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Ramanujan’s congruences for the unrestricted partition
function p(n) with 5, 7 and 11 as moduli can be shown to
be equivalent to precisely similar congruences for some
restricted partition functions of the type

(1) ﬁp(m ,

where to determine the value of (1) we count all the un-
restricted partitions of n excepting those which contain any
number of the forms tn or tn == r as a part. The purpose of
the present paper is to deal with congruences modulo 11,

In [5] the author has established a number of congruences
modulo 3 for (1) with certain selected values of ¢ and ». Functions
of the type (1) are not new in number theory literature; for example,
in the combinatorial interpretation of the famous Rogers-Ramanujan
identities one finds

“p(n),  p(m) -

2. The final results. The restricted partition function (1)
with ¢ =363 and » = 121 has a somewhat simpler interpretation.
It is easily seen that this function counts the unrestricted partitions
of » excepting those which contain 121 or any multiple thereof as a
part. We use the simpler notation

121 121 _ 363

(2) p(n) = Op(’n) = 12117(7@) )

in the theorems to emphasize this interpretation.
The phrase ‘for almost all values of n’ appearing in Theorem 1
means that the number of integers » < N for which any specified

congruence does not hold is o(N). We assume ﬁp(m) to be 1 when
m =0, and 0 when m < 0.

THEOREM 1. For almost all values of n the following congruences
with respect to the modulus 11 hold.
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(1) lym =0,

(2) o0 = —pin — 22)
(3) 258 = —Soapmn — 11)
(4) o) = —5op(n — 33) ,
(5) o) BBpn — 1),
(6) Soopm) = 3o — 33

THEOREM 2. For all values of n =0

12 in+6) =0  (mod1l),

and more genevally with 0 < x < 16

]?fip(lln +6)=0 {mod 11) .

THEOREM 3. The following congruences wmodulo 11 are true for
all values of n = 0.

(1) —il))giép(lln +10) — 3§§p<un 19y =5 21 4 5)
(2) igip(lln + 1) + Sggp(lln —4 =5 121]7(11% +3),
(3) %ng(lln +4) + Sggp(llﬂ —29) =5 121p(11n +1,
@ -y 3Bt 19 =5 Ppain 8,
(5)  =3pain ) +3pain -39 =5 Blpaia + 2),
(6)  —38%pin +9) —3puin —13) =5 lpain + 9,
(1) 3Bpin + 9 +3pin — 1 =5 Fam ),
(8)  3%3pin + 10) + 353pain — 23) = 5 Plpin + 1),
(9) Sg?;p(nn ) — 3222,(11% C 1) =5 2010 4 10),

W) —3Bpain+ 7 + Bpain - 26) =5 Ppain 1 9) .
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THEOREM 4. The following congruences with respect to the
moduwlus 11 hold for all values of n = 0.

363 363

S88p(12in + 121) — $03p(1n + 11)
) = 3paa1n + 99) + 3p1n — 11),
ﬁ%amn+mm—§gmun+m)
2 = 38patn + 109) + 3§3piin — 1),
A p(121n + 119) — 293p(11n + 9)
) = 383p(2tn + 86) + 353 ptin — 24) ,
383 p121n + 106) — 383p1n — 4)
) = 31210 + 95) — 303pa1n — 15,
?%pam%44u@-§&wun+4)
) = 388 p21n + 81) — 383 pa1n — 29) .
3. Notations and conventions. Ramanujan [8] defined
(3) @, (x) = i i arpia = i nao, . (nar,

a=1 p=1 =l
where o0,(n) is, as usual, the sum of the kth powers of the divisors

of . The author has found it convenient to simplify the notation
to @, ,, [3], and even to just (r, s), {4], so that

(4) m@zgwﬁmmﬁ

The meanings of f(x), #., v and >, [F V{v)] as given below are
the same as in the previous paper [5], but those of U, and P;(v) are
different:

(5) flr) = 1L (0 = &) = S (=Dramemsse = 3 a0,
6) e =[le-a] = S pwe .
(7) W, = % n'a,x" é pn)a™ .

>, denotes summation over the pentagonal numbers v, where
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Il

(8) v —%—m(Sm—i-l), m=0, £1, £2, ... ;

2 [F V)]

v

implies that the sign to be prefixed is negative or positive according
as v is of the form @2m + 1)(83m + 2) or m(6m + 1). (The first form
@m + 1)(83m + 2) is equivalent to (2m + 1)(3m + 1) as given in the
previous paper [5]; m ranges over all integers positive, zero or
negative.) It is obvious that

(9) u, = S(Fva)/fia) .
We define the U.’s by

U, = 2u; — bu, + 2u, + 5u, — bu, + %, ,
U = 2u; — 3u, — u; + 4u, — u, ,
U, = 2uy; — u, -+ bu, + bu, ,
U, = 2u, + 3u, + 3u; — b5u, — 3u, )
U = u, — 3u, — 3u, + 4du, + u, ,
U, = 2uy; — 2u, — 1y, — 2u, + 3u,

(10)

We also need polynomials P;(v) in v which like U; are defined
only for 1 =10,1,2,4,5 and 7 and which are obtained by replacing
U; by P;(v) and u, by »" in the above relations (10).

4, Some lemmas. For the pentagonal numbers » which fall only
in the residue classes 7 =10,1,2,4,5 and 7 modulo 11 the following
lemma can be verified.

LEMMA 1. If v is a pentagonal number, then

P,w) =1 (mod1l), 2f » =1 (mod 11)
=0 (modl1l), +f v # ¢ (mod 11) .

Applying relation (9) to (10) we obtain
(1) U = 3 [F PO ;
and then the use of Lemma 1 leads to Lemma 2.

LeMmA 2. U, = Z, (F2")/f(x) (mod1l),

the summation being extended over all pentagonal numbers v =1
(mod 11).
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The following lemma can be verified without difficulty by writing
11m + 7 with j =0, —4; —1, —3; 1, —5; 3, 4; —2; and 2, 5 respec-
tively in place of m in the expression 3m(3m + 1) for the pentagonal
numbers, and in (—1)™ its associated sign. It is also to be remembered
(when 7 is negative, say, —j’) that £(11m — 7)(33m — 35 + 1) and
+11m + 7)(B3m + 35" — 1) represent the same set of numbers.

LeEMmA 3. With respect to the modulus 11 the pentagonal num-
bers v fall in the siz residue classes 1 =0,1,2, 4,5 and T; and the
solutions of

v =1 (mod1l)

and the corresponding assoctated signs are as follows.

1 solutions (1st set): sign solutions (2nd set): sign

0 1(363m* + 1lm) , (=)™ 3(863m* + 253m) + 22, (—DL)™
1 i@B63m* + 55m) + 1, (D™  1(363m’ + 18Tm) + 12, (—1)™+
2 3(363m* + Tim) + 2, (=)™  1(363m* + 319m) + 35, (—1)™*
4 3(363m* + 209m) + 15, (=)=  1(363m* + 275m) + 26, (—1)™
5 3(363m* + 121m) + 5, (=)™

7 1(363m* + 143m) + T, (=)™ 3(363m* + 341m) + 40, (—1)™+

The identities given in the next lemma are simple applications of
a special case of a famous identity of Jacobi [2, p. 283] viz.,

(12) 10_:[ [(1 — xzkn-}—k——l)(l __ x210n+k+l)(l _ x?kn+2k)] — +Z°|° (__l)mka2+lm .

In establishing this lemma % and ! are given values in conformity
with the expressions quardratic in m given in Lemma 3.

LeMMA 4. If v is a pentagonal number them, writing v =1
simply for v =17 (mod 11), we have

Z ($x’u) — ﬁ [(1 — x363n+176)(1 . x363n+187)(1 . x363%+363)]
v=0 0

+ x22 ﬁ [(1 — x363n+55)(1 . x363n+308) (1 _ x363n+363)] ,
0

B3

(;xv) = —q H [(1 . x363n+154)(1 — x363n+209>(1 . x363n+363)]

vEL 0

— ml2 F . 363088 ___ 36304275 —_ 36304363
o [T — 2 %)(A — @) (1 — o))
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($xv) — g2 ﬁ [(1 . x363n+143>(1 s x363n+220)(1 . x363n+363)]
. x% ﬁ [(1 . 363n+22) (1 363n+341)(1 &637»—}-363)] ,
($xv) — 15 H [(1 36371,+77) (1 363'ﬂ,+286) (1 . x363n+363)]
+ x26 ]:[ [(1 L x363n—{-4)<1 . x363n+319)(1 o $363n—}—363)] ,
($x7)) — /l/ H (1 lln 121)
Z ($ ) — 7 H [(1 . /USG 7b1—110) (1 637&42‘)3) (1 363n+363)]
0 . SGSnJ—II SGSn +352 363%—,‘»363
# I1 [ (L — (L — )]
The next lemma is derived from Lemma 2 after the substitu-
tion in it of the product expressions for >),.;(¥2’) as given in

Lemma 4. The following fact is to be used in addition.

Ji[ [(1 — ,3637 - H‘) (1 '3637;7363-« )(1 36 7 363)]
(13) f@)
ﬁ [(1 — 363n -+ 1)(1 363n 363 r) (1 363n+363)]

2t > 363
[ - @ — AT — @) ---] =2

pma .

LEMMA 5. With respect to the modulus 11
363

U, = 24 17629(% yar + Z p(n — 22)x*
< 36
U= -3 09 — Dot — 3800 — 12007,
_ 363 o863
U, = Z 1431)(% 2)z" 72:0 zp(n 35)a"
U= =300 - 15 + 32500 — 26007,
2
A .
363 363

U, = % 110p(n — Ta"~ — Zf) np(n — 40)x™ .

We require a set of congruences which are directly derivable
from the identities for w, = u,, given in [3], for » =1, 2, 3, 4 and 5.
These identities express w,’s as linear functions of @, ,’s. By suitable
multiplications of both sides of these identities the fractional coefficients
appearing in [3] may be made integral. Since we are concerned
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with congruences modulo 11 we have in the following lemma reduced
these coefficients with respect to the modulus 11. For the sake of
simplicity we have written (o, b) instead of @,,.

LEMMA 6. With respect to the modulus 11 for the congruences
we have

= 1;
Uy = —(Oy 1) ’
u, = (0,1) +4(1,2) + 50,3) ;

I

s 200, 1) + 5(1,2) + 52, 3) — 20, 3) — 3(1, 4) + 3(0, 5) ;
o= —5(0,1) — 51,2 + (2,3) + 4(3, 4) + 2(0, 3) — 5(1, 4)
—2(2,5) + 50, 5) — 4(1, 6) — 3(0, ) ;

—(0,10) — 5(1, 2) — 42, 8) + (3, 4) — (4, 5) -+ 2(0, 3)

— 2(1, 4) + 52, 5) + 3(3, 6) + 2(0, 5 — (1, 6) + 3(2,7)
+2(0,7) — 5(1, 8) .

il

(A

The next lemma is obtained by the substitution of the above
values of u,.’s in the expressions for U, given in (10).

LEMMA 7. With respect to the modulus 11

U, —~1=1,

U,;EL,;, 7::1,2,4,5,7;
where

L, = A, 8 + A0, 7)
+ B,(2,7) + B(1, 6) + B,(0, 5)
+ Cy(3, 6) + Cy(2, 5) + C\(1, 4) + Cy(0, 3)
+ D,(4, 5) + D3, 4) + D,(2, 3) + D\(1, 2) + D,(0, 1) ,

the set of coefficients
(Aly AO; BZ’ Bl! B(); C:;y C?) Cly CO; D4y -DSy D27 DU DO)

being respectively

(1, -—-3;—5, —4, —4;, -5, -2, 4, 4;,-2, 4, -3, 1 4);
(1 2 -5 -1 -3;—5 5 3, —-2;,-2, 1,-5, 5, b);
(1, —-4-5 2 -1;,—-5, 1, 1, 5 -2, -2, 2, 4, 3);
( 1, -5; -5, -8, —5; —5, 4, 5, 1;-2, 3,-1, 3,-2);
(-5, 0, 3 0 0 3 0 0 0-1, 0, 0, 0, 0;
( 1, -1, -5, -5, 2;-—5, 3,-2, 3;—-2, 5, —4, -2 1);

Jor 1 =0,1,2 4,5 and 7.
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5. The basic theorem. By comparing the coefficients of the
two expressions for U; (mod 11) given in Lemmas 6 and 7 we obtain
the following theorem from which our final conclusions are drawn.

THEOREM 0. The following congruences are true for m > 0, the
modulus being 11.

3 pm) + 2p(n — 22)

(1) = (n— 3o,m) — Bn* + 4n + 4)oyn) — Bn® + 20* — 4n — 4)0,(n)
— @n' —4n’ + 30 — n — 4o(n) ;
—8in — 1) — 38n(n — 12)
62) =ln + 2)0,m) — B1* + n + 3)o,(n) — (B51° — 5n* — 3n + 2)0,(n)
— 2n* — n® + 5n* — 5n — 5)o(n) ;

363

388 p(n — 2) — 35p(n ~ 35)

143
(3) =(n—4Yo(n) — 6n° — 2n + Doy(n) — 6%’ — ©* — n — 5)oy(n)
— @n* + 21 — 202 — 4n — 3)o(n) ;

~383p(n — 15) + 3$2p(m — 26)

(4) = (n — 5o, (n) — 5% + 3n + B)o,(n) — Bnr® — 4n* — bn — 1)o,(n)
— 2n* — 3n* — W — 3n + 2)o(n) ;

5
(5) = —5no,(n) + 3nto(n) + 3na(n) — no(n) ;
ﬁ%m—ﬂ—?%m—w

(6) = (m— Lo,n) — Bn* + 5n — 2)o,(n) — (56%° — 3n* + 2n — 3)o3(n)
— (2n* — 5n® + 4n® + 2n — Da(n) .

6. Proofs of Theorems 1 and 2. In view of the well-known
congruence [9, 1 p. 167]

(14 o,(m) =0 (modk)

for ‘almost all’ n for arbitrarily fixed k¥ and odd s it is a straight-
forward matter to infer Theorem 1 from Theorem 0.

The first relation of Theorem 2 is also obtained immediately by
writing 11n + 11 for = in the relation (5) of Theorem 0. The general
result enunciated in Theorem 2 actually emanates from the first
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part, and the process of derivation has two stages. In the first
stage Ramanujan’s congruence modulo 11 for the partition function
p(n) is derived from the first relation, and then this derived relation

is used in the second stage to establish the general proposition. It

easily follows from (13) and (12) that i’fip(n) can be expressed in

the (really finite) form,

(15) Thap(n) = pl) + Se@)pn — 11n) ,

where ¢(n') = 0 or =1. For the special case corresponding to N = 11
we have the fully specified expression,

(16) 121,y = S [Fp(n — 1210)]

v

Keeping in mind the first relation of Theorem 2, viz.,

7 121

plln +6) =0 (mod 11) ,

Ramanujan’s congruence is sesn to be valid by putting successively
n =6,17,28,39, --- in (16). Thus (17) implies Ramanujan’s con-
gruence. Conversely Ramanujan’s congruence implies (17) as can be
easily seen when n is replaced by 11w + 6 in (16). Hence Ramanu-
jan’s congruence for the unrestricted partition function is equivalent
to the congruence (17) for the restricted partition function. To derive
the general proposition we merely write 11n + 6 for n in (15) and
make use of Ramanujan’s congruence. It can be easily seen that this
latter congruence is also equivalent to any particular case of the
general preposition.

7. Corollaries of the basic Theorem 0. An interesting con-
sequence of the congruences for the restricted partition functions so
far established is that these enable us to deduce a certain congruence
property of the divisor function ¢,(n), viz., Lemma 8, which in its turn
helps us to provide further congruences for the restricted partition
functions. This lemma however, is also a particular case of a very
general theorem established elsewhere [6].

LeEmMa 8. If n is not a multiple of 11 then
o,(n) = (%)nzas(m (mod 11) ,

where (n/11) is the Legendre symbol.
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The congruence relation of the divisor functions given in Lemma 8
proves useful for the reduction of the basic congruences of the
Theorem 0 into neater forms when attention is separately paid to
the cases when % is a quadratic non-residue or a residue of 11.
When 7 is a multiple of 11 this theorem reduces obviously to an
elegant form.

COROLLARY 1. If n is a quadratic mon-residue of 11, then with
respect to the modulus 11,

3 363
0 opm )+ Lepn — 22)
= 5n® + n* + 4n + 4)o.(n) — 2n* — 4%° + 2n° — n — 4)o(n) ,
363 363
(2) _15417(” - 1) = 881)(% —12)
= (5% + 3n* + 3n — 2)0,(n) — 2n* — n® 4 5n* — bn — H)o(n) ,
3 363
(3) “?ng(n - 2) - 2210(% - 35)
= (51 + bn* + n + 5)o,(n) — (@n* + 2n® — 2n* — 4n — 3)o(n) ,
363
» — 38 — 15) + SS3p(n — 26)
= (5n° — 2n® + 51 + D)o,(n) — 2n* — 3n® + n® — 3n + 2)o(n) ,
(5)  Plpm - 5) = —3wain) — wiom) ,
363
3 — 1)~ 3pn — 40)

6
(6) = (5n° + 4n* — 2n + 3)o,(n) — Cn* — 5n® + 4n® + 2n — 1o(n) .

This corollary easily follows from Theorem 0 when use is made
of Lemma 8 which enables replacement of the terms involving o.(n)
by terms involving o,(n), and of the following relation (18) which
makes redundant the terms involving o,(n):

(18) o;11ln 4+ 1) =0 (mod 11)

when 4 is a quadratic non-residue of 11. This congruence is a
particular case of a more general relation [7, 4] which holds for
any odd prime modulus.

When n is a quadratic residue of 11 there is no scope for using
the relation (18) but Lemma 8 can still be used with some advantage,
and the result is given in Corollary 2.
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COROLLARY 2. If n 1is a quadratic residue of 11 them with
respect to the modulus 11,

36
tnemn ) + 53 p(n — 22)

(1) = — (50’ + 4n + 4)o,(n) — @n® + 5n’ — 4n — 4)o,(n)
— @2n* — 4n® + 3 — n — don) ,
—eapin — 1) — 35pn — 12
(2) = — (B + n + 3)o,(n) — @An' + 4n* — 3n + 2)0,(n)
— (2n* — n® + b’ — bn — b)o(n) ,
— gt — 2) = *33p(n — 35)
(3) = —(5n* — 2n + 1)gy(n) — (4n* + 3n* — n — B)o,(n)
— 2n' + 2n® — 20 — 4dn — S)o(n) .
~3pn — 15) + v ~ 26)
(4) = — (5% + 3n + 5)oy(n) — (4W* + n* — 5n — Doy(n)
— @2n* — 3+ n* — 3n + 2)o(n) ,
12
Lpn — 5)
(5)
= 3n’gy(n) — 2n’c,(n) — n'o(n) ,
2rop(n — 1) — 33p(m — 40)
(6) = — (B0 + 5n — 2)a,(n) — (4n* — 20* + 21 — 3)ay(n)

— @2n* — 5n® + 4n* + 2n — Do(n) .

Proof of Theorem 3. This theorem follows from the above
corollaries. We shall show that the first set of five congruences of
Theorem 3 is deducible from Corollary 1 whereas the last set is
obtainable from the other corollary.

Eliminating o¢,(n) between (5) and each of the remaining con-
gruences of Corollary 1 we find that if » is a quadratic non-residue
then

3n3[:13$2p(n) + Sggp(n - 22)]
(19) + 60 4+ nt + dn + 412

= —n*@2n' + n — o(n) (mod 11) ,

p(n — 5)
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363 63
—3%3[15410(% - 1) + 38810(% — 12)]
3 5 121
(20) + Br® + 3n* 4+ 3n — 2)"""p(n — b)

n*(@dn* — bn + 4)o(n) (mod 11) ,

il

—31@3[:%22})(% — 2) + 3221)(% — 85)]

(21) +5n + 5 + 0+ 52 lpm — 5)
= n’(bn’ — 4n — 2)a(n) (mod 11) ,

~371,3[3$§p(n — 15) — 32ip(n — 26)]
(22) + 6t — 20t + 5+ DIEpm — 5)

730 — 3n + b)o(n) (mod 11) ,

il

s
Sn”[lggp(n — 7 38pm — 40)]

23) + G+ 4wt — 20 + 32y — 5)
= 0} + 2n + 3)o(n) {mod 11) .

By putting 11n + 10, 11w + 8, 11n + 6, 1in + 13 and 11n + 7
in place of » in the congruences (19), (20), (21), (22) and (23) respec-
tively we obtain the first five congruences, (1) — (5) of Theorem 3.

To prove the remaining congruences we turn to Corollary 2.
Multiplying both sides of the congruence (5) of this corollary by 5,
and adding the result to each of the other congruences one by one
we have respectively the following congruences modulo 11,

363 363 121

176?9(” ) + 551’(7?/ —22) +5 p(n — b)
(29) = — (W + 4n + Yoy(n) — B’ + 50 — 4n — 4)g,(n)
+ (An* + 4%’ — 3n* + n + do(n) ,
—388ptn — 1) — 355t — 12) + 51 p(n — 5)
(25) = — (0 + n + 3)o5(n) — (31° + 4n® — 3n + 2)0,(n)
+ (An* + %* — 5%F + 5n + 5)a(n) ,
3t —2) — 353pn — 35) + 5% p(n — 5)
(26) = —(n — 2n + 1)o(n) — Bn® + 3n* — n — 5)0:(n)

+ (An* — 20%° + 2n® + 4n + 8)o(n) ,
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‘3%1)(% — 15) + 3221@(% — 26) + 5121]9(% — 5)
{27) = —(n’ + 3n + 5o(n) — B3’ + #* — bn — 1)o,(n)
+ (n* + 3n® — w* + 3n — 2o(n),
363 =

121
p

(n — 7y — 83,0 — 40) + 5% pn — 5)

1107 11?
—(n® + bn — 2o,(n) — B3 — 20° + 2n — 3}0,(n)

+ (An* + 5%° — 4n* — 2n + Lyo(n) .

(28)

By writing 11n + 9, 11n -+ 5, 11n + 12, 11n + 15 and 11n + 14
respectively in (24), (25), (26), (27) and (28) we obtain the last five
congruences {6) — (10) of Theorem 3.

10. Proof of Theorem 4. This theorem is based upon an
artifice which depends upon the following simple congruence which
can be established easily from first principles.

(29) o, (11ln) = g.(n) {mod 11}, £ > 0.

We shall illustrate the procedure adopted by proving the last con-
gruence of the theorem. Writing 11z for % in the last congruence
(6) of the basic Theorem 0 we have on using the above relation the
following

363
110

= —o.(n) + 20,(n) + 30,(n) + o(n) (mod 11) .

pln — 7 — 383p1n — 40)
(30)

Subtracting (6) of Theorem 0 from (30), and then writing 11% + 11
for n we arrive at the desired result. Other congruences of the
theorem are similarly established.
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