A SUFFICIENT CONDITION FOR L^p-MULTIPLIERS

SATORU IGARI AND SHIGEHIKO KURATSUBO
A SUFFICIENT CONDITION FOR L^p-MULTIPLIERS

SATORU IGARI AND SHIGEHICO KURATSUBO

Suppose $1 \leq p \leq \infty$. For a bounded measurable function ϕ on the n-dimensional euclidean space R^n define a transformation T_ϕ by $(T_\phi f)^* = \hat{\phi} \hat{f}$, where $f \in L^2 \cap L^p(R^n)$ and \hat{f} is the Fourier transform of f:

$$\hat{f}(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{R^n} f(x)e^{-i\xi x} \, dx.$$

If T_ϕ is a bounded transform of $L^p(R^n)$ to $L^p(R^n)$, ϕ is said to be L^p-multiplier and the norm of ϕ is defined as the operator norm of T_ϕ.

Theorem 1. Let $2n/(n + 1) < p < 2n/(n - 1)$ and ϕ be a radial function on R^n, so that, it does not depend on the arguments and may be denoted by $\phi(r)$, $0 \leq r < \infty$. If $\phi(r)$ is absolutely continuous and

$$M = \|\phi\|_{\infty} + \left(\sup_{R > 0} R \int_{R}^{2R} \frac{d}{dr} \phi(r) \right)^{1/2},$$

then ϕ is an L^p-multiplier and its norm is dominated by a constant multiple of M.

To prove this theorem we introduce the following notations and Theorem 2. For a complex number $\delta = \sigma + i\tau$, $\sigma > -1$, and a reasonable function f on R^n the Riesz-Bochner mean of order δ is defined by

$$s^\delta_n(f, x) = \frac{1}{(2\pi)^{n/2}} \int_{|\xi| < R} \left(1 - \frac{|\xi|^2}{R^2}\right)^\delta \hat{f}(\xi)e^{i\tau \xi} d\xi.$$

Put

$$t^\delta_n(f, x) = s^\delta_n(f, x) - s^{\delta - 1}_n(f, x)$$

and define the Littlewood-Paley function by

$$g^\delta_n(f, x) = \left(\int_0^\infty \frac{|t^\delta_n(f, x)|^2}{R} \, dR \right)^{1/2},$$

which is introduced by E. M. Stein in [3]. Then we have the following.

Theorem 2. If $2n/(n + 2\sigma - 1) < p < 2n/(n - 2\sigma + 1)$ and $1/2 < \sigma < (n + 1)/2$, then

$$A \|g^\delta_n(f)\|_p \leq \|f\|_p < A' \|g^\delta_n(f)\|_p,$$

where A and A' are positive constants depending only on n, σ, and p. (Note that g^δ_n is a bounded operator from L^p to itself.)
where A and A' are constants not depending on f.

The first part of inequalities is proved by E. M. Stein [3] for $p = 2$ and by G. Sunouchi [4] for $2n/(n + 2\sigma - 1) < p < 2$. The other parts will be shown by the conjugacy method as in S. Igari [2], so that we shall give a sketch of a proof.

Proof of Theorem 2. For $\hat{\delta} = \sigma + i\tau, \sigma > -1$, and $t > 0$ let $K^t(\delta)$ be the Fourier transform of $[\max \{(1 - |\xi|^{2})^{-t}, 0\}]^\delta$. Since $K^t(\delta)$ is radial, we denote it simply by $K^t(r), r = |x|$. Then $K^t(r) = 2^t I^t(\hat{\delta} + 1) V_{(n/2)+t}(rt)t^s$, where $V_s(s) = J_s(s)s^{-\delta}$ and J_s denotes the Bessel function of the first kind. Considering the Fourier transform of $t^s_k(f, x)$ we get

$$t^s_k(f, x) = \frac{1}{\sqrt{2\pi^3}} \int_{\mathbb{R}^n} f(y) T^s_k(x - y) dy = f \ast T^s_k(x),$$

where $T^s_k(x) = R^{-2} A K^{-s-1}(x)$ and $A = \partial^2/\partial x^2 + \cdots + \partial^2/\partial x^2$.

Let H be the Hilbert space of functions on $(0, \infty)$ whose inner product is defined by $\langle f, g \rangle = \int_0^\infty f_R \overline{g}_R R^{-4} dR$. For a function $g_R(x)$ in $L^2(\mathbb{R}^n; H)$, that is, H-valued L^2-function, define an operator v^s by

$$v^s(g, x) = \frac{1}{\sqrt{2\pi^3}} \int_{\mathbb{R}^n} \langle T^s_k(y), \overline{g}_R(x - y) \rangle dy.$$

By the associativity of convolution relation

$$\int_{\mathbb{R}^n} v^s(g, x) \overline{f}(x) dx = \int_{\mathbb{R}^n} \langle g(x), t^s(f, x) \rangle dx$$

for every f in $L^2(\mathbb{R}^n)$ and g in $L^2(\mathbb{R}^n; H)$, which implies that v^s is the adjoint of t^s.

By the Plancherel formula

$$\| t^s(f) \|_{L^2(H)} = \left(\int_{\mathbb{R}^n} \left(1 - \frac{|\xi|^2}{R^2} \right)^{2\sigma - 2} \frac{|\xi|^4}{R^2} dR \right)^{1/2} \| f \|_{L^2}$$

$$= B_{\sigma} \| f \|_{L^2},$$

where $B_{\sigma} = [B(2\sigma - 1, 2)]^{1/2}, \hat{\delta} = \sigma + i\tau$, and $\sigma > 1/2$. Therefore $f = (1/B\hat{\delta}) v^s t^s(f)$ for $f \in L^2(\mathbb{R}^n)$. By Schwarz inequality $|\langle t^s(f, x), g(x) \rangle| \leq \| t^s(f, x) \|_H \| g(x) \|_H$. Applying this inequality with (2) to (1) we get

$$\| v^s(g) \|_{L^2} \leq B_{\sigma} \| g \|_{L^2(H)}.$$

On the other hand
A SUFFICIENT CONDITION FOR L^p-MULTIPLIERS 87

\[\int_{|x| > 2|y|} \| T_\delta(x + y) - T_\delta(x) \|_H dx < A e^{-|x|/2} \]

for $\sigma > \alpha + 1$, $\alpha = (n - 1)/2$ (see [4]), where $A_{p,q}$ denotes here and after a constant depending only on p, q and the dimension n. Thus by the well-known argument (see, for example, Dunford-Schwartz [1; p. 1171] we get

(4) \[\| v^t(f) \|_{L^q(H)} \leq A_{p,q} e^{-|x|/2} \| f \|_{L^q} \]

and

(5) \[\| v^s(g) \|_{L^p} \leq A_{p,q} e^{-|x|/2} \| g \|_{L^p(H)} \]

for $1 < q \leq 2$ and $\delta = \rho + i\sigma$, $\rho > \alpha + 1$. Fix such a ρ and a q.

Remark that the Stein's interpolation theorem (see [5; p. 100]) is valid for H-valued L^p-spaces and apply it between the inequalities (2) and (4), and (3) and (5). Then we get

(6) \[\| v^s(f) \|_{L^p(H)} \leq A_{p,q} \| f \|_{L^p} \]

and

(7) \[\| v^t(g) \|_{L^p} \leq A_{p,q} \| g \|_{L^p(H)} \]

for $1 < p \leq 2$ and $\sigma > (n/p) - \alpha$.

Since $f = (1/B^s) v^t f$, we get Theorem 2 for $2n/(n + 2\sigma - 1) < p \leq 2$ from (6) and (7). The case where $2 \leq p < 2n/(n - 2\sigma + 1)$ is proved by the equality (1) and the conjugacy method.

Proof of Theorem 1. Let $f \in L^2(\mathbb{R}^n)$. By definition

(8) \[t_\delta(T_\delta f, x) = -\frac{1}{\sqrt{2\pi^n}} \int_{|\xi| < n} \frac{\xi^2}{R^2} \phi(\xi) \hat{f}(\xi) e^{ix\xi} d\xi . \]

Put

\[F(r\omega) = \frac{-1}{\sqrt{2\pi^n}} \int_{|\xi| = n} \frac{\xi^2}{R^2} \hat{f}(\xi) e^{ix\xi} , \]

where $r = |\xi|$ and ω is a unit vector. Then

\[t_\delta(T_\delta f, x) = \int_0^R \phi(r) \left(\int_{|\omega| = 1} F(r\omega) d\omega \right) r^{n-1} dr . \]

The last term is, by integration by parts, equal to

\[\phi(R) \int_0^R r^{n-1} dr \int_{|\omega| = 1} F(r\omega) d\omega - \int_0^R \frac{d}{dr} \phi(r) dr \int_0^r s^{n-1} ds \int_{|\omega| = 1} F(s\omega) d\omega . \]

Thus
\[t_n(T \phi f, x) = \phi(R) t_n(f, x) - \int_0^R \frac{d}{dr} \phi(r) \frac{r^2}{R^2} t_n(f, x) dr. \]

By the Schwarz inequality the last integral is, in absolute value, dominated by
\[
\left(\frac{1}{R} \int_0^R \left| \frac{d}{dr} \phi(r) \right|^2 r^2 dr \right)^{1/2} \left(\frac{1}{R^2} \int_0^R \left| t_n(f, x) \right|^2 r^2 dr \right)^{1/2}.\]

Divide \((0, R)\) into the intervals of the form \((R/2^{j+1}, R/2^j)\) and dominate \(r^2\) by \(R^2/2^j\) in each interval. Then the first integral is bounded by
\[
\sum_{j=0}^{\infty} \frac{1}{2^{2j}} \int_{R/2^{j+1}}^{R/2^j} \left| \frac{d}{dr} \phi(r) \right|^2 dr \leq 4 \sup_{R>0} R \int_0^{2R} \left| \frac{d}{dr} \phi(r) \right|^2 dr.
\]

Therefore
\[
g_n^*(T \phi f, x) \leq \| \phi \|_n \left(\int_0^\infty \left| t_n^*(f, x) \right|^2 dR \right)^{1/2} + 2 \left(\sup_{R>0} \int_0^{2R} \left| \frac{d}{dr} \phi(r) \right|^2 dr \right)^{1/2} \left(\int_0^\infty \left| t_n^*(f, x) \right|^2 r^2 dr \int_0^{\infty} dR \right)^{1/2} \leq \frac{2}{\sqrt{3}} M g_n^*(f, x). \]

Thus, if \(2n/(n + 1) < p < 2n/(n - 1)\), then by Theorem 2 we have
\[
\| T \phi f \|_p \leq A' \| g_n^*(T \phi (f)) \|_p \leq \frac{2}{\sqrt{3}} A'M \| g_n^*(f) \|_p \leq \frac{2}{\sqrt{3}} AA'M \| f \|_p,
\]
which completes the proof.

Finally the authors wish to express their thanks to the referee by whom the proof Theorem 2 is simplified.

References
