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Let f=*g denote the convolution transform of two
Lebesgue measurable functions on the real line defined by
the equation

(f * g)@) = gf”f(t)g(x — bt .

We get best possible upper and lower estimates for the
expression

sup §E| (For v £)@) @)

fi~9}
|El<u

where p =1 and 2, with applications to Fourier transform
inequalities, Here g are preassigned decreasing functions
and the symbol f; ~ g means

Ha: | filx) | > g} | = | gf(%) > y}| for all g,

0. Introduction. In order to formulate the general problem,
we remember the Hardy and Littlewood estimate [4, page 130,
Theorem 6.8] of the L,norm (g = 2) for the Fourier coefficients

¢, = Sn ft)e™ of f in terms of the decreasing rearrangement g* of |f|:

©.1) lealle = 4\ (0" @)ard@)

where the constant A, depends only on ¢. As one might expect,
the same theorem [Theorem FE, this paper] holds for the Fourier
transform F(f), i.e.

©.2) |80 1 = )| 0" @)ad@)

holds for ¢ = 2, where g* is the decreasing rearrangement of |f |.
It is very remarkable that for (0.1), this is the best possible estimate
in terms of g*, i.e. independent of signs and arrangement of f, since
for prescribed g* the left side always reaches the right side for some
suitable f and this same result is valid for (0.2). Thus, Hardy and
Littlewood were able to determine the

sup || () [l »

where f varies over all functions with the same g*. If ¢ = 2k (k
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positive integer), then we have, by using Parseval’s formula, the
following:

VB = VIR 7o el

Thus, we have the related problem of determining

sup || f o+« oo 5 fll,

More generally, one should look for

Sup”T(fl7f2y ""fk) Hp ’

where T denotes a multi-linear operator and the sup extends over
all f,, --+, f;, with prescribed g;, ---, g}.

Recently, O’Neil obtained sharp bounds for ng* in the case g =
0
Jfi = fs, which leads to sharp estimates for various norms of g. In the
present paper, we obtain sharp bounds for S 9%, where g = fi* <+« x f}.
0

We also obtain estimates for Sz(g*)" and x(gl eee g)* for the cases
0

n = 2 and n = 4, where each of the ¢’s is itszzlf a convolution product.
Because the estimates for the case n =4 are lengthy, we have
omitted them from the present paper. Detailed estimates, all of
which involve the combinations

s

appear in Theorem 1.6, Theorem 2.1, and Corollary 3.3. In §4, we
apply our results to give a new proof of some rearrangement theorems
due to Hardy and Littlewood.

The functions f,g, --- which appear in this paper will be
Lebesgue measurable functions for which |{z:|f(z)| > y}| < 4+ for
every y>0. By the statement f(x) = g(x), we mean that |{x: f(z) +
g(x)}| = 0. Theorems labeled with letters (e.g., Theorem A, Theorem
B, --:) are known; also, Theorem 2.2 (for the case = =2) and
Corollary 1.8 are also known. So far as we know, all of the other
Theorems and Corollaries are new.

1. Upper L.-estimates. The estimates that we get will be in
terms of the decreasing rearrangement f* and symmetrically de-
creasing rearrangement f of |f(x)|; where here, f(x) is a complex-
valued function and « is a real parameter. Thus, we start by
giving definitions of these ideas.
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DEFINITION 1.1. The functions f and ¢ are said to be equi-
measurable, and we write f~ g, if [{z:|f(x)]| >y} | = |{x: | g(x) | > y}|
for all y.

DEFINITION 1.2. By f*(x) we denote a function such that
(i) f*~Irl
(ii) f*(z) decreases for x > 0.

Further, for © > 0, we set

FH() = -};ij*(t)dt :

DEFINITION 1.3. By f(x) we denote a function such that

(i) F~IrL

(i) f@) = f(—a)

(iii) f(x) decreases for x > 0.
From the above definition, it follows that f ~ g, if and only if
F(x) = g(»). Therefore, we get that f*(2|x]|) = f(»), since f*(2|z|) ~
f(x) and f£*(2/x|) is symmetrically decreasing.

The next lemma (Lemma 1.4) plays an important role in simplify-
ing our proofs. We must first define the function,

120, E,]
0 elsewhere

ex,a, f*) = {

where E, = {t: f*() = f*(a)}.
I wish to thank W. B. Jurkat for suggesting the following lemma:

LemMMA 1.4 (Jurkat). If lim,..,. f*(x) = 0 then
£r@ = = e @ @) -

Proof. Given z, let a, = inf {a: f*(@) = f*(@)}, then f*(a,+) =
f*(x). Hence,

—[Teto, @ @) = = atr@) = sl = f@) -

A nonnegative sequence <{@,>;= . is said to be symmetrically
decreasing if g, =@, =a_,= ++-=q,=0_, = -+-. A well-known
fact [1, Theorem 375, page 273] is that the convolution of sym-
metrically decreasing sequences is also a symmetrically decreasing
sequence. The previous statement also holds if we replace the term
“sequence” with the term “function”. We see this in the next
lemma.
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LEMMA 1.5. The function h, = G, * G, * *++ =g, 1S symmetrically
decreasing.

Proof. To show that h,(x) = h,(—x) is straight forward and we
omit the proof. To show that k4, decreases for z >0, we first
consider the case where

h@) = | 3056 — v)dv

and

10=v=u

F(2v) =
9:(20) {O elsewhere .

Then
h@) = | o1 @)@ = o) + g + V)do
=" avgr@o) + | Tavgreen) |

For & > 0, we see that h,(x) is decreasing.
Consider the case lim,..gF(2v) =0. We get after applying
Lemma 1.4

i) = — | gz 2a)| doe, @, a1l = ) + g + 0)

and therefore, h,(x) decreases for x > 0.
In the case where lim,.., g/ (2v) = ¢, we have

+

@) = | @) — 95w — vido + o[ g0

—oo

Therefore, it follows that h,(x) decreases for x> 0 and hence k,(x)
decreases for x > 0.

Unless otherwise specified, the functions f,g, --- which appear
will be nonnegative. A remarkable inequality [1, page 279, Th. 379]
can be formulated in the following manner:

Tazorex A sup | d@n@)(; <)@ = | d@F@@ - 2)@).

The following extension of Theorem A, which is well known for
sequences, [1, page 273, Th. 374], will be of more interest to us. It
can be stated in the following way:
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THEOREM B. supS :d(x)oq(m)( Fuweee w fi)@) = Si:d(w)i"(x)hn(x).

Proof. At first, we see from Theorem A,

sup | d@n@ (£ + @) = sup | AT HE)

ry~T Fe~ak
Fk~0r

- S_md(x)a’"(x)@l * 7,)(x)

sup | “a@r@) (£ @) -

Fr~dr

Therefore, we see

+co

sup | " d@r@)(f,+ £ @) = sup | A@F@E « Fr @)
Fe~9k

sup | 4@ » 2@ TFor 7 @)
= sup | "a@) @ 1)@+ @)

Fp~ak

[I

S_md(ac)i(w)(g1 * Gy * Go) () «

In general, we have
Sup Smd(w)%(x)(fl * oo x L)) = Swd(w)?’“(w)hﬂ(@ .
f}i:%‘k - -

Our first new result is the following:

THEOREM 1.6. If lim, . g#(x) = lim, .. r*(x) = 0, and r*, gf are
finite a.e., for 1 < k < n, then

sup S+mr1(w)(ﬁ* ceexf)(@) S S:d(x)x"‘l(r** =N —g8) -+ (97 —92) -

ry~r* J—co
Fr~9%

Proof. Case I. We will first show the theorem when,

105 a,
0 elsewhere
105z u
0 elsewhere

gi@) = {
SCRY

and where 0 < g, <a, < +++ < a,.
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Suppose u < a,:
| a@rn@| a0 - < fi)e — b
= | T @] asis e )@ —
= | "dor@| der@ - | @ o

= Ud *** Uy,

- S:d(x)x’”(r** — )G —g7) -ee (g3F — gd) -

Suppose u > a,:
| a@n@| a2 )@ -0
= dmg Ao OF, <o+ Fo)o = 1

=@, v Q

IA

= S:d(m)x"‘l(r** — r)gr* — gF) e e (9FF — g7) .

Case II. First let us set,

&) = e(x, a, 7) + e(—2, a, 7)

&(x) = e(x, B g.) + e(—m, B g,)

e'nix) = 6(33, 7 gn) + 5(_3?, 7 gn)
1 0sa= B0

-
el ) 0 elsewhere

By Theorem B we have,

sup | Td@r@(f s o 1 L)@ = | d@r@) @ -

r1~r
F~Tk

by Lemma 1.4 we get,

= (- ar@) | d@@) - | 2@ “dwa@e -

and by Case I,
= (~v+| @) a@@) -+ | a@.m)

x [Cd@e—err — e e @ = e

- S:d(x>x"~1(r** — (g — gF) e (g2 — gF)

and E(h) = {t: k(t) = h(V)} .

e x o))

* €,)(2)
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If we combine Theorem B with Theorem 1.6, we find that

[ Ta@r@he) = [Td@e e = e = gt o @ 02)
= A(r*, gf, -+, 9%) -

However, we do know more because of Theorem 2.1. Combining
Theorem 1.6 with Theorem 2.1, we then have

(#) | a@r@h,@) = KA gt oo 00

where K is a constant (1/2* < K < 1) which depends on »*, g, -+, g;.
In (%), the right side (our estimate) has an advantage over the left
side; that is, it is easier to determine. For example, take gj(f) =
1/t and »*(t) = 1/t*, where 0 < \,, ¢ < 1.

In applying our estimate (Theorem 1.6), the minus signs that
appear could conceivably present difficulties; and moreover, the result
only holds for functions whose decreasing rearrangement goes to 0 at
infinity. The next estimate does away with these problems.

THEOREM 1.7.
+oc0
\E‘lrlsg S_wd(@)XE(@) (fix eee = f) ()
Fr~a},

0 k=1
k#m l#m
ik

Proof. To prove the theorem, we will first show

%S:d(x)x"‘z(gf* —gF) e (g5F —9%)

(1.1) u u €n n
= S gt - S gr + —% > > S a(x)2"*gngi H gi*
° " 2

when lim,_. gi(x) = 0, for each 1 <k < n.

Case I. Here we show (1.1) when

. 1 0=z <oy
gi(®) = {0 elsewhere
and ¢, < a, < - Z a
A u<a).

The left-side of (1.1) equals ua, -+ a,_,.
The right-side of (1.1) equals
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{’Mz" + _g_aru——x 4 eee ,Z_(alaz cev aly) — %un} + U, e Ay

> Ul Ay .

B) (0= U = @)~
The left side of (1.1) equals ua, --- @,_,.

The right side of (1.1) equals
(a, «+- a,,){u""’ + ﬁa}:;{ﬂ 4 e lf(ak_“ ceealy) — (n___]f)_un—k}
2 2 2
G U e Uy

= UA 2 Ay
© (u>a,)
The left side of (1.1) equals a, - -+ a,.
The right side of (1.1) equals @, -« - a,.

Case II. Here we show (1.1) when lim,_.. gf(x) = 0, for each
1 <k<mn. First let me set,
& = e(wr «, g;k)

€, = &, B 97) -

Applying Lemma 1.4 to the left side of (1.1), we find

a| d@egrt = o) -+ @27 = 9

= (~ 1| dgr @) -+ o) d@erers — ey - @

and by Case I,

= (-1 a@r@) -+ | algz(9)

n

={or e (ot + 2 3 3 [Taergzor 300
= u =1
FEm iFEm

i#k

Therefore, by Theorem 1.6 with r*(x) = (1) glsgevfh%rg we have shown

Theorem 1.7, when lim, ... gi(x) =0 for each 1 <k < n.

Case III. Let us consider the case when g is arbitrary and
lim, .. gj(x) = 0 for each 2 <k < n.
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Define: g..(1) = {!71(90) x| <7

0 || >r.

Then, we find

%f2
[ d0)@. - 7)@
< tim |’ dtg,xt)S’ A@)@o % -+ * G)(@ — 1)
. N “ U & n e x z N ” z .
=< lgrl [Sog” Sogn + 5 MZ:, g‘, S grgi Sogw 1212 Lgi
k#m iFEm

2k
ik

+ u glz S:d(x)gﬁgi‘ IzIz go g;'“]
ik

= ot - o + 2 5 5 Ca@argzor 11 o+
2 J=1k=1 Ju Z;in
ik

Reapplying the above procedure and using induction, we find that

the theorem holds when g, .-, g, are arbitrary.

A corollary of Theorem 1.7 is a result due to R. O’Neil [2,
Lemma 1.5].

COROLLARY 1.8. (O’Neil’s Lemma).

supg (fi* g) (@) < wf**g** + ug:f*g* .

f1~f*
g1~g*

Proof. Simply take n = 2 in Theorem 1.7.

II. Lower L,-estimates. In this section, we will show that the
inequalities found in Theorem 1.6 and Theorem 1.7 are sharp. That
is, the upper estimates become lower estimates when they are multi-
plied by suitable constants.

THEOREM 2.1. If r**(x), gi*(@)(1 < k < n) are finite for each <,
then

2= sup | "d@n @) (f oo 2 @)

f~9%

2 [“awa= 0" = )t = g1) - (@7 0) -
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Proof. We will first prove the theorem when,

*(2) {1 0z q,
g.{r) =

ge 0 elsewhere
1 0w

0 elsewhere

2.1
r*(x) = {

and where ¢, <, < -+ < q,.
Suppose % < a,:

Foo Foo

| awre| "awne

uf2 @y, [2—% @y (2+%
a2 2]
0 0 0

i

@,/
> —“—S * dih,_,
2 Jayiz
a,/2
=%, ﬁn:.l_g dth,_,
2 2 —a,/2
z Wttt L a0 — e - gf) e (07 = o).

When we are in the case (4 > «a,), we apply a similar procedure.
Hence, we are finished when our functions are as in (2.1).

In the case where lim, . gf(x) =lim, .»* @) =0 A1 =k=<mn),
if we apply Lemma 1.4 as we did in Theorem 1.6 (Case II) then our
result follows.

Now let us consider the case where g and »* are arbitrary, and
lim,_ . gf(x) = 0 for each 2 < k < n.

Define:
gy = [0 V=S
) x>m
PH () = J’aﬂ*(x) 0=a<s
{0 x>Ss

@« - - g)@aw

— lim lim g*"”m) @+ T)(@)d(@)

M—s+0a §—-t+oo ) —

L dim lim {d@eert — )@ — gt e @2 = g0)
0

2”_1 Mmoo So4o0 )

=

=z L {dweomr — e —an - o -
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If we apply the above procedure and use induction, then we are
finished.

Our next theorem, Theorem 2.2, was known for the case n = 2
by O’Neil [2].

THEOREM 2.2. If g¢i*(x) is finite for each x 1=k <=mn) and
n = 2, then

.o Z)SI‘lpuS D)L @)(f, % -+ * £)(®)
Fr~97,

= Sog;* S gi + % Z Z g d(x)a" gk g, g gF* .

7_& iFEm
ik

Proof. To prove the theorem, we will show

_uj daa*(gr* — gF) -« (g5* — g7)

(2.2) . -
= \or o Vor + 2 3 3 [a@argar 11 00
0 m==1 #] wn ,L#m
1%k
where
*(2) {1 0=o=a
X)) =
9 0 z>a
and
G=a = =aq,
A w<a)

The left side of (2.2) equals (n/2)ua, «-- a,_,.
The right side of (2.2) equals

(u + 2a1’1+ %(al--- 2 2)———u”>ﬂ—ual---acn_1

_S, <n;2>(ua1 e an—l) + Uy o+ Apy = 'g(ual tte a”_l) *

(B) (ak SUS Q).
The left side of (2.2) equals (n/2)ua, «-- a,_,.
The right side of (2.2) equals,
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@ apfwr + Lot e+ L, e ) — LB gl

n
UG e Gy S UG 0 By)

© (> a,).
The left side of (2.2) equals (n/2)a, --- a,.
The right side of (2.2) equals a, +-- a,.

To complete the proof, we simply follow the same approach as
we used in the proof of Theorem 2.1.

III. L.,-esttmates. In this section, we are concerned with finding
both upper and lower estimates of

sup SE[m x oo x £)(@)]Pd()

where p = 2. However, we were also able to get (explicitly) upper
and lower estimates for the case p = 4, but we have omitted them
from this paper.

LEmMmA 3.1.

50 | @@ 5 e L@ Fax e ) @)

fi5~Tij

I CCATRRT SICT AR ATCP

—u

Proof. We note that by Theorem B

Si:d(x)XE(x)(fu * oo *fl'r)(x)(fﬂ *oeee *fzs)(x)

=

:d(x)XE(.fll oo X flr)(x)(-g-zl * ene k 628)(37)

+
—oco

+oo

A@) Y (@) (@ * oo o * F)(@)(For * + o * Tor)(X) «

—00

=

|
= | I0nE@ T @@ e T
|

We set,

4,(x) = a"(gh* — g%) <+« (g5 — g5)

and

dy(x) = (95> — 93) <+« (95* — g%) .
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THEOREM 3.2. If gi*(x) are finite for each x and lim,_. g¥(x) = 0,
then there exists a constant K, 277 < K < 1, such that

sup [ A s @) (fax oo L)@ e @)
Tij~9i;

_ K.[S“.@%l(4<x).42(x)) + u(rd—g(&%ldl(m))(r%dxw)] :

0 u u

(3.0)

Here, K depends on ¢} and u; and we note that 1 <1 =<2 and
1 <7< max(r 9.

Proof. (i) We first prove that K <1. We consider the case
where,
@1 gi;(®) = 0 elsewhere

Oy < vor S0, and @y S cvc S Q.
Without loss of generality, we can assume that «,, < a,, and a,, > 0.
A (= a,)

Su/z A(@)(G g * v e e * gw)(x)(gm * eoe k gzs)(x)

—un/2

IA

L +°° 3 ~
o vt Gy Ld(x)(gu weee % G,,) (@)

28
Qyy * 2t Gyl * oo O
zs

- S:.‘%?.(Al(x)dz(x)) + u(r%%)—dl(x))(gj%dz(w))

u

B (2, < u < ay)

gilzlzd(x)(gu k e oo X glr)(x)(gzl Hoeeo !723)(90)

Qyy o oe Byl o0 2 Ay
Qss

- () [ 509)

<

©) @<a,

Xf”,;i(wxau w e x G ) (@) (Fu v x G (@)
< el o[ 20000 [ 00

o Wys* azs
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To complete the proof, we apply Lemma 1.4 as we did in Theorem 1.6
(Case II).

(ii) Here we prove that K = 2. First, we consider functions
as defined by (3.1).

(A) (1= a)

ng A@)(Go x o+ 0 Fu)(@)(Go * o0 * o) (@)

—u/2

a1-/2 (w/2)—w (u/2) += (agg/2)—x (ags/2) +o
25 CZ(Q?)I:S hyiry + S hm—n][g hayjosy + S h2(s—1.\]
0

0 0 0 0

w2 as/2 Air oos Aoy s Q
1oy 23
alrS h1(r~1)go hysyy = =2 h =
0

e
] |22 4 - ) + o | 40 ) ([T ER 0]
B) (a, =u < ay)

1%

2

Si/:md(x)(gn £ oeve x G ) (@) (Go o0 x Foo) (@)

{app/2 (u/2)—2 (u/2) -+ ( (agg/2)—2 (agg/2) +w
= 30 d(@)[go byrsy + S Foyry [3 Pysy + ‘ hzw—n]
o

Jo 0 2o
Qg *** Qyplyy * v 0 Qo
+s)
2(1‘ s Qs

= (F 5 0)([ 5P ew))

(C) (u < alr)

\:ulz/zd(x)(gn koewe K glr)(x)(gzl Hoeee §23)(w)

J—u

/2 (a1,/2—% (@15/2) +x (agg/2)~2 (ag5/2) +2
CIUC | R PR ey Y | R R
[ 0

Uy o=0 Qipllyy * 0= Ay
27y, @y

(7). 5P s0)([ 5P 0)

To complete the proof, we apply Lemma 1.4 as we did in
Theorem 1.6 (Case II).

fl

%

i

COROLLARY 3.3. If gi*(x) are finite for each x and lim,_. gi(z) =
0, 1<Ek<mn, then there exists a constant K, 2 < K <1, such
that
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sup | @@ 5 - LI

S g
Jj !13

N KUod(xW(H(Qf £ gER e (g — gi)
+ u(gwd(m)xnﬂ(gf* ) e (g — g;)>“] |
Here K depends on gf (1 =k <n) and u.

Proof. This is a special case of Theorem 3.2, with »r =s=mn
and g;; = gf.

IV. Applications. The functions f(x) in this section are complex-
valued and the wvariable # is real. We require that Re (f(x)) and
Im (f(x)) be Lebesgue measurable and |{z: |f(2)| > y}| < < for every
4 > 0. In a natural way we can now talk about the decreasing rear-

rangement function f* of f.
We mean by the statement

J(@) =Ly }Han(@y xe(—oco, ),

that limn—*m an _inD = 0.

By Plancherel’s theorem if we let fe L,(—oco, + ), then
F() @) =, LNV 21 limnmg f@)e'"dt, exists a.e., and belongs to Li;
also, if fe L,, then ||F(f)|l:=1lf .- A generalization of Plancherel’s
theorem (Theorem C and D), due to Hardy and Littlewood, is a
consequence of Corollary 3.3. Another rearrangement theorem [4,
pages 128-131], due to Hardy and Littlewood, is contained in
Theorem E.

THEOREM C. (Hardy and Littlewood). If |f(x)|?|x|*? (¢=2)
belongs to I(—os, + ), then F(f)(x) =, 1/V/ 27 lim,_., Sn f(t)etdt,

exists a.e., and belongs to L,; and
150 1o = of | Tis@ e 1o praw)

Proof. Suppose first that fe L. and has compact support, then
we have by Plancherel’s theorem,

D180 @ = {17 e fe e s pla@
SR AR e
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and by Corollary 3.3,
= |Ta@aen(rer = prye
= @n| e (@)
= @ "d@e @)

We first note that M, = {xg(x): Si:d(v(x)) |2g(x) | < + o0, where

av(x)) = d(x)/xz} = L,,(—c, +). Now for each he M,, set T(h) =
F(h/x). Here, we can apply the interpolation theorem of Riesz-
Thorin to the operator T [4, pages 93-96].

THEOREM D. (Hardy and Littlewood). If feL, 1< p<2), then

{t:l @) = [1’—2d(w)}1/p <qllfll,
where 1/p + 1/g = 1.

Proof. Use our estimate from Theorem C for ||&(f)]|,, then
use the proof found in [3, Theorem 80, page 110].

If you take f(t) = 1/(|t|+1), t€(—oo, +o0), then ||F(f)]|le =

and ||¢f(¢) |l = 1. Thus, Theorem C does not hold when ¢ = o.
However we see from Corollary 8.3 that if fe L, N L., then

B e = [12(f* = [ lw -
We define the

set 4, = {g*: Sm(g*(x))"x"‘2d(oc) < 4 oo, and lim g*(z) = 0} .

THEOREM E. (Hardy and Littlewood). g¢*e€ A, if and only if
B(f) e Lqg = 2), for every f~g*. If g*e A, (¢ = 2), then

150 1l = e@f{ 0" @)rod@}
for every f ~ g* where ¢(q) is a constant which depends on q.
Proof. (=:)

LEmma. If §(f)e L, (@ < 2), then
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+eoo - ilq —
(1 a@ 1o 17@ 1} < @) 15 1 -
Proof. Suppose fe L, N L., then by Plancherel’s theorem
+oo - +oo  _ —
1@ = (e e 2 o
+oo —
z | "o | Fiw) prd(e) -

To complete the proof, we note [4, page 19] that if 3, a, cos (nx) € L,
(=2 fora,za,= +++ = a,= -+, then

4.1) Sz ‘ i a, cos (nx) ’qd(x) = B(9) i aini?,
We quote from Titchmarsh [3, pages 70, 71, 109].
Let
(0[R2
a, = | Rt =0, 21, £2, +++)
and

D,(x) = _Zn‘, ae
Then, if 6 >0 and n = [\b] — 1,
lim @,(c) = S" Foyeat

uniformly in any finite interval. We note that in our case q, =
G 20 =0,=+++2=a,=0. From (4.1) we see that,

Fd

B(Q)S ;J D, (z) |'d(z) = 7“5_ IZJ”

qd(x) = i al |y,
If v =1, then

P FCE R 120) I S S S Sy DAV
g AT 20y A+ D) ernn )

Since,

" Sb_bf(t)emdt - Siﬂ”emdt'

q é Sa<lzl<blf(x) lq ! z I<1~2d(x)

we get that

=0.

q

lim|§(7) — [ Fear
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Hence, we get out result.
(=:) In the proof of Theorem C we showed that if fe L. and has
compact support, then

[ 150 d(@) = @y d@a— g
Now if f is arbitrary (f ~ ¢g*), then we define

Sy [f@=rlei=sr
fHy=1r (@ >nrlzsf=r
0 elsewhere

therefore (I — f.)*(x) < ¢g*(x) and lim,.. (f— f.)*(®) = 0. Hence
it follows that,

| D150 prae) = @ ae g @)
Next, we show the theorem for 2 < ¢ < 2n.
Let

wf () [af(w) [ = 3x

h(z) = )
( 4 {)\Jemrg(xf{x)) ’.’U_f(x)’ > 3)\

and

0 [of(@) [ = 3\
laf(e) — aerEErED [ pf() | > 3N .

hy()

150/ 1y = -2 o | S > 20 |0y
< (g3 2 v |t anr@) > o) + [ Tt a0 >0
= c¢(n, q; 2)[323"“““‘& Yy vla: wgt () >y + S } yv{x: xfz*(w>y}]

< ofm, 4 2) | V(e 007 @) > M| = om0, 2) 120" @)1 -
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