EXTENDING HOMEOMORPHISMS TO HILBERT CUBE MANIFOLDS

RICHARD DAVIS ANDERSON AND THOMAS ASHLAND CHAPMAN
EXTENDING HOMEOMORPHISMS TO HILBERT CUBE MANIFOLDS

R. D. ANDERSON AND T. A. CHAPMAN

In this paper conditions are obtained under which two closed homotopic embeddings of a locally compact separable metric space into a separable metric manifold modeled on the Hilbert cube are ambient isotopic.

1. Introduction. A Fréchet manifold (or F-manifold) is a separable metric space admitting an open cover by sets homeomorphic to s, the countable infinite product of open intervals $(-1, 1)$. A Hilbert cube manifold (or Q-manifold) is a separable metric space admitting an open cover by sets homeomorphic to open subsets of the Hilbert cube I^∞, which we represent as the countable infinite product of closed intervals $[-1, 1]$.

A subset K of a space X is a Z-set provided that K is closed and for every nonnull homotopically trivial (i.e., all homotopy groups are trivial) open set U in X, $U \setminus K$ is nonnull and homotopically trivial. In [1] Anderson introduced Z-sets and proved that if K_1, K_2 are Z-sets in $X = I^\infty$ or s and h is a homeomorphism of K_1 onto K_2, then h can be extended to a homeomorphism of X onto itself.

Z-sets occur quite naturally in I^∞; indeed it is known that any compact subset of s is a Z-set in s or I^∞, any compact subset of $I^\infty \setminus s$ is a Z-set in I^∞, and any relatively closed subset of s is a Z-set in s if and only if its closure in I^∞ is a Z-set in I^∞. More generally it is known that any compact subset of any F-manifold is a Z-set and any closed subset of a complete metric space is a Z-set if it is a countable union of Z-sets. In [2] it is shown that a closed subset K of an F-manifold X is a Z-set if and only if K is metrically negligible, i.e., for each $\varepsilon > 0$ there is a homeomorphism $h: X \to X \setminus K$ which satisfies $d(h, id_x) < \varepsilon$. (id_x is the identity mapping on X and all homeomorphisms are onto.) Also Z-sets in I^∞ have been widely used in constructing homeomorphisms on manifolds, and there are other instances in which Z-sets have been used to extend homeomorphisms. Let (X, X') be a pair of F-manifolds or Q-manifolds with X' a closed collared subset of X (collared in the sense of Brown). Then (X, X') may be considered as a manifold-with-boundary, X' being the boundary. It is known and easy to prove that X' is a Z-set in X. Thus a study of Z-sets in manifolds includes a study of boundaries of manifolds. Homeomorphism extension theorems for Z-sets imply homeomorphism extension theorems for manifolds-with-boundary.
In [3] the homeomorphism extension result of [1] was generalized to F-manifolds by proving that if X is an F-manifold, K_1 and K_2 are Z-sets in X, and h is a homeomorphism of K_1 onto K_2 which is homotopic in X to the identity on K_1, then there exists an ambient isotopy G of X onto itself such that G_0 is the identity on X and $G_1 | K_1 = h$. (By ambient isotopy we mean that each level is onto.) It is obvious that an isotopic homeomorphism extension property for F-manifolds requires the property that the homeomorphism be homotopic to the identity.

An isotopy $F: X \times I \to Y$ is said to be an invertible ambient isotopy provided that F is ambient and $F^*: X \times I \to Y \times I$, defined for each t by $F^*(x, t) = (F(x, t), t)$, is a homeomorphism. In the extension theorem of [3] cited above, it was not asserted that G be invertible, but it is obvious that the argument given there does allow one to conclude that it is invertible.

It is the purpose of this paper to obtain an analogue for Q-manifolds of the result cited above as established in [3]. A continuous function $f: X \to Y$ is proper provided that the inverse image of each compact subset of Y is compact. A homotopy $F: X \times I \to Y$ is proper provided that the map F is proper. The most general homeomorphism extension theorem we obtain for Q-manifolds is given in Theorem 6.1 of this paper, but we state a weaker version of it below.

Theorem. Let X be a Q-manifold, A be a locally compact separable metric space, and let f and g be embeddings of A into X such that $f(A)$ and $g(A)$ are Z-sets. Then there exists an invertible ambient isotopy G of X onto itself such that $G_0 = \text{id}$ and $G_1 \circ f = g$ if and only if f and g are properly homotopic.

We remark that if A is compact, then we can drop the requirement that the homotopy be proper.

Corollary 1. Let X be a Q-manifold, A be a compact metric space, and let f and g be embeddings of A into X such that $f(A)$ and $g(A)$ are Z-sets. Then there exists an invertible ambient isotopy G of X onto itself and that $G_0 = \text{id}$ and $G_1 \circ f = g$ if and only if f and g are homotopic.

We also show that for manifolds which admit half-open interval factors $[0, 1)$, we can also drop the requirement that the homotopy be proper.

Corollary 2. Let X be a Q-manifold, A be a locally compact...
separable metric space, and let \(f \) and \(g \) be embeddings of \(A \) into \(X \times [0, 1) \) such that \(f(A) \) and \(G(A) \) are \(Z \)-sets. Then there exists an invertible ambient isotopy \(G \) of \(X \times [0, 1) \) onto itself such that \(G_0 = \text{id} \) and \(G_1 \circ f = g \) if and only if \(f \) and \(g \) are homotopic.

In § 5 we give an example to show the distinction between the use of homotopies and proper homotopies for (locally-compact) \(Q \)-manifolds. However, the restriction to proper homotopies is not a serious philosophical restriction, because for locally compact spaces the maps one constructs in natural ways are proper. Indeed, proper maps and proper homotopies seem to provide a suitable framework for studying locally compact (but not compact) spaces.

Even though the statement of the extension theorem given in this paper for \(Q \)-manifolds is similar to the corresponding theorem established in [3] for \(F \)-manifolds, the proof is quite different. This is due in large part to the open embedding theorem of David W. Henderson [7], which says that every \(F \)-manifold can be embedded as an open subset of \(s \).

The extension theorem of [3] was obtained by applying the open embedding theorem of [7], replacing the given homotopy by one in which all the fibers are parallel in one coordinate direction, and then using motions only in this one direction for the extension. Unfortunately not all \(Q \)-manifolds can be embedded as open subsets of \(I^\infty \), nor does there appear to be a weaker version of an open embedding theorem that would help.

The extension theorem of [3] has been done with an "estimation" on the extension, i.e., if the given homotopy is "close" to the identity, then the ambient isotopy can be constructed "close" to the identity, where "close" will be made precise in the next section. In Theorem 6.1 we also obtain an estimation on the extension.

In a forthcoming paper, On the structure of Hilbert cube manifolds, the second author will use the results of this paper to establish some representation and characterization theorems concerning \(Q \)-manifolds.

2. Preliminaries. For each integer \(n > 0 \) we let \(W_1^n = \{(x_i) \in I^\infty \mid x_n = 1\} \) and \(W_0^n = \{(x_i) \in I^\infty \mid x_n = -1\} \), where we use the representation \(I^\infty = \Pi_{i=1}^\infty I_i \), with \(I_i = [-1, 1] \). We call \(W_1^n \) and \(W_0^n \) endslices of \(I^\infty \). The pseudo-boundary of \(I^\infty \) is defined to be \(B(I^\infty) = I^\infty \setminus s \). It follows routinely from the apparatus in [1] that any finite union of endslices of \(I^\infty \) is a \(Z \)-set in \(I^\infty \).

A subset \(U \) of \(I^\infty \) is said to be a basic open subset of \(I^\infty \) provided that \(U = \Pi_{i=1}^\infty J_i \), where each \(J_i \) is a connected open subset of \(I_i \) and \(J_i = I_i \), for all but finitely many values of \(i \). It is then clear that
we may regard Cl(\(U\)) as a Hilbert cube, hence Bd(\(U\)) is a finite union of endslices of Cl(\(U\)). (For any space \(X\) and \(A \subset X\), Cl\(_x\)(\(A\)) denotes the closure of \(A\) and Bd\(_x\)(\(A\)) denotes the boundary of \(A\). Whenever no ambiguity results we will suppress the subscript \(X\)).

Let \(\mathcal{U}\) be an open cover for a space \(Y\). Maps \(f\) and \(g\) of a space \(X\) into \(Y\) are said to be \(\mathcal{U}\)-close provided that for each \(x \in X\), there is an element of \(\mathcal{U}\) containing both \(f(x)\) and \(g(x)\). A homotopy \(F: X \times I \to Y\) is said to be limited by \(\mathcal{U}\) if for each \(x \in X\), \(F([x] \times I)\) is contained in some member of \(\mathcal{U}\). By \(St^n(\mathcal{U})\) we will mean the \(n\)th star of the cover \(\mathcal{U}\), defined inductively as follows: \(St^0(\mathcal{U}) = \mathcal{U}\) and \(St^{n+1}(\mathcal{U})\) is the collection of all sets of the form \(G \cup (\bigcup \{U | U \in \mathcal{U}, U \cap G \neq \emptyset\})\), for \(G \in St^n(\mathcal{U})\).

We will have need to consider proper maps between locally compact separable metric spaces. In this case there are two results we will find useful in the sequel. The proofs are elementary.

Lemma 2.1. Let \(X\) and \(Y\) be locally compact separable metric spaces and let \(f: X \to Y\) be proper. Then \(f(X)\) is closed.

Lemma 2.2. Let \(X\) and \(Y\) be locally compact separable metric spaces. Then there is an open cover \(\mathcal{U}\) of \(Y\) such that if \(f: X \to Y\) is a proper map and \(g: X \to Y\) is a continuous function such that \(f\) and \(g\) are \(\mathcal{U}\)-close, then \(g\) is also proper.

A subset \(K\) of \(I^\infty\) is said to have infinite deficiency provided that for each of infinitely many different coordinate directions, \(K\) projects onto a single interior point of that interval. It is shown in [4] that if \(X\) is any \(Q\)-manifold, then \(X\) and \(X \times I^\infty\) are homeomorphic. This result was used in [6] to obtain the following characterization of \(Z\)-sets in \(Q\)-manifolds.

Lemma 2.3. Let \(X\) be a \(Q\)-manifold and let \(K\) be a closed subset of \(X\). Then \(K\) is a \(Z\)-set if and only if there is a homeomorphism \(h: X \to X \times I^\infty\) such that \(\pi_1(h(K))\) has infinite deficiency.

We can use Lemma 2.3 to obtain an easy proof of the somewhat stronger result.

Lemma 2.4. Let \(X\) be a \(Q\)-manifold and let \(K\) be a \(Z\)-set in \(X\). Then there is a homeomorphism \(h: X \to X \times I^\infty\) such that \(h(x) = (x, (0, 0, \ldots))\), for all \(x \in K\).

Proof. Using Lemma 2.3 there is a homeomorphism \(f: X \to X \times I^\infty\) such that \(f(K) \subset X \times \{(0, 0, \ldots)\}\). Let \(g: I^\infty \to I^\infty \times I^\infty\) be a homeo-
morphism such that \(g((0, 0, \cdots)) = ((0, 0, \cdots), (0, 0, \cdots)) \). Then the composition of the following homeomorphisms gives \(h \).

\[
X \xrightarrow{f} X \times I^\infty \xrightarrow{id \times g} X \times I^\infty \times I^\infty \xrightarrow{f^{-1} \times id} X \times I^\infty
\]

A cover \(\mathcal{U} \) of a space \(X \) is said to be star-finite provided that the closure of each element of \(\mathcal{U} \) intersects the closures of only finitely many other members of \(\mathcal{U} \). There is a useful convergence procedure from [5] that we list next.

Lemma 2.5. Let \(X \) be any space and let \(\mathcal{U} \) be any countable star-finite open cover of \(X \). Then we may order \(\mathcal{U} \) as \(\{U_i\}_{i=1}^\infty \) such that if \(\{h_i\}_{i=1}^\infty \) is any sequence of homeomorphisms of \(X \) onto itself satisfying \(h_i|X \setminus U_i = id \), for all \(i > 0 \), then \(\{h_i \circ h_{i-1} \circ \cdots \circ h_1\}_{i=1}^\infty \) converges pointwise to a homeomorphism of \(X \) onto itself. (We write \(L\Pi i_{i=1}^\infty h_i \) for the pointwise limit of \(\{h_i \circ \cdots \circ h_1\}_{i=1}^\infty \).

We shall need a mapping replacement theorem that has been established in [3]. We list it below.

Lemma 2.6. Let \(A \) be a topologically complete separable metric space, \(X \) be an \(F \)-manifold, \(B \) be a closed subset of \(A \), and let \(f: A \to X \) be a continuous function such that \(f|B \) is a homeomorphism of \(B \) onto a \(Z \)-set in \(X \). If \(\mathcal{U} \) is any open cover of \(X \), then there exists a homeomorphism \(h \) of \(A \) onto a \(Z \)-set in \(X \) such that \(h \) is \(\mathcal{U} \)-close to \(f \) and \(h|B = f|B \).

3. Replacing mappings with embeddings. We will need to replace mappings with homeomorphisms that are "close" to the mappings. These results are established in Theorem 3.1 and 3.2 below. An analogous result for \(F \)-manifolds is stated in Lemma 2.6 above.

Theorem 3.1. Let \(X \) be a \(Q \)-manifold, \(\mathcal{U} \) be an open cover of \(X \), \(A \) be a locally compact separable metric space, and let \(B \) be a closed subset of \(A \). If \(f: A \to X \) is any proper map such that \(f|B \) is a homeomorphism of \(B \) onto a \(Z \)-set in \(X \), then there is an embedding \(g: A \to X \) such that \(g(A) \) is a \(Z \)-set, \(g|B = f|B \), and \(g \) is \(St(\mathcal{U}) \)-close to \(f \).

Proof. Using Lemma 2.3 there is a homeomorphism \(h: X \to X \times I^\infty \) such that \(h(f(B)) \subset X \times \{0\} \), where \(0 = (0, 0, \cdots) \in I^\infty \). Using Lemmas 2.1 and 2.2 we can clearly obtain an embedding \(\varphi: X \times I^\infty \to X \times s \) such that \(\varphi(X \times I^\infty) \) is closed in \(X \times I^\infty \), \(\varphi \) is \(h(\mathcal{U}) \)-close to \(id_{X \times I^\infty} \),
and $\varphi \mid X \times \{0\} = \text{id}$. Thus $\varphi \circ h \circ f: A \to X \times I^\infty$ is a proper map, $\varphi \circ h \circ f(A)$ is $h(\mathbb{Z})$-close to $h \circ f$, and $\varphi \circ h \circ f \mid B = h \circ f \mid B$. Now $\varphi \circ h \circ f(B)$ is a closed subset of $X \times s$ which is σ-compact. Since $X \times s$ is obviously an F-manifold and each compact subset of an F-manifold is a Z-set, we conclude that $\varphi \circ h \circ f(B)$ is a Z-set in $X \times s$.

Note that A is a topologically complete separable metric space. Thus for each open cover \mathcal{V} of $X \times I^\infty$ there is, by Lemma 2.6, a homeomorphism θ of A onto a Z-set in $X \times s$ such that $\theta \mid B = h \circ f \mid B$ and θ is \mathcal{V}-close to $h \circ f$. Since \mathcal{V} is arbitrary we can require that $\theta(A)$ be closed in $X \times I^\infty$, hence a Z-set in $X \times I^\infty$, and θ be $h(\mathbb{Z})$-close to $h \circ f$. Clearly $g = h^{-1} \circ \theta: A \to X$ is a homeomorphism of A onto a Z-set in X such that $g \mid B = f \mid B$ and g is $h(\mathbb{Z})$-close to f.

It is easy to produce examples to show that the assumption that f be proper is necessary in the preceding theorem. For example let $A = (-1, 1)$, $B = \{0\}$, $X = I^\infty$, and let $f: A \to X$ be defined by $f(x) = 0$, for all $x \in A$. Clearly A cannot be embedded as a closed subset of X.

Even though there are examples which show the necessity of assuming f to be proper in Theorem 3.1, there are a large class of Q-manifolds for which this assumption is not necessary. We will first need a preliminary result.

Lemma 3.1. Let X be a Q-manifold, $F \subset X \times [0, 1)$ be a Z-set, and let A, B be disjoint closed subsets of F. Then there exist α Z-set K in $X \times [0, 1)$ such that $A \subset K$, $K \cap (F \setminus A) = \emptyset$, and a homeomorphism $f: (X \times [0, 1)) \setminus K \to X \times [0, 1)$ such that $f \mid B = \text{id}$.

Proof. It follows from Lemma 2.4 that there is a homeomorphism $h: X \times [0, 1) \to X \times [0, 1) \times [0, 1]$ such that $h(x) = (x, 1/2)$, for all $x \in F$. Let $\alpha: [0, 1) \times [0, 1) \to [0, 1) \times [0, 1)$ be a homeomorphism such that $\alpha \mid [0, 1) \times \{1/2\} = \text{id}$. Then $\text{id} \times \alpha: X \times [0, 1) \times [0, 1) \to X \times [0, 1) \times [0, 1)$ is a homeomorphism satisfying $(\text{id} \times \alpha) \circ h(x) = (x, 1/2)$, for all $x \in F$.

Put $K' = A \times \{1/2, 1\}$, which is a Z-set in $X \times [0, 1) \times [0, 1)$ containing $A \times \{1/2\}$ and missing $(F \setminus A) \times \{1/2\}$. It is clear that there is a homeomorphism $f': (X \times [0, 1) \setminus K' \to X \times [0, 1) \times [0, 1)$ such that $f' \mid B \times \{1/2\} = \text{id}$. Then put $f = ((\text{id} \times \alpha) \circ h)^{-1} \circ f' \circ (\text{id} \times \alpha) \circ h$ and $K = ((\text{id} \times \alpha) \circ h)^{-1}(K')$ to fulfill our requirements.

Theorem 3.2. Let X be a Q-manifold, A be a locally compact separable metric space, and let $B \subset A$ be a closed set. If $f: A \to X \times [0, 1)$ is any continuous function such that $f \mid B$ is a homeomorphism of B onto a Z-set in $X \times [0, 1)$, then there is an embedding $g: A \to X \times [0, 1)$...
such that \(g(A) \) is a Z-set and \(g|B = f|B \).

Proof. Using the idea contained in the proof of Theorem 3.1 let \(h: X \times [0, 1) \rightarrow X \times [0, 1) \times I^\infty \) be a homeomorphism such that \(h(f(B)) \subset X \times [0, 1) \times \{0\} \) and let \(\varphi: X \times [0, 1) \times I^\infty \rightarrow X \times [0, 1) \times s \) be an embedding such that \(\varphi|X \times [0, 1) \times \{0\} = id \). Then \(\varphi \circ h \circ f: A \rightarrow X \times [0, 1) \times s \) is a continuous function such that \(\varphi \circ h \circ f|B \) is a homeomorphism of \(B \) onto a Z-set in \(X \times [0, 1) \times s \). Using Lemma 2.6 there is a homeomorphism \(\theta \) of \(A \) onto a Z-set in \(X \times [0, 1) \times s \) such that \(\theta|B = h \circ f|B \).

Since \(A \) is locally compact we can prove that \(F = Cl(\theta(A)) \setminus \theta(A) \) is closed in \(X \times [0, 1) \times I^\infty \), where closure is taken in \(X \times [0, 1) \times I^\infty \). It is also easy to show that \(F \) is a Z-set in \(X \times [0, 1) \times I^\infty \).

Using Lemma 3.1 there exist a Z-set \(K \subset X \times [0, 1) \times I^\infty \) such that \(F \subset K, K \cap (Cl(\theta(A)) \setminus F) = \emptyset \), and a homeomorphism

\[
\alpha: (X \times [0, 1) \times I^\infty) \setminus K \rightarrow X \times [0, 1) \times I^\infty
\]

such that \(\alpha|h \circ f(B) = id \). Then \(g = h^{-1} \circ \alpha \circ \theta \) fulfills our requirements.

4. A preliminary homeomorphism extension theorem. In this section we obtain a homeomorphism extension theorem (Theorem 4.1) for Q-manifolds which is applicable only in special cases. We will use this in the next section for a more general version.

If \(f \) and \(g \) are embeddings of a space \(A \) into a space \(X \), then by the *induced homeomorphism* of \(f(A) \) onto \(g(A) \) we mean the homeomorphism \(\varphi: f(A) \rightarrow g(A) \) defined by \(\varphi = g \circ f^{-1} \).

We will need the following preliminary result.

Lemma 4.1. Let \(X \) be a Q-manifold and let \(f: I \rightarrow X \) be an embedding such that \(f(I) \) is a Z-set. Then there is an embedding \(h: I^\infty \rightarrow X \) such that \(h(I^\infty \setminus W_I) \) is an open subset of \(X \) containing \(f(I) \).

Proof. We first show that there is a \(\delta \in (0, 1) \) such that for each \(t \in [0, \delta] \), there is a homeomorphism of \(X \) onto itself which takes \(f(I) \) onto \(f([t, 1]) \).

It is clear that there is a basic open subset \(U \) of \(I^\infty \) and an embedding \(g': Cl(U) \rightarrow X \) such that \(g'(U) \) is an open subset of \(X \) containing \(f(0) \). We may treat \(Cl(U) \) as a Hilbert cube and regard \(Bd(U) \) as a finite union of endslices of \(Cl(U) \). By choosing a subset of \(U \), if necessary, we can, without loss of generality, assume further that \(Bd(U) \) is homeomorphic to \(I^\infty \). Thus there is an embedding \(g: I^\infty \rightarrow X \) such that \(g(I^\infty \setminus W_I) \) is an open subset of \(X \) containing \(f(0) \).
This follows from the homeomorphism extension theorem of [1].

Choose \(\delta \in (0, 1) \) so that \(f([0, 2\delta]) \subset g(I^\omega \setminus W^+_{i}) \). We show that there is a homeomorphism \(\alpha \) of \(X \) onto itself which takes \(f([0, 1]) \) onto \(f([\delta, 1]) \). It will be clear from the construction that given any \(t \in [0, \delta] \), there is similarly a homeomorphism of \(X \) onto itself taking \(f([0, 1]) \) onto \(f([t, 1]) \).

Let \(\varphi : f(I) \to f([\delta, 1]) \) be a homeomorphism satisfying

\[f^{-1} \circ \varphi \circ f \mid [2\delta, 1] = \text{id} . \]

Then \(\theta = g^{-1} \circ \varphi \circ g \) defines a homeomorphism of \(g^{-1}(g(I^\omega) \cap f(I)) \) onto \(g^{-1}(g(I^\omega) \cap f([\delta, 1])) \) satisfying \(\theta \mid g^{-1}(g(I^\omega) \cap f(I)) \cap W^+_{i} = \text{id} \). But \(g^{-1}(g(I^\omega) \cap f(I)) \) and \(g^{-1}(g(I^\omega) \cap f([\delta, 1])) \) are \(Z \)-sets in \(I^\omega \). Using the extension theorem of [1] we can extend \(\theta \) to a homeomorphism \(\overline{\theta} : I^\omega \to I^\omega \) such that \(\overline{\theta} \mid W^+_{i} = \text{id} \). Then \(g \circ \overline{\theta} \circ g^{-1} \) gives a homeomorphism of \(g(I^\omega) \) onto itself such that \(g \circ \overline{\theta} \circ g^{-1} \mid g(W^+_{i}) = \text{id} \) and \(g \circ \overline{\theta} \circ g^{-1} \) extends \(\varphi \). Extend this to a homeomorphism \(\alpha : X \to X \) so that \(\alpha \mid X \setminus g(I^\omega) = \text{id} \). We then have \(\alpha(f(I)) = f([\delta, 1]) \).

Now let \(A \) be the subset of \([0, 1]\) consisting of all \(\delta \in [0, 1) \) such that for each \(t \in [0, \delta] \), there is a homeomorphism of \(X \) onto itself taking \(f(I) \) onto \(f([t, 1]) \). From what we have shown above it follows routinely that \(A = [0, 1) \). Let \(h' : I^\omega \to X \) be an embedding such that \(h'(I^\omega \setminus W^+_{i}) \) is an open subset of \(X \) containing \(f(I) \). Choose \(\varepsilon \) in \((0, 1)\) so that \(f([1 - \varepsilon, 1]) \subset h'(I^\omega \setminus W^+_{i}) \). Since \(A = [0, 1) \) there is a homeomorphism \(\beta \) of \(X \) onto itself satisfying \(\beta(f(I)) = f([1 - \varepsilon, 1]) \). Then \(h = \beta^{-1}h' : I^\omega \to X \) is an embedding satisfying the required properties.

In the following theorem we show how to extend the induced homeomorphism between two homotopic embeddings of a locally compact separable metric space into a \(Q \)-manifold, where the given homotopy is an embedding onto a \(Z \)-set. The procedure will be to apply Lemma 4.1 to do the extension along the fibers of the homotopy.

Theorem 4.1. Let \(X \) be a \(Q \)-manifold and let \(A \) be a locally compact separable metric space. If \(F : A \times I \to X \) is an embedding such that \(F(A \times I) \) is a \(Z \)-set, then the induced homeomorphism of \(F_{0}(A) \) onto \(F_{1}(A) \) can be extended to a manifold homeomorphism.

Proof. Write \(A = \bigcup_{n=1}^{\omega} A_n \), where each \(A_n \) is compact and \(A_n \subset \text{Int}(A_{n+1}) \) (with \(\text{Int}(A_{n+1}) \) denoting the interior of \(A_{n+1} \)). Also write \(X = \bigcup_{n=1}^{\omega} X_n \), where each \(X_n \) is compact and \(X_n \subset \text{Int}(X_{n+1}) \). It is clear that for each \(n > 0 \) there are integers \(i_n, j_n \geq 0 \) such that

\[
F(A_n \times I) \setminus F(A_{n-1} \times I) \subset (\text{Int}(X_i)) \setminus X_j ,
\]
where $A_n = X_0 = \emptyset$, $i_1 < i_2 < \cdots$, $j_1 \leq j_2 \leq \cdots$, and $\lim_{n \to \infty} j_n = \infty$.

For each $x \in A_n \setminus A_{n-1}$ (where $n > 0$) we let $h_x: I^\infty \to (\Int (A_{n+1}) \setminus A_{n+1})$ be an embedding such that $h_x(I^\infty \setminus W^+_i)$ is an open set containing $F(\{x\} \times I)$. For each $x \in A_n \setminus A_{n-1}$ let U_x be an open subset of $(\Int (A_{n+1})) \setminus A_{n+1}$ containing x such that $F(U_x \times I) \subset h_x(I^\infty \setminus W^+_i)$. Choose a subset $\{U_{ij}\}_{i,j}^{n+1}$ of $\{U_x \mid x \in A\}$ which covers A and for which $\{i \mid U_i \cap A_n \neq \emptyset\}$ is finite, for all $n > 0$.

For each $x \in A_n \setminus A_{n-1}$, let $F(\{x\} \times I) = h_x(I^\infty \setminus W^+_i)$ be an embedding such that $h_x(I^\infty \setminus W^+_i)$ is an open set containing $F(\{x\} \times I)$. Choose a subset $\{U_{ij}\}_{i,j}^{n+1}$ of $\{U_x \mid x \in A\}$ which covers A and for which $\{i \mid U_i \cap A_n \neq \emptyset\}$ is finite, for all $n > 0$. If $\{h_x\}_{i=1}^{n+1}$ is the corresponding subset of $\{h_x \mid x \in A\}$, then $\{h_x(I^\infty \setminus W^+_i)\}$ is a star-finite open cover of $F(A \times I)$. We may therefore assume that $\{h_x(I^\infty \setminus W^+_i)\}_{i=1}^{\infty}$ is ordered as in Lemma 2.5. Also choose a closed cover $\{C_i\}_{i=1}^{\infty}$ of A such that $C_i \subset U_i$, for all i.

Let $\varphi_i: A \to [0, 1]$ be a continuous function satisfying $\varphi_i(x) = 1$, for $x \in C_i$, and $\varphi_i(x) = 0$, for $x \in A \setminus U_i$. Then we let $B_i = F(A \times I)$ and $D_i = \bigcup \{F(\{x\} \times \varphi_i(x) \cdot 1/2, 1) \mid x \in A\}$. Define $g_i: B_i \to D_i$ to be the homeomorphism which satisfies the property that for each $x \in A$, $F^{-1} \circ g_i \circ F$ takes $\{x\} \times I$ linearly onto $\{x\} \times I$. Using the extension theorem of [1] we can extend g_i to a homeomorphism $g_i^*: I^\infty \to I^\infty$. Thus there is a homeomorphism $g_i^*: A \to A \times I$ such that $f_i | X \setminus h_i(I^\infty) = id$ and $h_i^{-1} \circ g_i \circ h_i | B_i' = g_i^* | B_i'$. Using the extension theorem of [1] we can extend g_i to a homeomorphism $g_i^*: I^\infty \to I^\infty$. Thus there is a homeomorphism $f_i: X \to X$ such that $f_i | X \setminus h_i(I^\infty) = id$ and $f_i \circ h_i(I^\infty) = h_i \circ g_i^* \circ h_i^{-1}$; hence f_i extends g_i.

Let $(A \setminus U_2) \cup C_1 \cup C_2 \to [0, 1]$ be the continuous function defined by $\varphi_2 | C_1 \cup (A \setminus U_2) = \varphi_1 | C_1 \cup (A \setminus U_2)$ and $\varphi_2(x) = 1$, for $x \in C_2$. Then we use the Tietze Extension Theorem to get a continuous function $\varphi_2: A \to [0, 1]$ such that $\varphi_2 | C_1 \cup (A \setminus U_2) = \varphi_1 | C_1 \cup (A \setminus U_2)$ and $\varphi_2(x) = 1$, for $x \in C_2$.

Define $B_2 = D_1$ and $D_2 = \bigcup \{F(\{x\} \times \varphi_2(x) \cdot 1/2, 1) \mid x \in A\}$. Let $g_2: B_2 \to D_2$ be the homeomorphism such that for each $x \in A$, $F^{-1} \circ g_2 \circ F$ takes $\{x\} \times \varphi_2(x) \cdot 1/2, 1 \mid F(\{x\} \times [\varphi_2(x) \cdot 1/2, 1) \mid x \in A\}$. We note that $g_2 | B_2 \cap \Bd(h_2(I^\infty)) = id$. Thus using the techniques employed in the construction of f_1 we can construct a homeomorphism $f_2: X \to X$ which extends g_2 and satisfies $f_2 | X \setminus h_2(I^\infty) = id$. It is clear that if we continue this process and put $f = L\Pi_{i=1}^{\infty} f_i$, then f is a homeomorphism of X onto itself which extends the induced homeomorphism of $F_0(A)$ onto $F_{1/2}(A)$.

Using this result we can obtain a homeomorphism \tilde{f} of X onto itself which extends the induced homeomorphism of $F_1(A)$ onto $F_{1/2}(A)$. Then $\tilde{f}^{-1} \circ f$ is a homeomorphism of X onto itself which extends the induced homeomorphism of $F_0(A)$ onto $F(A)$.

5. A general homeomorphism extension theorem. In this section we generalize Theorem 4.1, showing that we may weaken
the condition that \(F(A \times I) \) be embedded as a Z-set. We first establish a lemma which will be used here and in the next section.

Lemma 5.1. Let \(X \) be a \(Q \)-manifold, \(A \) be a locally compact separable metric space, and let \(F: A \times I \to X \) be a proper map such that \(F_0, F_1 \) are embeddings and \(F_0(A), F_1(A) \) are Z-sets. If \(\mathcal{U} \) is any open cover of \(X \) such that \(F \) is limited by \(\mathcal{U} \), then there is an invertible ambient isotopy \(G: X \times I \to X \) such that \(G = id \), \(G \) is limited by \(\mathcal{U} \), and \((G \circ F_1(A)) \cap F_0(A) = \emptyset \). Moreover, there is an embedding \(H: A \times I \to X \) such that \(H(A \times I) \) is a Z-set, \(H_0 = F_0, H_1 = G \circ F_1 \), and \(H \) is limited by \(St'(\mathcal{U}) \).

Proof. Let \(f: X \to X \times I^\infty \) be a homeomorphism such that \(f(F_0(A) \cup F_1(A)) \subset X \times \{0\} \). By adjusting one of the coordinates of \(I^\infty \) we can easily obtain an invertible ambient isotopy \(G': (X \times I^\infty) \times I \to X \times I^\infty \) such that \(G'_0 = id \), \((G'_1 \circ f \circ F_1(A)) \cap f \circ F_0(A) = \emptyset \), and \(G' \) is limited by \(f(\mathcal{U}) \). Then \(G: X \times I \to X \), defined by

\[
G(x, t) = f^{-1} \circ G'(f(x), t),
\]

is an invertible ambient isotopy which is limited by \(\mathcal{U} \) and which satisfies \((G_1 \circ f \circ F_1(A)) \cap f \circ F_0(A) = \emptyset \).

Now define \(F'': A \times I \to X \) by

\[
F''(x, t) = \begin{cases}
F(x, t), & \text{for } 0 \leq t \leq \frac{1}{2} \\
G(F(x, t), 2t - 1), & \text{for } \frac{1}{2} \leq t \leq 1
\end{cases}
\]

Then \(F'' \) is a proper map and we have \(F''_0 = F_0, F''_1 = G_1 \circ F_1 \), and \(F'' \) is limited by \(St(\mathcal{U}) \).

It follows that \(F'' \mid (A \times \{0\} \cup (A \times \{1\}) \) is an embedding of \((A \times \{0\}) \cup (A \times \{1\}) \) onto a Z-set in \(X \). Applying Theorem 3.1 there is an embedding \(H: A \times I \to X \) such that \(H \mid (A \times \{0\}) \cup (A \times \{1\}) = F'' \mid (A \times \{0\}) \cup (A \times \{1\}) \), \(H(A \times I) \) is a Z-set, and \(H \) is \(St(\mathcal{U}) \)-close to \(F'' \). This means that \(H \) is limited by \(St'(\mathcal{U}) \).

We can obtain a version of Lemma 5.1 for \(Q \)-manifolds which admit half-open interval factors \([0,1)\). The proof is similar to that of Lemma 5.1. In the proof of Corollary 5.1, Theorem 3.2 plays a role similar to the role that Theorem 3.1 played in the proof of Lemma 5.1.

Corollary 5.1. Let \(X \) be a \(Q \)-manifold, \(A \) be a locally compact separable metric space, and let \(F: A \times I \to X \times [0,1) \) be a homotopy
such that F_0, F_1 are embeddings and $F_0(A)$, $F_1(A)$ are Z-sets. Then there is an invertible ambient isotopy $G: X \times [0, 1) \times I \to X \times [0, 1)$ such that $G_0 = \text{id}$ and $(G_1 \circ F_1(A)) \cap F_0(A) = \emptyset$. Moreover, there is an embedding $H: A \times I \to X \times [0, 1)$ such that $H(A \times I)$ is a Z-set, $H_0 = F_0$, and $H_1 = G_1 \circ F_1$.

Theorem 5.1. Let X be a Q-manifold, A be a locally compact separable metric space, and let $F: A \times I \to X$ be a proper homotopy so that F_0, F_1 are embeddings and $F_0(A)$, $F_1(A)$ are Z-sets. Then there is a homeomorphism of X onto itself which extends the induced homeomorphism of $F_0(A)$ onto $F_1(A)$.

Proof. Using Lemma 5.1 there is a manifold homeomorphism h and an embedding $H: A \times I \to X$ such that $H_0 = F_0$, $H_1 = h \circ F_1$, and $H(A \times I)$ is a Z-set. Using Theorem 4.1 let g be a homeomorphism of X onto itself which extends the induced homeomorphism of $H_0(A)$ onto $H_1(A)$. Then $h^{-1} \circ g$ is a manifold homeomorphism which extends the induced homeomorphism of $F_0(A)$ onto $F_1(A)$.

We now present a simple example which shows that in Theorem 5.1 the condition that the homotopy be proper is necessary. Let $X = I^\infty \setminus \{p, q\}$, where p and q are distinct points of I^∞. Let $A = (0, 1)$ and let $f_i: A \to X$ be an embedding so that $f_i(A)$ is a Z-set and $\text{Cl}_{I^\infty}(f_i(A))$ is an arc containing p and q as endpoints. Let $f_2: A \to X$ be an embedding so that $f_2(A)$ is a Z-set and $\text{Cl}_{I^\infty}(f_2(A))$ is a simple closed curve containing p and missing q. Clearly there is a homotopy $F: A \times I \to X$ satisfying $F_0 = f_1$ and $F_1 = f_2$, but F is not proper.

If the induced homeomorphism of $f_1(A)$ onto $f_2(A)$ could be extended to a homeomorphism of X onto itself then $X \setminus f_1(A)$ would be homeomorphic to $X \setminus f_2(A)$. But the one-point compactification of $X \setminus f_1(A)$ is I^∞ and the one-point compactification of $X \setminus f_2(A)$ is not simply connected, giving us a contradiction.

We also obtain a version of Theorem 5.1 for Q-manifolds which admit half-open interval factors.

Corollary 5.2. Let X be a Q-manifold, A be a locally compact separable metric space, and let $F: A \times I \to X \times [0, 1)$ be a homotopy so that F_0, F_1 are embeddings and $F_0(A)$, $F_1(A)$ are Z-sets. Then there is a homeomorphism of $X \times [0, 1)$ onto itself which extends the induced homeomorphism of $F_0(A)$ onto $F_1(A)$.

6. Converting homotopies to isotopies. In this section we establish an “estimated” version of Theorem 5.1, with the homotopy
being approximated by an invertible ambient isotopy. We will first need the following result.

Lemma 6.1 Let X be a Q-manifold, A be a locally compact separable metric space, and let $F: A \times I \rightarrow X$ be an embedding so that $F(A \times I)$ is a Z-set. Then there is a homeomorphism $h: X \rightarrow X \times [-1, 1]$ and a subset B of X such that $h \circ F_0(A) = B \times \{0\}$, $h \circ F_1(A) = B \times \{1/2\}$, and for each $x \in A$ we have $h \circ f([x] \times I) = \{y\} \times [0, 1/2]$, where $y = \pi_x \circ h \circ F([x] \times I)$.

Proof. Since $F(A \times I)$ is a Z-set there is a homeomorphism $f: X \rightarrow X \times [-1, 1]$ so that $f \circ F(A \times I) \subset X \times \{0\}$. Now let $B = \pi_x \circ f \circ F(A \times \{1\})$. It is clear that we may require f to be constructed so that $f(B \times [0, 1/2])$ is a Z-set in $X \times [-1, 1]$.

Define $G: (A \times I) \times I \rightarrow X \times [-1, 1]$ as follows:

$$G_s(x, t) = \begin{cases} f \circ F_{t+s}(x), & \text{for } 0 \leq s \leq 1 - t \\ (\pi_x \circ f \circ F_t(x), \frac{1}{2}(t + s - 1)), & \text{for } 1 - t \leq s \leq 1 \end{cases}$$

Then it can be verified that G is a proper homotopy such that $G_0 = f \circ F$ and $G_1(x, t) = (\pi_x \circ f \circ F_t(x), 1/2t)$; thus G_0 and G_1 are embeddings of $A \times I$ onto Z-sets. Using Theorem 5.1 there is a homeomorphism g of $X \times [-1, 1]$ onto itself which extends the induced homeomorphism of $G_0(A \times I)$ onto $G_1(A \times I)$. Thus $h = g \circ f$ is our required homeomorphism.

Theorem 6.1. Let X be a Q-manifold, A be a locally compact separable metric space, and let f and g be embeddings of A into X such that $f(A)$ and $g(A)$ are Z-sets. Then there exists an invertible ambient isotopy G of X onto itself such that $G_0 = id$ and $G \circ f = g$ if and only if f and g are properly homotopic. Moreover, if F is a proper homotopy between f and G and \mathcal{U} is an open cover of X for which F is limited by \mathcal{U}, then G may be chosen such that G is limited by $\text{St}^4(\mathcal{U})$.

Proof. The necessity is obvious. For the sufficiency there is an invertible ambient isotopy $H: X \times I \rightarrow X$ which is limited by \mathcal{U} such that $H_0 = id$ and $H_t(g(A)) \cap f(A) = \emptyset$ (we are assuming that $F_0 = f$ and $F_1 = g$). Moreover there is an embedding $F': A \times I \rightarrow X$ such that $F'(A \times I)$ is a Z-set, $F'_0 = f$, $F'_1 = H \circ g$, and F' is limited by $\text{St}^4(\mathcal{U})$.

Now apply Lemma 6.1 to get a homeomorphism $h: X \rightarrow X \times [-1, 1]$ and a subset B of X such that $h \circ f(A) = B \times \{0\}$, $h \circ H \circ g(A) = B \times \{1/2\}$,
and for each $x \in A$ we have $h \circ F'({x} \times I) = \{y\} \times [0,1/2]$, where $\{y\} = \tau_x \circ h \circ F'({x} \times I)$.

Using only motions in the $[-1,1]$-direction we can, by a standard argument, find an invertible ambient isotopy $G': (X \times [-1,1]) \times I \to X \times [-1,1]$ such that $G'_t = id$, G'_t extends the induced homeomorphism of $h \circ F'_t(A)$ onto $h \circ F'_t(A)$ and G' is limited by $St(h'(Z))$. Now define $G: X \times I \to X$ by $G_t(x) = H_t \circ h^{-1} \circ G'_t \circ h(x)$, for $x \in X$ and $t \in I$. It is clear that the required properties are satisfied.

Once more we can obtain a similar result for Q-manifolds admitting half-open interval factors.

Corollary 6.1. Let X be a Q-manifold, A be a locally compact separable metric space, and let f and g be embeddings of A into $X \times [0,1)$ such that $f(A)$ and $g(A)$ are Z-sets. Then there is an invertible ambient isotopy G of X onto itself such that $G_0 = id$ and $G_t \circ f = g$ if and only if f and g are homotopic.

References

Received June 1, 1970. This research was supported in part under NSF Grant G 14429 and under a NASA Traineeship

Louisiana State University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

C. R. HOBBY
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

Stanford University
University of Tokyo
University of Utah
Washington State University
University of Washington

American Mathematical Society
Chevron Research Corporation
Naval Weapons Center

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunkei Insatsuusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Richard Davis Anderson and Thomas Ashland Chapman, *Extending homeomorphisms to Hilbert cube manifolds* .. 281
Nguyen Huu Anh, *Restriction of the principal series of SL(n, C) to some reductive subgroups* .. 295
David W. Boyd, *Indices for the Orlicz spaces* ... 315
William Garfield Bridges, *The polynomial of a non-regular digraph* 325
H. A. Çelik, *Commutative associative rings and anti-flexible rings* 351
Hsin Chu, *On the structure of almost periodic transformation groups* 359
David Allyn Drake, *The translation groups of n-uniform translation Hjelmslev planes* .. 365
Michael Benton Freeman, *The polynomial hull of a thin two-manifold* 377
Anthony Alfred Gioia and Donald Goldsmith, *Convolutions of arithmetic functions over cohesive basic sequences* .. 391
Leslie C. Glaser, *A proof of the most general polyhedral Schoenflies conjecture possible* .. 401
Thomas Lee Hayden and Ted Joe Suffridge, *Biholomorphic maps in Hilbert space have a fixed point* .. 419
Roger Alan Horn, *Schlicht mappings and infinitely divisible kernels* 423
Norman Ray Howes, *On completeness* ... 431
Hideo Imai, *Sario potentials on Riemannian spaces* 441
A. A. Iskander, *Subalgebra systems of powers of partial universal algebras* .. 457
Barry E. Johnson, *Norms of derivations of $L(X)$* 465
David Clifford Kay and Eugene W. Womble, *Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers* .. 471
Constantine G. Lascarides, *A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer* ... 487
C. N. Linden, *On Blaschke products of restricted growth* 501
John S. Lowndes, *Some triple integral equations* .. 515
Declan McCartan, *Bicontinuous preordered topological spaces* 523
S. Moedomo and J. Jerry Uhl, Jr., *Radon-Nikodým theorems for the Bochner and Pettis integrals* .. 531
Calvin Cooper Moore and Joseph Albert Wolf, *Totally real representations and real function spaces* .. 537
Reese Trego Prosser, *A form of the moment problem for Lie groups* 543
Larry Smith, *A note on annihilator ideals of complex bordism classes* 551
Joseph Warren, *Meromorphic annular functions* ... 559