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The purpose of this paper is to describe the linear
isometries of the Banach algebras of continuously differen-
tiable functions, Lipschitz functions and absolutely continuous
functions on the unit interval with the norms described below,
It is also shown how these results continue to hold for more
general norms which come from compact convex bodies in C?
satisfying certain properties,

1. Generalities. Throughout this paper we denote by I the unit
interval [0, 1] and by A, Lebesgue measure on I. Following customary
usage, we denote by

(i) <*'(I) the space of continuously differentiable functions on
I, with norm [[f[| = [ fl« + [| /'l (fe &),

(ii) =5 (I) the space of Lipschitz functions (Lipschitz of order
one with respect to the standard Euclidean metric on I), with norm
A =11 lle + 1l (f € Z2:(1)),
and (iii) .7 (I) the space of absolutely continuous functions, with
norm || f]| = [|Fll. + I/, (fe e )). (LMI) and L=(I) are of course
defined with respect to ).

These function spaces are, as is well-known, Banach algebras under
the norms just defined and we have the following inclusions amongst
these algebras:

) < 2ul) < o).

Our objective in this paper is to determine the linear isometries’
of these spaces. More specifically, we will show in §2 that all the
isometries of .orZ(I) are induced by monotone absolutely con-
tinuous mappings of the unit interval onto itself whereas the isome-
tries of < (I) and Z*(I) come only from the functions  and 1 —
(83 and 84, respectively). In the last section, we indicate that
precisely the same results continue to hold for isometries under more
general norms. We have preferred to discuss the Banach algebra
norms first because the main ideas of this generalization are already
present there.

The results for the algebra .o (I) were first proved in Cambern’s
paper [1]. We present here a different and perhaps more elementary
proof. Cambern also discusses the isometries of &(I) with a norm
somewhat simpler than the one we use in §4.

! By a linear isometry (or isometry for short) of a Banach space X, we mean a
linear, norm-preserving transformation of X onto itself.
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We would like to thank Dr. M. H. Vasavada for some interesting
conversations about the problems discussed in this work.

2. The algebra % (I). For this section, the norm of fe
e (I) is

WA= 151w + 11711,

Following [1], we embed .&r%”(I) as a subspace of & (X), X a
compact Hausdorff space, in the following way. If V denotes the
unit ball of L=(I), then V is compact in the weak topology induced
by L*(I) and we let X be the space I x V with the product topology.
If fe vz (I) and (2, o) € X, defining

Fa @ =@+ | raa,

it is obvious that f— f gives an isometric isomorphism between
7% (I) and a closed subspace Y ¢ (X). We now describe all the
extreme functionals in the unit ball of Y*. (Only a partial descrip-
tion of these functionals is given in [1]). By [2; page 441], all the
extreme functionals are contained in

{e"L(x, a): ne| —m, «], (xz,0)el x V}.

For the statement of the next lemma, we adopt the following
notation. If ¢ > 0,

C.= {zeC: |z| =1, |arg z| g% + e}

and

C, = {zeC: |z] =1, |arg 2| g_ﬂz- —s}.

LemMmA 2.1, If (zy, )€l X V and 0 < x, < 1, then the functional
Lz, ay) e & *(I) (= Y*) defined by

Liwes (1) = F@) + | £, (f €502 (1)

18 extreme in the unit ball of & *(I) if and only if
(i) |ay| =1 a.e. on I and
(ii) V'e>0,n[a5(C) N (o — & 2)] > 0 and

A [a~0 (Czs) n (wa Lo + 8)] > 0 .

If , s 1 (resp. 0) then Ve >0, N[a5(C.) N A —¢ 1)] >0 (resp.
as[(C.) N (0,8)] >0) .
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Proof. Clearly, condition (i) is necessary because a, € V is extreme
if and only if |ap] = 1 a.e. so assuming || = 1 a.e. and 0 <x,< 1, let

1
L(zo,ao) = ‘é’(Ll + Lz) ’

where L;(i =1, 2) belongs to the unit ball of .o7z"*(I). Since L., (1)=1,
it follows that L,(1) = L,(1) = 1. By means of the isometric map
f—(f, f'), we can regard .oz (I) as a closed subspace of the direct
sum & (I) @ L'(I) with the norm

Aol =117 1ls + Mgl -

Extending L; to the whole of & (I) @ L'(I) by means of the Hahn-
Banach theorem, we see easily that L, has the following form:

L) =\ fap+ | 70 50 oo,

where p; is a nonnegative measure on I with total mass 1 and g¢;¢
L=(I) with [|g;]l £1 (¢ =1, 2). Therefore for all fe.orz (1),

@)+ | 7w @@ avw = | rap+ | e a@ aw),

where £t = % (¢, + /) is a nonnegative measure on I with total mass
1and g =3(g, + g) € L*(I), ||g]l- = 1, and hence

| F@ g = | GO - @) deo + | 70 50 o)
{1, 7@ dap} det) + | £0) 5@ dvw)
= | {], G @Az} arw + | 70 i v,

where
Cis,t1 = characteristic function of [a,, t] if ¢t = w,
= — characteristic function of [¢, x,] if ¢t < =, .
If we define

50) = | Cuer W dpt)

it immediately follows from the above that
ay) = p) + gy a.e.
Since
Bly) = — p[0,y] if y < a,
= ﬂ[ya 1] if Y > %,
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we see that

Il

aly) + pI0, y] a.e. if y < w,
= a(y) — vy, 1] a.e. if y>ua,.

a(y)

Suppose now that condition (ii) of the lemma holds. Let ¢, be
any sequence such that 0 < e, <1 and ¢,— 0. It is clear that for
each n there must exist y, e (z, — &, x,) such that ¢[0, y,] < ¢,, which
clearly implies that z[0, z;) = C. It follows similarly that t«(x,, 1] = 0
and we can conclude that ¢ is the “point mass” at =, thus proving
that L., ., is extreme.

To prove necessity of (ii), assume that one of the conditions, say
the first, is violated. This means that there is an ¢ > 0 such that

larg a 2—727— + ¢ a.e

on {x, — & x,). If we define p({w, —ep) =1, pl{z}) =1 —1 and g =20
eisewhere, where 0 <[ < e, we see that [g| <1 and ¢ # «, which
means that L, ., is not extreme. The necessity of the other con-
dition is proved similarly.

Since the above proof works equally well when a2, = 0 or 1, Lemma
2.1 has been completely proved.

We do not really need the following result for later use, but
since it is implicitly assumed in [1], we thought it worthwhile to
include a proof.

LemMA 2.2. If a, 8 satisfy the conditions of Lemma 2.1 at the
points x, y respectiwely, then L, . = L, if and only if x =1y and
a=pf a.e.

Proof. We may assume that ¢ < y and that x and y are interior
points of I as the following proof may be easily modified otherwise.
By hypothesis, for all fe oz (),

f@ + | sy aw de= s + | 710 80 d
or
| 70 @O = BW®) = Fren(®) dt = 0,
and hence
a@) — Bt) = Lem® a.e.

(X(s.,1(t) denotes the characteristic function of the interval [z, y]).
This means that

a =g a.e on I— |x y]
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and

a=1+ B a.e. on [z, ¥].

It is easily seen that the last equation implies

|arg a| = % a.e. on [z, y],

which is impossible in view of condition (ii) of Lemma 2.1 unless
2 = y. This proves the lemma.
We can now turn to the question of the determination of all
isometries of .ov%(I). Let T be a (linear) isometry of .o7&(I).
The following lemma occurs also in [1: page 221].

LEMMA 2.3. T(Q) s the constant function e, 0e[ — x, x].

Proof. The adjoint map T* carries the extreme functionals of
the unit ball of &% *(I) onto themselves and therefore T*L ., is
of the form e L, ne| — m, w]. Therefore,

“ﬂﬂ@+&ﬂ®%dwzl.

If we fix © and vary « over all functions satisfying the conditions of
Lemma 2.1, then the points

(nu@+L@U&@

obviously describe the disc in the complex plane with centre (7'1) (x)
and radiusS |(T1)'] dn, and this is obviously impossible unless (T1)’ =
I

0 a.e., which implies that (71) (x) = ¢* for all xc I, (fe[ — 7, 7)].
We may therefore assume without loss of generality that T(1) =
1. For the statement and proof of Lemma 2.4 below, we fix a point
xel and a function a,c L~(I) defined by a,(y) =1 forzx —ec <y <z
(ifz=0),ay) = —1fore<y<az+e (if 1) and a,(y) arbitrary
at other points y with the only restriction that |a,(y)| =1. By
Lemma 2.1, the functionals L, .., are extreme for all ze C,,

C, = {zeC: 2] =1, |argz| g%} .

T being an isometry, the adjoint map T* carries the extreme
functionals L, .., into extreme functionals L, ,, where the g, satisfy
the conditions of Lemma 2.1 at the points y,. We now prove the
crucial
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LEMMA 2.4. For a certain fived z, ¢ C,,

2
Y, = yzl and 182 = 7/821

1

Jor all ze C,.

Proof. Assume that the set {y,: ze C;} has a point of condensa-
tion y,, say. (If this set has no points of condensation, then clearly
it is countable, hence some y, is assumed infinitely often and as will
be evident, the following proof is rendered easier.)

Since T™ Ly, .0, = Lyy,s,, We have
() (TF) (@) + 2| (TFY O @O dt = F () + | ) Bu0) b
= 7O + | ) + B £y it

for all fe o> (I), y. denoting the characteristic function of the

interval [0, v.].
We fix, for the moment, a point z,€ C,. For any z¢C,, we can

find q,, a,e C such that

a, +a, =1
and
R, + 02, = Z.

Hence () can be written as
@ (1)@ + 2| (T '@at) + @ () @ + 7| (11 a,dt)
= £ + | 0. + Bara
or,
a(F O + | G+ Bosdt) + a7 0 + (., + Bora)
= £ + |G + Basa .

We can therefore assert that

Xz + Ez - @l(le + Ezl) + &2(122 + Ezz) a.e.

or,

Lem Xy T B g g, Xa T Py T W g,
le le
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Since (if 22, and = 2,) [N =1 and |a, + an] = 1 imply that » =1
or z,/z,, we immediately see that

Xzz"l—?zz_le :1 Or_gz_

le zl

Choosing 2z such that y, is arbitrarily close to y., we deduce that

a.e. onfs: x.(s) = %.,(s) = %.,(5)} -

Loy — }'{le + Bzz =1 or ;2 OH{SZ le(s) = Xzz(s)} *

Therefore,

X_zﬂ =1 or —5— on {s: % (s) = X, (s)} -

21 1

The left-hand side being independent of z,, we can now vary 2, such
that y,, is arbitrarily close to y, to conclude that

_Zf_—.l_f_li.ﬁ_tzl orf—a.e.on[.

Zl
Let E be the set where

Xz—x_zl_*"ﬁz ___1.
B,

Then it is easy to see that the (measurable) set F is independent of
2. Reverting to the the original equation (), we can write

(T) @) + 2\ (TFy &t = £©O) + | Gt + Bo)sar
z o) ’
] 0+ £ Basa

for all fe &% (I) and for all ze C,. This being an identity in z,

|y aa =1 rB. a

1

which immediately implies

Liayias| ras| ira,

(since «, is virtually at our choice, the only restrictions on it being
in a neighbourhood of x). On applying this result to the isometry
T, we have [|f'{|, = [|(Tf)']l, and hence

=1 @ayih= 1
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This says that m(E) = 0, which means that

XZ_X—ZI+BZ — _—%—__ a.e.

le 51
Therefore,

Ao+ Be=YLey + 5., a.e.

P'lm

and we can conclude (see proof of Lemma 2.2) that
Y, =Y, and B, = & 8., a.e.
%

This proves the lemma.

We continue with the notations introduced just prior to the
statement of Lemma 2.4. Let v be the image under T of the identity
map of I onto itself. Then

T% Ligyay = Ly, , . s, (Lemma 2.4)

%1

implies that
@) + 7| Tedt = v, + 2| Bt
1 Zl I
and

(T5) @) + 2| (TfY@dt = F.) + 2| 7Bt

1

for all ze C, and all fe.or% (I). Since these are identities in 2, we
deduce that

(x) = ¥,
and (Tf) (x) = f(z(z))
for all fe. &r (I). These imply that ¢ is a continuous one-one map

of I into I, which means that ¢ is monotone and becauseg o' dt =1
I

{(since T preserves L’ norms), we see easily that it is an onto map.
We have therefore proved

THEOREM 2.5. Any linear isometry T of AC(I) is of the form
(Tf) (x) = e’ f(z(x),

where T is a monotone absolutely continuous mapping of I onto itself
and 0 1is a constant in [ — w, w]. Conversely, any transformation T
of the above form is a linear isometry of o7 (I).
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3. The algebra &% (I). For fe (D), | f1 =11 Flle+ 1| ' llo
Throughout this section we let _# denote the maximal ideal space
of L>(I) with the w* topology. Let X be the space Ix _#Z X T with
the product topology, where T denotes the unit circle {ze C: |z]| = 1}
in the complex plane. Under the isometric map f— f,

Fwmz) = fx) + 2 F'(m),

y (I) is realised as a closed subspace of " (X).! Clearly, therefore,
all the extreme functionals in the unit ball of <:*(I) are contained
in

{eiﬂL(z,m,z) : ({1}, m, z) € X}'

where L,,..(f) = f(@) + zf'(m) for all fe Lo (I).

LEMMA 3.1. Ewvery Limyep (@m,.) €IX #Z X T) is extreme in
the unit ball of <:*(I).

Proof. L, m,. being a linear functional defined on a subspace of
C(X) can be extended with preservation of norm to the whole of
C(X) by the Hahn-Banach theorem. Since |[|L,my.pll = Lipmgey
(1) =1, we see that L., is represented by a nonnegative measure
¢ on X and hence

F) + mfm) = | Fdpeeeee

for all fe &7 (I).

We recall that n: _#— I is the continuous projection defined by
w(m) = m(), where m is a multiplicative linear functional on L=(I)
and ¢ is the identity mapping of I onto I. (See [3; page 171i].) It
is easy to see that given any neighbourhood N of 7(#,) and any ¢>0,
we can find a & function f, such that

| fAille < e, fo’Hm =1, fl({wimy)) =1

and f, vanishes outside N.
It follows from (1) that

1—ex< HXﬁdy] S L+ p(Nxot xT) U Ixa(N)x T)) .

As N tends to 7m(m,) and ¢— 0, we get
p(mm) X # xT) U (Ixaz@lmy))xT)) =1,

which means that the support of g is concentrated on the set

1 f"’ denotes the Gelfand transform of f./.
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(@(mo) X A2 X T) U (Ix7(7(m) X T).

Since we can choose the function f; defined above so that f,(z(m,)) = 0,
it follows by repeating the argument just given that

PUIXT T (M) X T) = Leeeee. @) .
We now claim now that a &' function f, can be found such that

fo@) = L, || felle = 1, f'(m(m,)) = 0 and

[ fa(2)]| < falw)) = 1 for all x = x,. This is seen as follows.

(i) If m(m)) = x,, we simply let f, be a &* function which
peaks exactly at «,; consequently; f,/(x,) = 0.

(ii) If m(m,) = 2, we let f, be a peaking &°* function at x, which
vanishes in a small neighbourhood of y, that does not contain w(m).

Hence, on using (2), we deduce that ¢ must be concentrated on
the “peak set” of f,, viz. z, x 77 (7(m,)) X T. Therefore, for all /" ¢ L=(I).

zof’(mo) = szf’ ap

where P denotes the set (x,x7 '(m(m,)) x T). Setting f' =1, we see
that support of y is contained in x,x 7~'(w(m,)) X 2, whence it follows
that

Frmy =\ 7.

This being true for all f'e L=(I) (=& (.#)), we finally conclude that
p is the “point mass” at (x,mz2). This completes the proof that
L&, m,,, is extreme.

Following the pattern of argument of §2, we now prove

LEmMA 8.2. T(Q) 1s the constant function ¢, ¢| — w, x].

Proof. Since T* is also an isometry,
T L(a:,m»z) = e L(xlxmlle)

where ne[ — @, r]. We therefore have

N
[(TD) (@) + 2 (T)'(m)| =1

for all (x, m, 2) ¢ X. This is clearly impossible unless (71) = 0 a.e.
which implies that T1 is a constant function of modulus one.

We may thus assume without loss of generality that 71 = 1.
Then, since T* L mz = Lupmgep »

(x, m, 2) — (2, My, 7))
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is a homeomorphism of X onto itself. If 7 denotes the image under
T of the identity map ¢ of I onto itself then,

™ (@) + 27 (m) = 2, + 2, .

Now the points z, + 2, as (x, 2) vary over all of Ix T, describe the
region in the complex plane bounded by circles at centres 0 and 1,
each of unit radius, and their common tangents. It is clear that
7(x) + 27’(m) can belong to this region only if

7'l = 1.

(We recall that ||Z'|l. = ||7" [} *)
Also, there must exist points (2, m/, 2’), (&, m”, 2”) in X such that

@) + 2 T(m) = =1, t@) + " T(m) =2.
Therefore,
@) — T(@)| =z 3 — [7'(m") — T'(m)| = |

and this is possible only when &', 2” are end points of I and therefore
|7l =1 a.e. A moment’s reflection will show that ¢ (and hence ')
t=torl—i. Hence (x) says that either,

is real and hence we must have either 7/ =1 or —1. Consequently,

x,+z =0+ 2
or,
6 +z=1—2—=z2.

We now claim that these relations imply #, =%, 2, =2 and =z, =
1 — 2, 2, = — z respectively. For, let x, + 2, =2+ 2. ThenImz =
Im 2z and therefore, Re 2, = Re z or-Re z. But when Im z = 0, i.e.
when Re z = &= 1 we have Re 2z, = Re 2. Hence on the set Re 20,
we have 2z =2z and z, =« and therefore z, = x, 2, = 2 everywhere.
The second case is treated similarly and this proves our claim.

Now we shall prove that for all fe .2 (I), Tf(x) = f(x) or
f(@1 — x) according as «, =2 or z, =1 — 2. Let us, for instance,
take the second case when 2, =1 — 2 and z, = z, the first case being
treated similarly. We have

(TF) @) + &(TF)(m) = f(L — 5) — 2f"(m,)

for all fe < (I). Since _#Z is totally disconnected, (see [3; page
170]) we see easily that if we fix m in the above equation, then m,
is also fixed in the sense that m, is independent of # and 2. Hence
fixing x and m and varying z on T, we see that the right hand side
of the above equation represents a circle with centre at f(1 — x) and
the the left hand side a circle with centre at (7'f) (x), and since



188 N. V. RAO AND A. K. ROY

these circles are identical as sets, we can conclude that
(Tf) (@) = f1 — ).

On summarising the above discussion, we get the following

THEOREM 3.3. All isometries T of Zi(I) are of the form
(Tf) (z) = € f(x)

or
(TF) (@) = €*f(1 — @)

and conversely, 0 €[—m, ].

REMARKS 1. If we let
Er(l) = {fezI): ' exists a.e., f' e L*)},

then p =1 (resp. «) gives the space & (I) (resp. <x (I)). So
far as we know, the isometries of &7&*(I), 1 < »p < «, have never
been determined. One of the main difficulties seems to be in finding
a characterization, analogous to Lemma 2.1, of the extreme functionals
in the unit ball of the dual of .&7&?(I).

2. If X is any compact metric space with metric d, let

Z (X, d°) :{fe%ﬂ(X): 1 e = S22 If(zl(; ?J;)(yﬂ <w}

both provided with the norm
A= lle + [1F lge -

These spaces are Banach algebras under the norms just defined. (See
[6]). It would be interesting to know whether the results of §3 are
valid for these algebras, viz. whether all their isometries are induced
by the isometries of the metric space X. An affirmative answer
would not be surprising because this indeed is the case for the norm

A1l = max ([ f [le, [|f [lae) -
(See [4] and [5]).

4. The algebra &' (I). The norm is the same as that for
% (D),
A = [ flle + [[F lley (f € ().
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Following what is by now a standard argument, we embed &*(I) as
a subspace of & (IxIx T) in the obvious way and we can prove by
the methods of the last section that all the “point evaluations”,

L(x,yyz)

are extreme in the unit ball of (&*(I))*, that for an isometry T of
“'(I), T(1) is a constant function of modulus one and futher that if

T* L,y = Ligyyyy,ep (assuming T(1) = 1),
then, either
2, =« and 2, = 2
or

2, =1—2and 2, = — z.
Assuming the second possibility, we therefore have

(TF) @) + 2TFY W) = f@) — 2f" (), vfe e (D) .

At this point, we have to proceed in a manner different from that
of §3 since the disconnectedness of _ 1is not available for us to
conclude that as a funetion, y, is independent of x and z. But in faet
we can prove that in this instance, %, =1 — . Considering the
funetion f(x) = 2% (xe I) and its image g under T, we have from the
above equation,

g@) +20'(y) = L — 2)° — 2=y,
and therefore

Q- —g@ _
2z

2y g ) -

y, being real-valued, this says that for fixed (x, v), ¥, is a meromor-
phic function with real boundary values!
Hence g(z) = (1 — x)* and we see that

h=1—-yv.

We can prove similarly that ¥, =y when z, =z and z, = z.
Now we can proceed exactly as we did in the last section to
derive the following

THEOREM 4.1. Every isometry T of & HI) is of the form
(Tf) (x) = €’f(z)
(Tf) () = €f(1 — @)

and conversely, 0 €[—rx, ].

or
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5. Isometries under more general norms. We propose to show
now that the results of the preceding sections are valid for more
general norms on the spaces concerned. Our discussion will be brief
and we shall omit proofs since they are the same as before with
minor modifications. We restrict attention to <%(I), the treatment
of the other spaces being similar.

It is well-known that in a topological vector space, there is a
one-one correspondence between semi-norms and convex, symmetric
neighbourhoods of the origin. Consequently, if K is a given convex,
symmetric neighbourhood of 0 in C?, there is a unique norm N
associated with it such that

K = {(z,2)eC" N(z,z2)=1}.

We assume that K has the following additional properties:
(i) if (a, a,) € K then (¢“a,, ¢*“a,) € K for all 4, pe[ — w, w] and
(ii) the intersection of K with the first quadrant of R® is a
convex polytope, i.e. this intersection is a convex body with a finite

number of extreme points.
It is an easy exercise to prove that if K has the above properties

then the compact set K* associated with the conjugate norm N* on
Ccs,
K* ={(z, 2): N*(z,, 2,) =1}

inherits the same properties. We recall that

N*z,2) = max |wg, + W, .

N(wyp,wg) =1
We will show that <7.(I) equipped with the norm
1flly = max N(f(), f'(m))

has only the isometries coming from the functions  and 1 — « on L.
We note that the norm

WA =11 1l + 11 |l
of §3 is a particular case of the above, the sets K and K* being
{(z,, 2,) € C* |2, + |2.] = 1} and {(z,, 2,): max(|z,], |z.]) < 1} respectively,
and both these sets have the properties (i) and (ii) listed above.
Now,

I flly = max N(f(), f'(m))

(z,m)eIX A
= max la.f (@) + a.f'(m)|
(z,m,a1,a9) € I X A XK*
= max | s;f(x) + ¢ 2f(m) | (by properties (i) and

(i) of K*),

1Sis=n
(z,m,2) € IX A XT
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where ¢;=0,¢, =0 (¢=1, ---n). Hence if we take = copies of
Ix_# % T, the i copy being denoted by (Ix_# xT);, and define f
on (Ix_#xT); by

Flw, m,2) = s; f@) + t;zf'(m),

then the mapping f — f clearly establishes an isometric isomorphism
between < %(I) with norm [[-- ||y and a subspace of & (X),
X=U Ix2ZxT),.

=1

As before, we can prove,

LEMMA 5.1. The functionals {¢ L, ,...: ne|—=x, ], (z, m, ?) € X}
are all extreme in the unit ball of <5.*(I) and conversely, where for
fe ),

L]:x,m,zc)(f) = Skf(w) + tkf’(m)y (k =1, -, 'n) .

Because of property (ii) of K*, it cannot happen that the extreme
points of K* N R® all lie on the z-axis or that they all lie on the
y-axis. However, it may happen that some of them lie on the x-axis
while the remaining ones are on the y-axis. It will be seen that in
this case there are precisely four extreme points, symmetrically
situated with respect to the origin, and that the norm ||---||, comes
from the set

K = {(z, 2) € C: max (|z], |2]) =<1}

We already know (from [4] and [5]) that the isometries of .ZZ.(I)
with this norm are induced by the functions x and 1 — 2. We may
therefore assume that there is at least one pair (s; ;) with s, > 0,
t; > 0. With this observation, one proves as before that 7(1) is a
constant function, that 7(¢) is ¢ or 1 — ¢ and finally one derives the
following.

THEOREM 5.2. All the isometries of <Z.(I) with the norm ||--||y
are of the form
(Tf) (x) = e’ f(x)
or
(Tf) (@) = €’f(1 — w)

and conversely, 6¢[—m, 7).

REMARKS. 1. Although norms of the type described above form
a fairly large class, there are many others of an essentially different
nature for which Theorem 5.1 may or may not be true. For example,
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we may ask whether Theorem 5.1 is valid for the norm
A =V ILIE + 1% (f e Z(D))
whiech comes from the set

K={z,2)eC" |z, + |z 1),

(Note that K does not have property (ii)).

2. It is not true, however, that Theorem 5.1 is true for all
norms equivalent to the norm used in §3. If we define, for x,¢ I,

Il = max ([f(@o)], ||/ ]le), (F € (D)) ,

then |-+ ||, is such a norm and it is easy to see that if w, = 1/2 then
the transformation T defined on <Z:(I) by (Tf)(x) = f(1 — ) is not
an isometry. It is not hard to prove that for ,» all  the isome-
tries of .%2.(I) are induced by homeomorphisms of the maximal ideal
space .# of L=(I).

LY
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