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J. R. EDWARDS AND S. G. WAYMENT

In this paper we give a counter example to the theorem:
A Hausdorff method is convergence preserving if and only
if it is generated by a moment sequence as stated in ‘‘vector-
valued summability methods on a linear normed space’’ by L.
C. Kurtz and D. H, Tucker, Proc. Amer. Math. Soc. 16 (1965)
419-428,

New results are also obtained which extend those known
on the equivalence of the generalized Hausdorff moment
problem with a generalized Riesz Representation Theorem,
and a class of normed spaces is given in which the above
mentioned does hold. The key tool in establishing these is the
v-integral,

1. Introduction. In [4] Kurtz and Tucker consider summability
methods in the setting of linear normed spaces. In that paper they
establish an equivalence between a form of the Hausdorff moment
problem and an integral representation theorem (Tucker [8]). In this
paper we give a stronger formulation of the Hausdorff moment pro-
blem and establish its equivalence to the wv-integral representation
theorem in [1] in the setting of convex spaces. Also in [4] the
authors claim to show that a Hausdorff method is regular if and
only if it is generated by a moment sequence. However, the proof
of sufficiency establishes only that a Hausdorff method generated by
a moment sequence is weakly convergence preserving. Goodrich [3]
and Remanujan [6] have shown, independenty, in the setting of convex
spaces that a Hausdorff method is weakly convergence preserving if
and only if it is generated by a weak moment sequence. In §4 of this
paper we give an example which shows that in general it is not the
case that a Hausdorfi method generated by a moment sequence is
convergence preserving. The remainder of the paper is devoted to
obtaining sufficient conditions for a Hausdorff method to be conver-
gence preserving, and we conclude by defining a class of normed
spaces in which being generated by a moment sequence is both neces-
sary and sufficient for a Hausdorff method to be convergence pre-
serving.

In the first three sections of this paper, X will denote an F-space
and Y a convex space unless otherwise stated. L[X, Y] will denote
the collection of continuous linear operators from X into Y, and C
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denotes the space of continuous functions from [0, 1] into X with the
topology of uniform convergence.

We shall use the analogues of the definitions given in [4] for the
following: matrix summability method from X to Y, convergence
preserving method, regular relative to L, and Hausdorff summability
method. It will be convenient to refer to the following form of the
generalized Toeplitz Theorem, proofs of which can be found in [3],

[4], [5].

THEOREM 1.1. (Kurtz-Tucker, Ramanujan, Goodrich). A sum-
mability method @ = (¢,,) ts convergence preserving if and only if the
following conditions are satisfied.

(RN) There ts a pairing (p, ¢) (Swong’s notation [7]) and con-
stants k,_, such that for each bounded sequence {x,} C X, ¢q(3\7., ¢..(2.))
<k, , sup p(x.).

(RS) For each xe X the sequence {37 ¢, ()}, s Cauchy.

(©) For each x€ X and for fixed v the sequence {¢,.(x)}3-, 1s
Cauchy.

Furthermore a summability method @ is regular relative to L if and
only if (RN) and the following conditions hold.

(RS)) For each ze X, lim,>2, 6., (x) = L(x)

(C,) For each xze X, lim,é,,(x) = 6,.

We use the concept of moment sequence defined by Kurtz and Tucker,
1.e., a moment sequence is a sequence of transformations {¢,} < L[X, Y]
such that the Hausdorf® method generated by {,} satisfies (RN).
We emphasize that the above definition of moment is in general a
stronger condition than Ramanujan’s weak moment sequence and
also that the convergence in 1.1 occurs im the topology of Y and mot
i the weak topology of Y.

2. The v-integral. The purpose of this section of the paper is
to present the basic properties of the v-integral as given in [2]. A
set function K on the half-open intervals .7 = {(a, b] < (0, 1]} with
values in L[X, Y] is said to be convex with respect to length or more
briefly convex if >, N\, K(I;) = K(I) for each Ie._” and disjoint
partition {I;} of I over .7 where \; is the ratio of the length of I,
to that of I. If K additionally satisfies the property that there is
a pairing (p, ¢) and constants WK,_, such that each finite disjoint
collection {I}} in _# and corresponding collection {z;} in X implies
q(2k(I)] (x,) < WK,_, max; p(3\i, x;), then K is said to be of bounded
(p, q) convex variation. Suppose f is a function from [0, 1] into X.
Then to say that a convex set function K is v-integrable with respect to
f means that lim, Y, K(I)(f(%:s) —f(2;)) exists in ¥ the completion of
Y, where the limit is taken over the net of all partition ¢ of (0, 1],



ON THE NONEQUIVALENCE OF CONSERVATIVE 41

and we denote this limit by vglef.
0

3. A Moment Problem. In this section of the paper we for-
mulate a moment problem analogous to that given in [4]. Our goal
is to show the equivalence of the following two statements, S, being
a formulation of the Hausdorff Moment Problem and S, being a
generalized integral representation theorem. We shall assume Y is
complete.

Statement S,. The sequence {¢,} C LIX, Y] is a moment sequence
if and only if there exist a «r€ L[X, Y] and a convex set function K
with values in L{X, Y] which is of bounded (p, ¢) convex variation

such that for each ze X, t#(x) = vr(x) and f,(x) = ngd (t-x) for m
== 0.

Statement S,. The linear transformation 7T': C-— Y is continuous if
and only if there is a € L{X, Y] and a convex set function K with
values in L[X, Y] which is of bounded (p, ¢) convex variation such

that T(f) = +(f(0)) + vg K df.

Observe that sufficiency always holds in the case of S, [1]. Suf-
ficiency also holds in Statement S,. This can be seen by the follow-
ing argument. Let (4,,) denote the Hausdorff method generated by
{¢.}. Since K is of bounded (p, q¢) convex variation, then by Theorem
3 in [1] there is a pairing (p, q) with constants WK,_, and |+],_,
such that for feC

Q“’S:K df) £ WK,_, sup p(f(t)f(0)) + |y |-, D(F(0)) .

Therefore,

A $u@) = a(o| Kaf3: ) 1-v9~0})

A

< WK, sup o35 0) ¢ (1) ,) + [ |,y D)

WK, _,max p(x,) + [ ],—, D(%)

<
= (WK,—y| + []p-,) max p (2.) ,

and, hence, {£,} is a moment sequence.

REMARK 3.1. In the formulation of Statements S, and S, in [4]
sufficiency does not hold. This is because the integral representation
theorem of Tucker requires that the function K which is of bounded
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semi-variation must take its values in L[X, Y*], the bounded linear
operaters from X into Y7, the weak sequential extention of Y [8].
The reason that we are able to give these sufficient conditions is that
the convex set function K given in the representation theorem in [1]
does not suffer this complication.

THEOREM 3.2. The Statement S, is equivalent to Statement S,.

To prove this theorem we adapt the argument presented by Kurtz
and Tucker in [4] to the present setting.

Proof of 3.2. Suppose that Statement S, holds, and that {z,} is
a moment sequence. Define the linear transformation & from the real
polynomials into L[X, Y] by o G, at’) = D att,, and define T
from the polynomial with coefficients in X by T\, t'x) = >, [.F
)] (x). Our goal is to show that T is continuous on the polynomials
with coefficients in X from which it follows it can be extended con-
tinuously to C. (That the polynomials are dense in C follows from
Lemma 3 [6]). Suppose that ¢ is a semi-norm on Y. Let P denote
an X-valued polynomial. Then,

T(B.P)©O = 3 0 T - o P(2)]
=S o (A(2)),

where B,P denotes the n'* Bernstein Polynomial of P.
Since {¢,} is a moment sequence, then it follows that there is a semi-
norm p on X and a constant k,_, such that

Y
¢(T(B,P) < k,, max p(p (z»
= ky—sup p(P(t)) .
Lemma 10 in [4] implies that P(¢) = (B,P) (t) — >, P,(t)/m* where

P, is a polynomial, with coefficients in X, which is independent of m,
and % is the degree of P. Therefore,

o(T(P)) = ¢(T(B,P)) + %q(z P()n)
< k- SUD PIP(H) + ¢

for any ¢ > 0 for large enough n. Therefore, T is continuous on the
polynomials hence on C, and Theorem 3 of [1] implies that Statement
S, holds.
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Suppose that Statement S, holds and suppose T:C— Y is a con-
tinuous linear transformation. Then 7T induces a continuous linear
transformation from CR, the real-valued continuous functions from [0, 1]
with sup-norm topology, to L[X, Y| which is defined by [.7 (/)](») =
F(f-x). Define the sequence {¢£,} in L[ X, Y] by p, = .7 (t*) for each n.
Observe that for a bounded sequence {x,},

7

by (31} e (@) = Z(}(f) L7 (@1 — t)")] ()

v=0

n

- T(f; <’j) (1 — t)”"’xy> .
v=0
Since T is continuous and since Z:‘:()(ﬁ) t*1 — ty~* =1 for each ¢,

it follows that the (RN) condition is satisfied for the Hausdorff method
generated by {s¢,} and therefore {/t,} is a moment sequence. Statement
S, implies that there exist € L[X, Y] and a set function which is of
bound (p, ¢) convex variation such that g (x) = 4(x) and p,.(x) =

vSKd(t”ﬁ;) for each x ¢ X. Suppose P(t) = >\, t'x,. Then

T(PW) = 3 Tew) = 3y mle) = 30| Kdtw) + i)
= vgi Kd <i t%) + )

- vS:KdP + 4 (P(0)) .

Since the linear transformation on C defined by vgl Kdf + 4 (f(0)) is
continuous, and since the polynomials with coeﬂicieoznts in X are con-
tinuous, then T(f) = vgl Kdf + +4(f(0)) for all feC and Statement
S, is established. 0

4., The nonequivalence of the moment problem and conver-
gence preserving. In [4] Kurtz and Tucker stated the following
theorem in the setting of linear normed spaces: A Hausdorff method is
convergence preserving 1if and only if it is gemerated by a moment
sequence. However, the proof given succeeded only in establishing
that a Hausdorff method generated by a moment sequence is weakly
convergence preserving. We now give an example which shows that
the stated theorem is incorrect.

ExAmpPLE 4.1. Define X to be R, the real numbers and Y to
be =, the set of all bounded sequences, (a,,a.,--+,a,,++), with sup-
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norm topology. Let e, denote the element of [* all of whose terms
are o except the n™ term which is 1. Define the function f,(t) =
mt(l — ). Let t, =1, and ¢, = 1/2. There is an integer m; > 2
such that f,, (1/m,) — f,, (1/2) > 1/2. Define ¢, = 1/m,. We next define
the sequences {m,} and {¢,} inductively. Suppose that ¢; has been
defined 7 = 1,+--,n. Then, there is an integer m,., > 1/t, = m, such
that f,., . /m,.) — fo.,., (t)>1/2. Define ¢,,, =1/m__. Define
the point function K:[0, 1]—B[X, Y] == by

e, ift,. , <t<t,forn=1,2, .-

K(t):{oiftzo.

Observe that K is of bounded semi-variation (has the w-property [8])
and in fact has semi-variation 2. Furthermore, if f is continuous
then S dkf = 32,1 — ft.)] e + f(Ve,.  Let (g,.) denote the
0
Hausdorff method which is generated by the moment sequence which
is defined by g, = Sldkt”. We observe that the sequence {¢,,} fails
0

to converge. This is seen by the following argument. Suppose M
is an integer, then there is an n > M such that m,(t,) (L — ¢,)™!
< 1/4. Then,

1 1 "
‘ %p'mu,l - ¢mn,1 J‘l = 1’ g dk (Tnﬁl t)l (1 - tM) maTh — S dk 7nntn (1 - tn,\’km O j:
: I1Jo 0
|

oo

ZJZ [m"ljtu<1 — t,)mjr*l _ m)[ty—l(l _ tp—l)m‘l[hl]’g,

- i [Wln(l - tv)m"_—l - mntu—l (1 - tv—l)mn‘_l}evﬁ
v=2 !

= H[m,utn(l — )T — M by (L — Ey )
— Mty (1 — ty)" ey |

v

L
4 -

Thus we conclude the sequence fails to be Cauchy. Therefore, Theorem
1.1 implies that (s,,) fails to be convergence preserving.

The question of what in addition to being a moment sequence
must {¢,} satisfy in order to generate a convergence preserving method
naturally arises. We chose to pursue this question by examining the
behavior of the convex set function which generates {¢,}, and we give
a condition which is sufficient to guarantee that {x,} generates a
convergence preserving method.

DEFINITION 4.2. A convex set funetion K is said to have the
Limit Property at 0 if for each ze X the lim,_, [K(a, b]](x) exists. 1f
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for each e X lim,_, [K(a, b]] (v) = 0, then K is said to have the 0-
Limit Property.

THEOREM 4.3. Suppose {p,} is gemerated by a set function K
which 1is of bounded (p, q) convex variation. Then for the Hausdorff
method (6,,) generated by {ft.} to be convergence preserving, it sufficient
that K have the limit property at 0.

Proof. First observe that (RS) is satisfied by any Hausdorff
method (S 9,.(0) = 5 )4 (@) = @) and that {n} is a
moment sequence by 3.2 and hence (RN) is satisfied. Therefore, it is
only necessary to establish condition (C). Since K is of bounded (p, q)
convex variation, then {K(a, b]J(x): (a, b] < (0, 1]} is bounded. There-
fore, it follows from the Banach-Steinhaus Theorem that there is an
. e L[z, y] such that k(a, b]— < uniformly on compact subsets of
X as b—0. Let K. : . .7—L[X, Y], be defined by K. (I) = & for all
Ie. 7. Then K is of bounded (p, q) convex variation as is K* =
K— K . Suppose v+ 0. Choose z¢X, and suppose K is p-q
related, where p and ¢ are semi-norms in X and Y respectively.
Choose ¢ such that for (a, b] < (0, 6], ¢([K(a, b] (®) — L(x)) < ¢/4. Since
fot) = (1 — t)»> a converges uniformly on [0, 1] to ., then choose
N such that » > N implies sup, p(f.(t) < ¢/2WK. Then, for n > N,

966, = o((3 ) 4 o)

alv S Kd@E (1 — t)y— oc)>

i

Il/\

(v
< q< Kd(t(1 — t)— m)) <-§f,Kd(t~(1 - t)”‘”x)
( S At~ (1 — )y~ w)) ( XK A1 — t)““”x))
+ WK s;ltg1 q(t'(1 — tyw)

= V@@ — o) sup [K*(D]@) + ¢/2
<2(c/d) +e2=¢.

Where in the above V¢ (t/(1 — t)»*) denotes the variation of f over
[0, 6]. Hence, ¢(¢,,(®))—0 as n— <, and it follows that ¢,,(z)—f; as
#— <. Suppose v = 0, and xe X. Further, suppose that K is p-g
related. Then,

B (%) = (vg K*d(1 — t)”ac) + (vg K. d(l — t)w)
= <vS;K*d(l — t)”:c> + (=)
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- (wg K d(1 — t)"x) — ).
0

By an argument similar to the previous one it follows that vS‘ K*d
(I — t)"x converges to 6, as m — c and hence that ¢,,(x) — — OZ’(x)
as n— oo, Therefore, (¢,,) satisfies (C) and by 1.1 is a convergence
preserving method, and the theorem is established.

In the preceding proof observe that if < is the identically 4,
map, then 4, .(x)—0, for all v. Hence, we have the following corol-
lary to 4.3.

COROLLARY 4.4. Suppose {{t.} is gemerated by a set function K
which 1s of bounded (p, q) convex variation. Then for the Hausdorff
method generated by {w.} to be regular with respect to .7 ¢ L[X, Y]
it is sufficient that t, = = and that K have the 0-Limit Property.

5. Concluding remarks. It is not known if the condition that
{rt,} be generated by a K which has the limit property is necessary
for the Hausdorff method generated by {/.} to be convergence pre-
serving. If Y is a Banach space satisfying the condition that there
isa ¢>1 such that max(|z +y||, [[x —yl)=q min(l=], [yl
then a K which is of bounded convex variation has the limit property.
Hence under this additional condition on Y we conclude that a Haus-
dorff method is convergence preserving if and only if it is generated
by a moment sequence. We note that if Y is a generalized Euclidean
space, for example Y = L,[0, 1], then the above condition holds with
g =1/ 2. However, if Y = L]0, 1] or L.[0, 1] then the above con-

dition does not hold.

6. Addendum to the galley proofs. After this paper was sent
to the printer, it was observed that by using inequality (3) on page
400 of (Uniformly Convex Spaces, J. A. Clarkson, Trans. Amer. Math.
Soc., 40 (1936), 396-414) one can establish the above condition holds
for L, and I, provided 1 < p < . The number q is given by ¢ = 2'/»
when 2 < p < o, and by ¢ = 2" when 1 < p < 2.
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