A REPRESENTATION FOR THE LOGARITHMIC DERIVATIVE
OF A MEROMORPHIC FUNCTION

MORRIS MARDEN
A REPRESENTATION FOR THE LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION

MORRIS MARDEN

A new representation is developed for the logarithmic derivative of a meromorphic function \(f \) in terms of its zeros and poles, using as parameters some of the critical points of \(f \). Applications are made to locating all but a finite number of critical points of \(f \).

1. The principal result.

THEOREM 1.1. Let \(f \) be a meromorphic function of finite order \(\rho \) possessing the finite zeros \(a_1, a_2, a_3, \ldots \) and poles \(b_1, b_2, b_3, \ldots \). Let \(\zeta_1, \zeta_2, \ldots, \zeta_n \), be any \(n = [\rho] \) distinct zeros of the derivative \(f' \) of \(f \) which are not also zeros of \(f \). Then for \(z \neq a_j, b_j \) (\(j = 1, 2, 3, \ldots \))

\[
\frac{f'(z)}{f(z)} = \sum_{j=1}^{\infty} \frac{\psi(z)}{\psi(a_j)(z - a_j)} - \sum_{j=1}^{\infty} \frac{\psi(z)}{\psi(b_j)(z - b_j)}
\]

where \(\psi(z) = 1 \) for \(n = 0 \),

\[
\psi(z) = (z - \zeta_1)(z - \zeta_2) \cdots (z - \zeta_n) \quad \text{for } n > 0.
\]

In (1.1) the convergence is uniform on every compact set excluding all the \(a_j \) and \(b_j \).

In the case that \(f \) is a rational function with \(m \) zeros and \(p \) poles, identity (1.1) reduces to the familiar formula

\[
\frac{f'(z)}{f(z)} = \sum_{j=1}^{m} (z - a_j)^{-1} - \sum_{j=1}^{p} (z - b_j)^{-1}.
\]

Furthermore, if the second summation is omitted in (1.1), identity (1.1) reduces to one which we had previously obtained [See 1] for entire functions of finite order.

2. Proof. Being a meromorphic function, \(f \) can be written as a ratio of two entire functions, each of which has an Hadamard representation in terms of its zeros. Thus,

\[
f(z) = z^m e^{P(z)} \prod_{j=1}^{\infty} \left[E(z/a_j, p)/E(z/b_j, q) \right]
\]

where \(m \) is an integer (positive, negative or zero); \(P(z) \) is a polynomial of degree at most \(n = [\rho] \); \(p \) and \(q \) are nonnegative integers not exceeding \(n \) and
\[E(u, p) = (1 - u) \exp [u + (1/2)u^2 + \cdots + (1/p)u^p] \]

if \(p > 0 \) whereas \(E(u, 0) = (1 - u) \). Taking the logarithmic derivative of (2.1) and simplifying, one finds that

\[\frac{f''(z)}{f(z)} = \frac{m}{z} + P'(z) + A(z) - B(z) \]

where

\[A(z) = \sum_{i=1}^{\infty} \frac{z^p}{a^*_j(z - a_j)} \quad B(z) = \sum_{j=1}^{\infty} \frac{z^q}{b^*_j(z - b_j)}. \]

By hypothesis, \(f'(^k) = 0, \ k = 1, 2, \cdots, n. \) Hence, from (2.2), follows that for \(k = 1, 2, \cdots, n \)

\[P'(^k) = -(m/^k) - A(^k) + B(^k). \]

Since \(P'(z) \) is a polynomial of degree at most \(n - 1 \), it can be represented by the Lagrange Interpolation Formula as

\[\frac{P'(z)}{\psi(z)} = \sum_{k=1}^{n} \frac{P'(^k)}{\psi'(^k)(z - ^k)}. \]

Hence, using (2.3) and (2.4), one finds that

\[\frac{P'(z)}{\psi(z)} = - \sum_{k=1}^{n} \frac{m}{\zeta_k^p \psi'(^k)(z - ^k)} - \sum_{k=1}^{n} \sum_{j=1}^{\infty} \frac{\zeta_k^p}{a^*_j \psi'(^k)(z - ^k)(^k - a_j)} \]

\[+ \sum_{k=1}^{n} \sum_{j=1}^{\infty} \frac{\zeta_k^q}{b^*_j \psi'(^k)(z - ^k)(^k - b_j)}. \]

In view of the fact that sums \(A(z) \) and \(B(z) \) are uniformly and absolutely convergent on every compact set that omits all the \(a_i \) and \(b_j \), the order of summation of the double sums in (2.5) can be reversed. Thus the first double sum in (2.5) becomes

\[\sum_{j=1}^{\infty} \frac{1}{a_j^p} \sum_{k=1}^{n} \frac{\zeta_k^p}{\psi'(^k)(z - ^k)} = \sum_{j=1}^{\infty} \frac{1}{a_j^p (z - a_j)} \left[S(z) - S(a_j) \right] \]

where

\[S(z) = \psi(z) \sum_{k=1}^{n} \frac{\zeta_k^p}{(z - ^k)(\psi'(^k))}. \]

Since the polynomial \(S(z) \) is of degree at most \(n - 1 \) with \(S(^k) = \zeta_k^p \), the polynomial

\[T(z) = S(z) - z^p \]

is of degree at most \(n \) such that
Therefore \(T(\zeta_k) = 0 \), for \(k = 1, 2, \ldots, n \).

Therefore \(T(z) = c \psi(z) \), where \(c \) is a constant that may be zero. Accordingly,

\[
S(z) = z^p + c \psi(z)
\]

and the sum (2.6) becomes

\[
\sum_{j=1}^{\infty} \frac{z^p}{\psi(z)\alpha_j^p(z - a_j)} - \sum_{j=1}^{\infty} \frac{1}{\psi'(a_j)(z - a_j)}.
\]

Similarly the second double sum in (2.5) reduces to

\[
\sum_{j=-1}^{\infty} \frac{z^q}{\psi(z)b_j^q(z - b_j)} - \sum_{j=-1}^{\infty} \frac{1}{\psi(b_j)(z - b_j)}.
\]

Finally, on use of the Lagrange Interpolation Formula for \(1/\psi(z) \), the single sum in (2.5) becomes

\[
\frac{m}{z} \sum_{k=1}^{n} \left[\frac{1}{\zeta_k} + \frac{1}{z - \zeta_k} \right] \frac{1}{\psi'(\zeta_k)} = \frac{m}{z} \left[-\frac{1}{\psi(0)} + \frac{1}{\psi(z)} \right].
\]

Substituting from (2.9), (2.10) and (2.11) into (2.5), one reduces (2.2) to

\[
f'(z) = \frac{m \psi(z)}{z \psi(0)} + \sum_{j=1}^{\infty} \frac{\psi(z)}{\psi(a_j)(z - a_j)} - \sum_{j=1}^{\infty} \frac{\psi(z)}{\psi(b_j)(z - b_j)}.
\]

However, the first term here may be dropped since it is obtainable from the first or second sum in (2.12) by allowing either \(m a_j \) (if \(m > 0 \)) or \(-m b_j \) (if \(m < 0 \)) to coalesce at 0. Thus identity (1.1) has been established.

3. Location of critical points. An immediate consequence of Theorem 1.1 is the following:

Theorem 3.1. Let \(f \) be a meromorphic function of finite order \(\rho \) possessing the finite zeros \(a_1, a_2, a_3, \ldots \) and poles \(b_1, b_2, b_3, \ldots \) and let \(\zeta_0, \zeta_1, \ldots, \zeta_n \), be any \(n + 1 = [\rho] + 1 \) distinct critical points of \(f \) which are not also zeros of \(f \). Then

\[
\sum_{j=1}^{\infty} \frac{1}{(\zeta_0 - a_j)(\zeta_1 - a_j) \cdots (\zeta_n - a_j)} = \sum_{j=1}^{\infty} \frac{1}{(\zeta_0 - b_j)(\zeta_1 - b_j) \cdots (\zeta_n - b_j)}.
\]

Equation (3.1) follows from (1.1) on setting \(z = \zeta_0 \), writing out \(\psi'(a_j) \) according to (1.2) and cancelling the factor \(\psi'(\zeta_0) \neq 0 \).

As an application of (3.1), the following will now be proved.
Theorem 3.2. Let D_a and D_b be two regions with which can be associated a set R of points ζ such that a ray from ζ to some point γ separates \bar{D}_a from \bar{D}_b and such that inequality
\[
0 < \arg \left((\gamma - \zeta)/(z - \zeta) \right) < \pi/(n + 1) \pmod{2\pi}
\]
holds for all z in one of the regions D_a, D_b and inequality
\[
-\pi/(n + 1) < \arg \left((\gamma - \zeta)/(z - \zeta) \right) < 0 \pmod{2\pi}
\]
holds for all z in the other region. Let f, a meromorphic function of finite order ρ, have all its zeros in D_a and all its poles in D_b. Then at most $n = \lfloor \rho \rfloor$ critical points of f lie in R.

Proof. If on the contrary $n+1$ distinct critical points $\zeta_0, \zeta_1, \ldots, \zeta_n$ were in R, identity (3.1) holds for them in relation to the zeros and poles of f. By hypothesis, one can associate with each ζ_k, a point γ_k such that for $j = 1, 2, 3, \ldots$ the inequalities
\[
\begin{align*}
(3.2) \quad & 0 < \arg \frac{\gamma_k - \zeta_k}{a_j - \zeta_k} < \frac{\pi}{n + 1} \pmod{2\pi} \\
(3.3) \quad & -\frac{\pi}{n + 1} < \arg \frac{\gamma_k - \zeta_k}{b_j - \zeta_k} < 0 \pmod{2\pi}
\end{align*}
\]
hold (or those with a_j and b_j interchanged). Setting
\[
T(z) = \prod_{k=0}^{n} \left[(\gamma_k - \zeta_k)/(z - \zeta_k) \right],
\]
one infers that
\[
0 < \arg T(a_j) < \pi, \quad -\pi < \arg T(b_j) < 0,
\]
for all j. This means that
\[
0 < \arg \sum_{j=1}^{\infty} T(a_j) < \pi, \quad -\pi < \arg \sum_{j=1}^{\infty} T(b_j) < 0.
\]
Consequently,
\[
\sum_{j=1}^{\infty} T(a_j) \neq \sum_{j=1}^{\infty} T(b_j),
\]
in contradiction to (3.1). Consequently, at most n distinct critical points ζ_k can lie on R, as was to be proved.

As an illustration, let f be a meromorphic function of order ρ,
$1 \leq \rho < \infty$, and let

$$D_a = \{z = x + iy: x > 0, \quad 0 \leq h < y < x \tan \left[\frac{\pi}{(n + 1)}\right]\}$$

$$D_b = \{z = x + iy: x > 0, \quad -h > y > -x \tan \left[\frac{\pi}{(n + 1)}\right]\}.$$

Then, according to Theorem 3.2, at most n critical points of f lie in the region

$$R = \{z = x + iy: x < 0, \quad |y| < \min [h, |x| \tan \left[\frac{\pi}{(n + 1)}\right]]\}$$

Remark. In identity (1.1) and the subsequent theorems, $f'(z)$ may be replaced by the linear combination $f'(z) + \lambda f(z)$ or more generally by

$$F_1(z) = f'(z) + f(z)g'(z)$$

where $g(z)$ is an arbitrary polynomial of degree at most n, provided $\zeta_0, \zeta_1, \zeta_2, \ldots \zeta_n$ are taken as the zeros of $F_1(z)$. This follows from the fact that the meromorphic function $F(z) = e^{\phi(z)}f(z)$ is also of order ρ, has the same zeros and poles as f and $F''(z) = e^{\phi(z)}F_1(z)$.

Reference

Received October 23, 1970. Partially supported by NSF Grant No. GP-19615. Presented by title to American Mathematical Society, abstract.

University of Wisconsin-Milwaukee
Bruce Alan Barnes, *Banach algebras which are ideals in a Banach algebra* 1
David W. Boyd, *Inequalities for positive integral operators* 9
Lawrence Gerald Brown, *Note on the open mapping theorem* 25
Stephen Daniel Comer, *Representations by algebras of sections over Boolean spaces* ... 29
John R. Edwards and Stanley G. Wayment, *On the nonequivalence of conservative Hausdorff methods and Hausdorff moment sequences* 39
P. D. T. A. Elliott, *On the limiting distribution of additive functions (mod 1)* 49
Mary Rodriguez Embry, *Classifying special operators by means of subsets associated with the numerical range* 61
Darald Joe Hartfiel, *Counterexamples to a conjecture of G. N. de Oliveira* 67
C. Ward Henson, *A family of countable homogeneous graphs* 69
Satoru Igari and Shigehiko Kuratsubo, *A sufficient condition for L^p-multipliers* ... 85
William A. Kirk, *Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings* ... 89
Erwin Kleinfeld, *A generalization of commutative and associative rings* 95
D. B. Lahiri, *Some restricted partition functions. Congruences modulo 11* 103
T. Y. Lin, *Homological algebra of stable homotopy ring π_* of spheres* 117
Morris Marden, *A representation for the logarithmic derivative of a meromorphic function* ... 145
John Charles Nichols and James C. Smith, *Examples concerning sum properties for metric-dependent dimension functions* 151
Asit Baran Raha, *On completely Hausdorff-completion of a completely Hausdorff space* ... 161
M. Rajagopalan and Bertram Manuel Schreiber, *Ergodic automorphisms and affine transformations of locally compact groups* 167
N. V. Rao and Ashoke Kumar Roy, *Linear isometries of some function spaces* ... 177
William Francis Reynolds, *Blocks and F-class algebras of finite groups* 193
Richard Rochberg, *Which linear maps of the disk algebra are multiplicative* 207
Gary Sampson, *Sharp estimates of convolution transforms in terms of decreasing functions* ... 213
Stephen Scheinberg, *Fatou's lemma in normed linear spaces* 233
Ken Shaw, *Whittaker constants for entire functions of several complex variables* ... 239
James DeWitt Stein, *Two uniform boundedness theorems* 251
Li Pi Su, *Homomorphisms of near-rings of continuous functions* 261
Stephen Willard, *Functionally compact spaces, C-compact spaces and mappings of minimal Hausdorff spaces* 267
James Patrick Williams, *On the range of a derivation* 273