is denoted by 6,(A4).

A sheaf of algebras with stmilarity type = is a triple (X, S, )
where (i) X and S are topological spaces; (i) 7: S— X is a local
homeomorphism of S onto X; (iii) for each ze X, 77'(x) = S, is the
universe of an algebra {S,, f©>;., with similarity type z; and (iv) the
natural operations induced on S by the operations on each S, are
continuous. We will suppress = and denote a sheaf by (X, S). More
precisely, condition (iv) means the following. If f? is O-ary for all
x€ X, then (iv) means that the map from X to S that associates
fre S, to each e X is continuous. Now suppose f7 is n-ary for all
xe X where n>0. Let nS = {(%y ++-, Yo) €"S: (y,) = w(y;) for all
4, j < n} with the relativized product topology. In this case, (iv)
means that the map from %S to S that associates f?(y) to ¥ whenever
x = 7w(y,) is continuous. The algebras S, are called the stalks of the
sheaf (X, S). We say that (X, S) is triwial if X is a one point space
and the only stalk is a one element algebra.

A section of (X, S) is a continuous mapping ¢: X — S such that
o = Id,; the set of all sections of the sheaf (X, S) is denoted by
I'Xx,S). If (X,S) is a sheaf of algebras with type 7, I'(X, S) can
be made into an algebra with similarity type ¢ (also denoted by
I'(X, S)) by defining the operations pointwise. See [3] for the
elementary basic properties of sheaves and sections. By a Boolean
space we mean a compact, Hausdorff, zero dimensional space.

2. Reduced sheaves. In this section we define the notion of a
reduced sheaf, give an equivalent characterization and show that
I'(X, S) satisfies conditions (I), (II) if (X, S) is reduced.

Suppose (X, S) is a sheaf of algebras. For o,7e'(X,S) the
support of (g, 7) is |[(0, 7)| = {x € X: a(x) = t(x)}; [(0, T)| is always a
closed subset of X. For ¢ d(I'(X, S)) define U, = U {| (o, 7)|: (0, T) € ¢}
and for a subset U of X let 0[U] = {(o, 7) €*['(X, S): |(0, 7)| & U}.
[U] e 6(I"(X, S)) for every U < X. Define a function a on 6,(I"(X, S))
by a(¢) = U, whenever ¢ € 6,(I'(X, S)) and define a function S8 on the
Boolean algebra (BA)Zz" of all clopen subsets of X by p(U) = 6[U]
whenever U e %

DEFINITION 2.1. A sheaf (X, S) of algebras with similarity type
T is reduced if it is trivial or the following three conditions hold:
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(a) X is a Boolean space;

(b) S, has at least two elements for all x¢ X;

(¢) 6,(I'(X,S)) is a sublattice of 4(I"(X, S)) and « is an isomor-
phism of 6,(I"(X, S)) onto the BA & with inverse g.

Clearly, if (X, S) is reduced, I'(X, S) satisfies condition (I) and,
if also nontrivial, X is the dual space of the BA 6,([(X, S)).

For ¢ 0(I"(X, S)) and ze€ X let ¢, = {(o(x), t(®)): (0, 7)€ ¢}; if X
is a Boolean space ¢, is reflexive on S,, symmetric and has the
substitution property but is not a congruence relation on S, in
general. The following result aids in verifying that a sheaf is reduced.

PROPOSITION 2.2. Suppose a nontriwial sheaf (X, S) satisfies (a),
(b). Then (X, S) is reduced if and only if

(i) for every ¢c0(['(X, S)) and ve X, ¢, = Id,, or ¢, ="*S,;

(ii) for every ge6,(I'(X, S)), {xre X: ¢, = Id, } s a clopen subset
of X;

(iii) for every ¢ e 0,(I'(X, S)) ¢ = 0[U,].

Proof. =: Assume (X, S) is reduced and nontrivial. (iii) is obvious.
If ped(I'(X, S)), then {xeX:¢, =1Ids} = X ~ U; = a(—¢) is clopen
so (ii) holds. Now suppose ¢ € 0,(/(X, S)), v€ X, and ¢, # Ids,. Then,
by the above, 2 ¢ a(—¢) so xc a(¢) = {ve X: (—¢), = Ids,}. Fora,be S,
choose o, 7eI'(X,S) such that o(x) = a, 7(®) =b. (0,7)€¢| — ¢ sO
og(—g¢)t for some e I'(X, S). Since (—9¢), = Ids,, ¢(x) = b; so ag,b.
Hence ¢, = *S, and (i) holds. <: We assume (a), (b), (i) — (iii), (X, S)
is nontrivial and verify (e).

(1) O6[N]eb,(I"(X,S)) whenever N is a clopen subset of X so
B —6,(I'(X, S)).

It is easy to see that A[N]NO[X ~ N] = Id, 5. Now suppose
o,7eI'(X, S) and define e I'(X, S) by = (t|N)U (6| X ~ N) (¢ is
a section by basic properties of sheaves). Then gf[N]uf[X ~ N]z so
O[N]|6[X ~ N] =*I'(X, S); hence (1) holds.

2 If ge0((X,S)), U, = {xec X:¢, =2S,} and is clopen; thus,
a: 0,(['(X, S)) — &

For suppose xe Uy, i.e., ze|(o,7)| for some (g,7)e¢. Then
o(x) + t(x) so ¢, =2S, by (i); thus, U, has the desired form and it
is clopen by (i) and (ii).

8) For Ue &, a(p(U)) = {xc X: pU), =*S,} = U.

For e U clopen there exist o, 7€ I'(X, S) such that o(x) = t(x)
and z€|(o,7)| & U. Trivially, a(p(U)) < U.

In view of (1)-(3), (iii) and the fact « and g are order preserving,
it is easily seen that a is a lattice isomorphism of 6,(I"(X, S)) onto
the BA % with inverse 5. It remains to show that 6,(/"(X, S)) is a
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sublattice of 9(/°(X, S)). Suppose ¢, ye€0,(I(X,S)). Then ¢ + <
Bla(g) U aly)). For (o, 7) e flalp) U a(y)] let

p=(0]X ~alg) U (zlaig) ;

then |(0, )| S a(¢) and |(1, )| S aly) since |(a,7)] S a(d) U aly).
Hence ogpprt; thus, ¢ + 4 = Ba(d) U a(y) = ¢l and so 6,(I'(X, S))
is closed under +. It is easy to check that g{a(s) N a()) = ¢ NAr
so 6,(I(X,S)) is closed under N. Hence (c) holds completing the
proof of Proposition 2.2.

Suppose A is an algebra satisfying condition (I). For an ideal
I of 6,20) let T = U{#:0cI} the congruence relation generated by
I for ¢c0) I, ={0cd,(W:60 < ¢} is an ideal of 6,%). We say
$€6() is regular if I, = ¢ and let 6%(2) denote the set of all regular
congruences of . It is easily seen that #%() is a sublattice of 4()
and that the map <, defined by v(¢) = I, for ¢ %), is a 1-1 map
from 6*() into Id(6,(N)), the lattice of all ideals of 4,(N). If v is
onto Id(6,()), it is evident that it is also a lattice homomorphism
and hence an isomorphism between 6%(2) and Id(4,(Q)). Condition (II)
and v are linked in the following way.

ProrositioN 2.3. Assuming (I) holds for 2, condition (I1I) holds
if and only if v is onto (or equivalently, an isomorphism).

Proof. The nontrivial implication is to show that v is onto
assuming (I), (II) hold. Suppose I is a proper ideal of 6,(2) and let
¢ = I. ¢ is regular so it is enough to show that ~v(s) = I. Clearly,
IS I, = v(¢). Now suppose +€8,), el ie.,  <¢, and that
¢ I. Thus, the ideal J of 6,2 generated by IU {—+} is proper.
Let M be a maximal BA ideal of 6,(2) extending J (in particular, M
is proper). M is regular and M 2 ¢ since M 2 I. By condition (II)
M = A so v(M) #2*A. Since (M) is a proper BA ideal containing
M which is maximal, v(M) = M. Now + < ¢ < M and + € 6,(2) so
wev(M) = M. On the other hand —+ € J < M which contradicts the
fact M is proper. This contradiction shows that v(¢) = I, hence the
proof is complete.

ProproSITION 2.4. If (X, S) s reduced, I'(X, S) satisfies (1), (II).

Proof. We have already observed that (I) holds in I'(X, S) when
the sheaf is reduced; to verify (II) it is enough, by Proposition
2.3, to assume (X, S) is nontrivial and show <~ is onto. Suppose
Te Id(0(I"(X. S))) and ¢ebO,(I'(X,S)) such that ge~(I). Thus, a(9)
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is a clopen subset of U, = U {a(y): yreI}. Since a(y) is clopen for
€ I, compactness implies there exist +r, +-+, v, € I such that

(@) S alyo) U+ Ua(yr-y) = a(Xicnrs) -

Thus, ¢ < S €1 so v(I') = I; hence v is onto as desired.

For a nontrivial reduced sheaf (X, S) a induces an isomorphism
' from Id(6,(I"(X, S))) onto the lattice of all open subsets of X. By
Propositions 2.3, 2.4 «’-~v is an isomorphism from 60%(/'(X, S)) onto
the lattice of all open subsets X. Observe that &'~ is just the map
that associates U, with a regular congruence ¢; its inverse is just
the map that associates #[U] with an open subset U of X.

3. Representation. In this section we represent an algebra
satisfying (I), (II) as the algebra of all continuous sections of a reduced
sheaf.

The trivial, i.e., one element, algebra U satisfies (I), (II) and
provides an uninteresting case. If we let (X(), S®)) be a trivial
sheaf of algebras with the same similarity type as 2, then (X(20), S(0))
is reduced and the obvious map & is an isomorphism of U onto
(X0, SQ).

Henceforth, we assume that 20 has at least two elements and that
properties (I), (II) hold. Our objective is to construct a sheaf
(X(®0), SQ)) from A. By (I) 6,(A) is a BA so let X(®l) be the Stone
dual space of 4,(), i.e., X(A) is the set of all maximal ideals of 6,(A)
with a topology given by a basis of clopen subsets consisting of all
subsets of the form (g) = {Me X): ¢¢ M} where ¢ec6,(). X
is a Boolean space.

Recall that I denotes the congruence relation on 9 generated by
the ideal I of 6,(2). For Me X() let SQ), = A/M. We set SQ) =
U{S@),: Me X))}, the disjoint union of the S),’s. The map
w: S@) — X(A) is defined in the obvious way.

In order to define the topology on S(U) we need some auxiliary
functions. For ac A define r,: X() — S) by ».(M) = a/M for each
Me X2). Now let &7 = {r,(N(g)): ac A, ¢ 6,2)}. In the following
series of lemmas we will show that (X(), S(X)) is a reduced sheaf
with a basis for the topology on S(®l) given by .2 and that
A = I'(XQN), SQ)).

LemMMA 3.1. For a,be A and Me X)) such that r, (M) = r,(M)
there is ¢ € 0,(A) such that Me (p) and r,(N) = r,(N) for all Ne R(3).

Proof. Assume a/M = b/M. Since M = U {#: 0e M}, (a, bye 6 for
some 0 & M. Choose 6 = — 0e6,(A). Then Me _17(3). For Ne RN(s),
(@, b)e —oe N so (a, b)e N, i.e., r,(N) = r,(N).
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LEMMA 3.2. <Z is a basis for a topology on S(X).

Proof. Clearly S@) = U.<. Now suppose
ro(M) € (A7 ($)) N 7(A7(82)) -

Thus, Me +(3) N 4" (¢,) and a/M = b/M = ¢/M. By Lemma 3.1
there is a ¢€6,®) such that Me_47(¢) and 7,(N) = r.(N) for all
Ne _47(¢). Thus, ¢-¢,-6,€0,(%) and, as easily seen,

(M) = r(M) € (A7 (8 61+ $)) = T(A (8 + b1+ $))
S r(A7(3)) N r(A7(3)) -

Hence <#Z is a basis as claimed.
From 3.1, 3.2 it is clear that each »,(a € A) is continuous.

LeEmMA 3.3. (X(), S@)) is a sheaf of algedbras.

Proof. From the preceding we know that X() and S are
topological spaces and that each stalk is an algebra with the same
type as 2. It is routine to check that 7w is a local homeomorphism;
in fact, it is enough to check that z’ = 7|r,(_#"(¢)) is a continuous
map of r,(_#"(¢)) onto _#"(¢). It remains to establish the continuity
of the natural operations on S(¥) induced by corresponding operations
on the stalk algebras (/M. Suppose f is an nm-ary operation of this
kind on S®) where new ~ 1. (We omit the easier case when f is
0-ary.) Thus, f: nSQ) — S@®) is defined, for xzenS®), by f(z) =
F4(x) where m(x,) = M. Suppose r,(.#"(¢)) is an open neighborhood
of f(x), Me +(¢), x; = a;/M where a;c A(i < m), and consider b =
Sy +++, a,_). We have r,(M) = r,(M) = f(x) so Lemma 3.1 implies
there is + € 6,(Y) such that », and », agree on the neighborhood .7 (+)
of M. Let Y = nS®) N [1e)( A (p ) X oee X1 _ (A7($-4))]; Y is an
open neighborhood of x in nS@®Y) and f(Y) < r.(_#"(¢)). Consequently
f is continuous. It follows that (X(), S()) is a sheaf.

The following universal algebraic result will be useful below. It
is proved by a standard BA argument.

LEMMA 3.4. If an algebra U satisfies (I), and I is a proper ideal
of 0,2, then N{M:I< M, Me XQ)} = I.

We have seen (Lemma 3.3) that (X(), S()) is a sheaf of algebras
associated with 2. Define &, by requiring &,(a) = 7, for each aec A.
From the remark following Lemma 3.2 we see that &, is a function
from 2 into I'(X(20), S()).
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LemmMA 3.5. If U is an algebra satisfying conditions (1), (1I),
then &, is an isomorphism of A onto (X)), SQD).

Proof. We may suppose U is nontrivial. It is routine to check
that &, is a homomorphism. To show &, is 1 — 1, assume &,(a) = &,(b)
where a,bec A. Then (a,b)e M for all Me X() and hence Lemma
3.4 with I = Id, implies a = b. It remains to prove that & is onto.
Suppose o€ I'(X(), S(A)). By the construction of S(A), for each
Me X®) there is an ae A such that o¢(M) = r,(M). o is continuous
so there is a neighborhood _#7(¢) of M such that ¢ and r, agree on
-+"(¢). Since this holds for each Me X(2), the compactness and
zero dimensionality for Boolean spaces implies that there exist
Gy vy Bur €0,) and a,, -+, a,_, € A such that

(1) X)) = Uica 7 (93);
(i) #7(g;) N o+ (¢;) = 0 whenever 7 -+ j; and
(iii) o agrees with »,, on _77(¢;) for each ¢ < n.

Since _ /() = {Me X(): —¢,€ M}, (i) together with Lemma 3.4
implies that .., — ¢; = Id, and (ii) implies that —¢, + —¢; = 24
whenever 1 % j. This last fact implies (I]..; — 8,)| — ¢; = *A since
9,3 is a BA. Applying a form of the Chinese Remainder Theorem
{Cor. 1.6 of [4], p. 67) we conclude that the map

€T~ (x/—*¢oy M) x/_¢n—1)

gives an isomorphism of U onto P,/ — #,. Hence, for the elements
Qg * o+, &,_, € A the above isomorphism shows there is an element be A
such that b(—¢;)a; for all ¢ < n. It now follows that &,(b) = r, = o;
for if Ne X(¥), say Ne ._#"(¢;) for some j < n, then o(N) = r,,(N) =
a;/N = b/N = r,(N) using the fact that (4, a)e —¢; < N. We
conclude that &, is onto completing the proof of the lemma.

We will show that the sheaf (X(), S@)) constructed from A is
reduced by applying Proposition 2.2. Before doing this we need an
observation about the relations ¢, = {(c(M), z(M)): (o, 7) € ¢}, Where
o€ (I (X)), SQD)) and M e X (@), that are involved in the proposition.
Let ¢} denote the transitive closure of ¢,; it is a routine argument
to show that ¢/, is a congruence relation on /M = S(¥), and that
oy = (&9) + M)/M, i.e., ¢, is the congruence relation on /M
corresponding to the congruence relation £;'(¢) + M on U under the
correspondence induced by the canonical homomorphism of 2 onto
A/ M.

LEMMA 3.6. If an algebra U satisfies (), (D), then (X(2), SQ))
is reduced.
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Proof. Assuming 2 nontrivial conditions 1.1 (a), (b) are obvious
so it suffices to verify properties (i), (ii), (iii) in Proposition 2.2.

(i) Suppose ¢ € 0,(I(XQ), S@))) and Me XQ). &) € 0,(2) so
either &;'(¢) e M or — &;'(¢) € M. In the first case

& = (&'(¢) + M)/M = Ids,, so ¢, = Ids, .

It remains to show that —&;'(¢)e M implies ¢, = 2S,. Assume
—&'(@)e M and (r (M), r(M))€’Sy. (a,be’d =& P)| — &'(9) so
there is a ce A such that (a,¢)€é&'(9) and (¢, b)e — &'(¢) =< M.
Therefore, (r,, r,)e¢ and ¢/M = b/M; thus, (r.(M), r(M))ecé, as
desired. Hence (i) holds.

(ii) Suppose ¢ e O,(I"(X(Y), SQD)). By the proof of (i) we see
that {Me XQ0): ¢, = Ids,} = {Me XQ): &'(9) e M} = A7(—&'(9)) is
a clopen subset of X(20).

(iii) We always have ¢ < 0[U,] so to prove equality we assume
¢ € 0,((XN), SQA))), a,be A such that |(r, )| =S U, and prove
(ra, ) €G. |(1e, 1) = {Mec XQ): (a,b )eM}< U, implies that
(a, b)e M for every Me X() such that &'(s)e M. Taking I, in
Lemma 3.4, as the principal ideal of 6,) generated by &;'(¢), it is
immediate from the above statement that (a, b) € &5'(¢). Thus, (r,, ) € ¢
completing the proof of (iii) and hence the lemma.

We summarize the results from 3.1-3.6 in the following.

THEOREM 3.7. If A is an algebra satisfying conditions (I), (II),
then (XQ0), SQD)) is a reduced sheaf of algebras such that &y is an
isomorphism from 2 onto I"(X(2A), S(A)).

4, Uniqueness. In this section we show, for an algebra 2, that
there is at most one reduced sheaf (X, S) (up to isomorphism) for
which I'(X, S) = 9. Actually we prove more. In Proposition 2.4 we
saw that I'(X,S) satisfies conditions (I), (II) whenever (X, S) is
reduced; thus, the construction in §3 yields a reduced sheaf
(X(I'(X, S)), S(I'(X, S))) whenever (X,S) is reduced. The desired
uniqueness result follows from the fact these two sheaves are
isomorphic.

A pair of functions (A, f) is an isomorphism of (X, S) onto (Y, R)
if A is a homeomorphism of X onto Y and f is a homeomorphism of
R onto S such that f maps R,,, isomorphically (as an algebra) onto-
S, for all xe X.

The trivial sheaf provides a special uninteresting case. If (X, S)
is trivial, I'(X,S) is a one element algebra; thus, (X(I"(X,S)),
S(I"(X, S))) is trivially isomorphic to (X, S) and Theorem 4.2 holds in
this case.
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Henceforth, we assume (X, S) is a nontrivial reduced sheaf. For
xeX define v, =0[X ~ {z}] ={(0,7)e ' (X,S): 0,=7,}. VY, is a
congruence relation on I'(X, S).

LEMMA 4.1. (a). For xe X the map o — d(x) is a homomorphism
of I'(X, S) onto S, with kernel v,.

(b) The map \: x— v(,) = I,, is a homeomorphism of X onto
X(I'(X, S)).

Proof. (a). is obvious. (b). The last paragraph of § 2 implies
Y(v,) is a maximal ideal of 6,(I'(X, S)); thus X\ is a function from
X— X(I'(X, S)). For 2,ye X, x # y, we can separate v and y by a
clopen set (X is a Boolean space), say x€ N, y¢ N where N is clopen.
Therefore 0[N]e v(v,) but I[N]¢ v(v.) so 7(u,) # 7(v,) and X is 1 — 1.

Now suppose Me X(I'(X, S)). By the correspondence between
ideals of 4,(I"(X, S)) and open sets in X, Uy is a maximal open subset,
say X ~ {y} for some ye X; thus, M = 0[Uz] =v, and v(v,) = M
since M is regular. Hence \ is onto.

An element of 6,(I°(X, S)) has the form 6[N] where N is clopen
in X; thus the sets of the form _#"(9][N)) give a basis for X(/'(X, S)).
Clatm. N\"(4"(6[N]) = N.

If te X~ N, NS X ~ {x} so [N] < 0[X ~ {x}]; thus, O[N]e \(x).
Hence xe X ~ N implies ¢ _# (0[N]). Now, if 2ze N, X~ NZ
X~ {x} so O0]X ~ N]< X~ {z}]; thus, —0[N]=60[X ~ N]e .
Hence, 9[N] ¢ \x, i.e., Mee 4+ (O[N]). This proves the claim.

The claim shows that A is continuous and open; hence it is a
homeomorphism as asserted in 4.1 (b).

THEOREM 4.2. Suppose (X,S) 1is a reduced sheaf and
M X — X(I(X, S)) is defined by Mz) = v(v,) as above. Then there is
an f:S(I'(X, S)) — S such that (\, f) is an isomorphism of (X, S)
onto (X(I'(X, S)), S(I'(X, S))).

Proof. Assume (X,S) is nontrivial. By 4.1 (a) there is an
isomorphism f, from I'(X, S)/v, onto S, defined by f,(o/v,) = o(x).
Let f be the unique function defined on S(I'(X, S)) extending all
Ji/s,we X. It is clear that f is a 1 — 1 map of S(I'(X, S)) onto S
which maps S(I"(X, S)),. isomorphically onto S,.

For oel'(X,S) and a clopen subset N of X we claim:
J(r(0[N])) = o(N).

From the vproof of 4.1(b), _# (#[N]) = MN). Now, for
y € A" (0[N]), say y = nx for some x e N, f(r,(y)) = f.(o/v,) = o(x) € 5(N).
Hence f(r,(_#"(0[N]))) < o(N). Now suppose o(x) € o(N) where 2z € N.
Then \(z) € 47(O[N]); so r,(\x) € r,(_+"(6[N])) and the above computa-
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tion now shows that o(x) = f(r,(\x)) € f(r,(_+"(6]N]))). Hence the
claim holds.

Since {o(N): ce I'(X, S), N clopen subset of X} forms a basis for
S and {r,(7((¢)): o I'(X,S), 6€0,(I'(X, S))} forms a basis for
S(I'(X, S)), the claim implies that f gives a 1 — 1 correspondence
between these two bases. Thus, f is a homeomorphism and it follows
that (A, f) is an isomorphism of (X, S) onto (X(I'(X, S)), S(I"(X, S))).

COROLLARY 4.3. If (X, S) is a reduced sheaf such that I'(X, S) = U,
then (X, S) is isomorphic to (X(2), S()).

5. Representations with respect to equational classes. Suppose
¢ is an equational class of algebras. We say that (X, S) is a sheaf
of algebras im 2 if each stalk is a member of 2% Obviously,
I'(X, S) belongs to .2~ whenever (X, S) is a sheaf of algebras in
By the construction in § 3 each stalk of (X(2), S(®)) is a quotient of
A; thus, (X)), SQ)) is a sheaf of algebras in .2~ whenever e 9%
As a consequence of 3.7 and 4.3 we have the following result for
equational classes.

THEOREM b5.1. Suppose 2% 1is an equational class of algebras
such that every member of > satisfies conditions (I), (II). Then, for
every e J% there is a unique (up to isomorphism) reduced sheaf
(X)), SQD) of algebras wn ¢ such that &y: A = I'(X(Q), S@)).

The above result has appeared in the literature for special choices
of 27 For 27 equal to the class of all rings with unit see R. S.
Pierce [3] and for %" equal to the class of all cylindric algebras
with a specified dimension see [1]. For special choices of .2~ the
notion of a reduced sheaf takes a simplier form.
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