Vol. 38, No. 2, 1971

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 330: 1
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Vol. 324: 1  2
Vol. 323: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Some triple integral equations

John S. Lowndes

Vol. 38 (1971), No. 2, 515–521
Abstract

In this paper we solve the triple integral equations

  −1 --Γ (ξ-+s∕δ)-
M   {Γ (ξ + β + s∕δ)Φ(s);x} = 0, 0 ≦ x < a, b < x < ∞,
(1)

  −1 --Γ (1+-η−-s∕σ)-
M   {Γ (1+ η+ α − s∕σ)Φ(s);x} = f2(x), a < x < b,
(2)

where α,β,ξ,η,δ > 0, σ > 0, are real parameters, f2(x) is a known function, Φ(s) is to be determined and

M {h(x);s} = H (s),  M −1{H(s);x} = h(x),
(3)

denote the Mellin transform of h(x) and its inversion formula respectively.

Mathematical Subject Classification 2000
Primary: 45F05
Milestones
Received: 26 May 1970
Published: 1 August 1971
Authors
John S. Lowndes