COUNTEREXAMPLES TO A CONJECTURE OF G. N. DE OLIVEIRA

DARALD JOE HARTFIEL
COUNTEREXAMPLES TO A CONJECTURE OF G. N. DE OLIVEIRA

D. J. HARTFIEL

G. N. de Oliveira gives the following conjecture.

CONJECTURE. Let \(A \) be an \(n \times n \) doubly stochastic irreducible matrix. If \(n \) is even, then \(f(z) = \text{perm}(Iz - A) \) has no real roots; if \(n \) is odd, then \(f(z) = \text{perm}(Iz - A) \) has one and only one real root.

In this paper we give counter examples to this conjecture.

Results:

EXAMPLE 1. Let

\[
A = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{4} & \frac{1}{2}
\end{bmatrix}.
\]

\(f(z) = \text{perm}(Iz - A) \) is such that \(f(0) < 0 \) and \(f(1) > 0 \). Consider \(f(z) \cdot (z - 1) = g(z) \). Note that \(g(0) > 0 \) and since there is a \(\xi(0 < \xi < 1) \) for which \(f(\xi) > 0 \) we see that \(g(\xi) < 0 \). Now consider

\[
B(\varepsilon) = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \\
0 & \frac{1}{4} & \frac{3}{4} - \varepsilon & \varepsilon \\
0 & 0 & \varepsilon & 1 - \varepsilon
\end{bmatrix}.
\]

If \(0 \leq \varepsilon \leq \frac{1}{4} \), \(B(\varepsilon) \) is doubly stochastic. Further if \(g(z) = \text{perm}(Iz - B(\varepsilon)) \) then for each \(z \), \(g(z) = \lim_{\varepsilon \to 0} g_{(\varepsilon)}(z) \). Since \(g_{(\varepsilon)}(0) > 0 \) for each \(\varepsilon \) and \(g_{(\varepsilon)}(\xi) < 0 \) we see that for sufficiently small \(\varepsilon \), say \(\varepsilon_{0} \), \(g_{(\varepsilon_{0})}(z) \) has a real root and \(B(\varepsilon_{0}) \) is irreducible. This yields the counter-example. Note also that \(g_{(\varepsilon_{0})}(z) > 0 \) for \(z > 1 \) [see 1], hence \(g_{(\varepsilon_{0})}(z) \) has at least two real roots.

EXAMPLE 2. For simplification let \(B(\varepsilon_{0}) = B \) and \(g_{(\varepsilon_{0})}(z) = g(z) \).

Recall

(a) \(g(0) > 0 \) and
(b) \(g(\xi) < 0 \). By direct calculation we see that
(c) \(g(1) > 0 \) and hence for some \(\gamma, \xi < \gamma < 1 \)
(d) \(g(\gamma) > 0 \).

Now consider \(f(z) = g(z) \cdot (z - 1) \). Note that

(a) \(f(0) < 0 \)
(b) \(f(\xi) > 0 \)
(c) $f(1) = 0$
(d) $f(\gamma) < 0$.

Consider

$$A(\varepsilon) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & \frac{3}{4} & -\varepsilon_0 & \varepsilon_0 \\ 0 & 0 & \varepsilon_0 & 1 - \varepsilon_0 - \varepsilon & \varepsilon \\ 0 & 0 & 0 & \varepsilon & 1 - \varepsilon \end{bmatrix}$$

where $0 < \varepsilon < 1 - \varepsilon_0$.

Let $f_\varepsilon(z) = \text{perm} [Iz - A(\varepsilon)]$. Note that for each z, $\lim_{\varepsilon \to 0} f_\varepsilon(z) = f(z)$. Therefore for ε sufficiently small, say ε_i

(a) $f_{\varepsilon_i}(0) < 0$
(b) $f_{\varepsilon_i}(z) > 0$
(c) $f_{\varepsilon_i}(\gamma) < 0$
(d) $f_{\varepsilon_i}(z) > 0$ for $z > 1$. Further $A(\varepsilon_i)$ is doubly stochastic and irreducible. Hence $f_{\varepsilon_i}(z)$ has at least three real roots. This yields a counter-example to the conjecture in the case n is odd.

References

Received July 10, 1970.

Texas A and M University
Pacific Journal of Mathematics
Vol. 38, No. 1 March, 1971

Bruce Alan Barnes, *Banach algebras which are ideals in a Banach algebra* 1
David W. Boyd, *Inequalities for positive integral operators* 9
Lawrence Gerald Brown, *Note on the open mapping theorem* 25
Stephen Daniel Comer, *Representations by algebras of sections over Boolean spaces* .. 29
P. D. T. A. Elliott, *On the limiting distribution of additive functions (mod 1)* 49
Mary Rodriguez Embry, *Classifying special operators by means of subsets associated with the numerical range* 61
Darald Joe Hartfiel, *Counterexamples to a conjecture of G. N. de Oliveira* 67
C. Ward Henson, *A family of countable homogeneous graphs* 69
Satoru Igari and Shigehiko Kuratsubo, *A sufficient condition for L^p-multipliers* .. 85
William A. Kirk, *Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings* .. 89
Erwin Kleinfeld, *A generalization of commutative and associative rings* 95
D. B. Lahiri, *Some restricted partition functions. Congruences modulo 11* 103
T. Y. Lin, *Homological algebra of stable homotopy ring π_* of spheres* 117
Morris Marden, *A representation for the logarithmic derivative of a meromorphic function* .. 145
John Charles Nichols and James C. Smith, *Examples concerning sum properties for metric-dependent dimension functions* .. 151
Asit Baran Raha, *On completely Hausdorff-completion of a completely Hausdorff space* .. 161
M. Rajagopalan and Bertram Manuel Schreiber, *Ergodic automorphisms and affine transformations of locally compact groups* 167
N. V. Rao and Ashoke Kumar Roy, *Linear isometries of some function spaces* .. 177
William Francis Reynolds, *Blocks and F-class algebras of finite groups* 193
Richard Rochberg, *Which linear maps of the disk algebra are multiplicative* 207
Gary Sampson, *Sharp estimates of convolution transforms in terms of decreasing functions* .. 213
Stephen Scheinberg, *Fatou's lemma in normed linear spaces* 233
Ken Shaw, *Whittaker constants for entire functions of several complex variables* .. 239
James DeWitt Stein, *Two uniform boundedness theorems* 251
Li Pi Su, *Homomorphisms of near-rings of continuous functions* 261
Stephen Willard, *Functionally compact spaces, C-compact spaces and mappings of minimal Hausdorff spaces* 267
James Patrick Williams, *On the range of a derivation* 273