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Let n =n(+ - -+ n, where r=2 and the nis are
positive integers, Then every element of G = SL(n, C) can
be written as a block matrix (9:;):<;, js-, Where each block
gi; is a m; X n; matrix, Let G,,...,,, denote the subgroup
of all diagonal block matrices, i.e., g:;; is the O-matrix for
EER Let T7* be any element of the non-degenerate
principal series of G. The main purpose of this paper is to
decompose the restriction of T* to G,,,...,., into irreducible
representations,

As we shall see by an induction argument, it is sufficient to
consider the restriction of 7T* to G,..;,. Now by the Frobenius
reciprocity theorem this restriction problem is equivalent to the de-
composition of the induced representations to G of some irreducible
representations of G,_,,. Note that

Gn—l,l - GO = {(gii)lgi,ign € G | Gin = Oy 1 é 1 é n— 1} y

and hence those induced representations may be obtained by inducing
some representations W of G,. The W’s are in turn equivalent to
the restrictions of the elements of the non-degenerate principal series
to G,. Therefore they are all irreducible according to Gelfand and
Naimark [3], and in fact are divided into = distinct classes of ir-
reducible representations of G, [4]. The problem is now completed by
applying again the Frobenius reciprocity theorem. It turns out that
this restriction problem is equivalent to the problem of decomposing
the tensor product of an element of the nondegenerate and an element
of the degenerate principal series of G. In fact Theorem 4.2 gives
the decompositions of such tensor products in terms of the non-
degenerate principal series only. The results contained in this paper
were parts of the author’s thesis at the University of California, Los
Angeles. The author would like to express his gratitude to Profes-
sor Donald G. Babbitt for guiding the preparation of the thesis. The
author would also like to thank the referee for many helpful sug-
gestions.

1. Some results on induced representations and the Frobenius
reciprocity theorem. In this section we shall recall some results on
induced representations due to Mackey ([5], [6]) and then prove some
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corollaries of the Frobenius reciprocity theorem ([6]) which are useful
for later application.

Every locally compact group considered will be separable and
every representation is understood to be unitary.

Let us recall quickly the definition of induced representations.*
Let H be a closed subgroup of G. Let L be a representation of H
in the Hilbert space $(L). Let g be any quasi invariant measure in
the homogeneous space I = H\G of right H cosets. By definition
of quasi invariance, the right translate of ¢ by an element y of G is
equivalent to p. Let A(-,y) be the corresponding Radon-Nikodym
derivative. Consider the space “§* of all functions f from G to (L)
such that

(a) (f(»),v)? is a Borel function of = for all ve H(L).

(b) f(€x) = L(f(x)) for all £e H and zeG.

(¢) By (b) (f(x), f(x))* is in fact a function on PM. We assume

(f(®), f(x)) du(d) < o= where % is the right coset containing z. If

functions equal almost everywhere are identified then #$” becomes a
Hilbert space. For each ye G, let T, map fe“H” into g where g(x) =
M, 9)12 f(xy). Then it can be proved that T is a representation of
G which is determined within unitary equivalence by the measure
class of p. This representation is called the representation of G in-
duced from L and is denoted by indy,,L or ,U* or simply U* if
there is no ambiguity.

On the other hand let V be any representation of G. then the
restriction of V to the subgroup H is denoted by V |y or simply
Ve

The following theorems were proved by Mackey.

THEOREM 1.1. (Theorem 4.1 of [5]). Let HC K be closed sub-
groups of G. Let L be a representation of H and let M = indg, L.
Then indg,q; L and indg,; M are equivalent representations.

THEOREM 1.2 (Theorem 5.2 of [5]). Let L and M be representa-
tions of the closed subgroups H, and H, of the groups G, and G,
respectively. Then the outer Kronecker product indy ;4 L X indy,q, M
is equivalent to indy «u,re,xe, (L X M) where L X M 1is the outer
Kronecker product of L and M.

Let H, and H, be closed subgroups of G. We shall say that H,
and H, are discretely related if there exists a subset of G whose
complement has Haar measure zero and which is itself the union of

1 See, e.g. §2 of [5].
2 (-,+) denotes the inner product in o (L).
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countably many H,: H, double cosets.

THEOREM 1.3 (Theorem 7.1 of [5]). Let H, and H, be two dis-
cretely related closed subgroups of G. Let L be a representation of
H,. For each xe G consider the subgroup H,N (x~*Hx) of H, and let
.V denote the representation of H, induced by the representation
N L,,,—1 of this subgroup. Then ,V is determined within unitary
equivalence by the double coset H, X H, = D(x) and we may write
pV =,V where D = D(x). Finally indy ,c L restricted to H, is the
direct sum of the ,V over those double cosets D which are not of
measure zero.

THEOREM 1.4 (Theorem 7.2 of [5]). Let H, and H, be as in
Theorem 1.3 and let L and M be representations of H, and H, re-
spectively. For each (x, y) € G X G consider the representations

st—>L,,~1 and s+—— M,

of the subgroup (v Hx) N (y— Hyy). Let us denote their tensor product
(or Kronecker product in the terminology of [5]) by N*¥. Then the in-
duced representation of N*! to G is determined within unitary equiv-
alence by the double coset Haxy*H, and the direct sum of these in-
duced representations over those double cosets which are not of
measure zero is equivalent to the tensor product indy ;s L @ indy,s M.

THEOREM 1.5 (Theorem 10.1 of [5]). Let H be a closed subgroup
of G and let M be a representation of H which is a direct integral

over a Borel measure space (Y, ) of representations *L; M = S”L du(y).

Then Sinde”L du(y) is equivalent to indy,, M.

Let M be a separable locally compact space and let ¢ be a finite
measure on M. Let » be an equivalence relation on IN. Let » also
denote the natural mapping of I onto the quotient space Y. Assume
» regular in the sense of §11 of [5]. Then g induces a natural
measure 7z on Y.

LEMMA 1.6 (Lemma 11.1 of [5]). Let u, it be as above. Then for
each ye'Y there exists a finite Borel measure p, in I such that

m@r ) =0 and |7 @)|s@dpn@dnw) = | Fe@0@due) when-
ever fe L(Y, 1) and g ts bounded and measurable on M. p, is cal-
led the quotient measure obtained from p by way of the equivalence
relation r.
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LEmMMA. 1.7 (Lemma 11.4 of [5]). Let f, r, Y, M be as above
and let k be a monnegative function on I which is p-summable. Let
v be the measure whose Radon-Nikodym derivative with respect to p
18 k. Then 0 1s absolutely continuwous with respect to fi, the Radon-
Nikodym derivative being N say. Moreover in the decomposition of
v, b, may be taken to be that measure absolutely continwous with
respect to pt,, whose Radon- Nikodym derivativative is zero or xi— k(x)/N\(y)
depending upon whether or not My) is zero.

THEOREM 1.8 (Theorem 5.1 of [6]). Let H be a closed subgroup
of G. Let the regular representations of H and G be of type I and
let  their canonical decomposition into factor representations be

S Fdl(x) and S NYdn(y) respectively where F* (resp. N*) is a multiple
X Y

of the irreducible representation L*(res. M?) of H (resp. G) and { and
7 are finite measures such that ((X) = n(Y). Then there exists a
Borel measure a on X X Y and an a-measurable function from X x Y
to the countable cardinals, (x,y)r— n(r,y), such that for all Borel
subsets E and E’ of X and Y respectively we have

a(EXY)=LE); a(X x E') = 7n(E’)

and such that for  almost all © in X
(i) indg,cL* = S n(x, y)M? dgG,(y) and for n almost all y in Y
Y

(ii) M*|H ;ES n(x, y) L*dv,(x) where the pBx(resp.vy) are the
X
quotient measures obtained from a by way of the equivalence relation
r(@, y) = ¢ (resp. r(@, ¥) = ¥).

The Theorem 1.8 is often called the Frobenius reciprocity theorem.
Let us derive some corollaries of Theorem 1.8 which are easier for
application in some special cases. In fact it is hard to compute « in
general. However what we expect is the following: suppose by some
other way we know that one of the statements (i) or (ii) is valid,
then what can be said about the other?

The answer of this question is contained in the following corol-
laries.

COROLLARY 1.9. Let G and H be as in Theorem 1.8. Assume
also that they are of typwe I. Then the following are equivalent.

(i) for € almost all x, indy,; L* is quasi-equivalent to a sub-
representation of the regular representation of G.

(ii) for n almost all y, M? |y is quasi-equivalent to a subrepre-
sentation of the regular representation of H.
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Proof. By (i) of Theorem 1.8 and the uniqueness of direct
integral decompositions into irreducible reperesentations for type I
groups (see e.g., [2]), (1) is equivalent to:

(iii) for £ almost all x, B, is absolutely continuous with respect
to 7.

Suppose (iii) is true. Then the Fubini’s theorem and Lemma 1.6
show that:

(ili)’ «a is absolutely continuous with respect to { x 7. Conver-
sely suppose a is absolutely continuous with respeet to { x 7. Let
us apply Lemma 1.7 for the equivalence relation r(z,y) =2, ¢ =
{ X, v=a Since it is clear that &t = (Y){ and g, = 9(Y)'y for
every zc X, (iii) follows immediately. The equivalence between (ii)
and (iii)’ is proved in a similar manner.

To have a more precise statement we must include the multipli-
city function.

COROLLARY 1.10. Let G and H be as in Corollary 1.9. Let
o (z,y) and #'(z, y) be { X N-measurable functions where n'(x, y) is a
countable cardinal for every x, y. Then the following are equivalent.

(i) for ¢ almost all o, indy,,; L* = S W@, )M dEL®m),
Y

where dB,(y) = @(x, ¥)dn(y).
(ii) for 7 almost all y, M*|, = SXn'(x, y) L7 dv, (@),
where dv',(x) = o, ¥)dl(®).

Proof. Let «, B,, v, be as in Theorem 1.8. As in the proof of
Corollary 1.9, (i) or (ii) imply that « is absolutely continuous with
respect to { x 7. Let f(x,y) be the corresponding Radon-Nikodym
derivative. Apply again Lemma 1.7 for the relation r(x, %) =, ¢t =
X 7n,0v=a. As noted in the proof of Corollary 1.9 & = n(Y){, and
s, = n(X)™'n for every x in X. On the other hand it is also obvious
that 0 = { (see e.g., the connection between a and { in Theorem 1.8).
Therefore the function N in Lemma 1.7 satisfies \w) = di/dfi(x) =
7(Y)™?, and the Radon-Nikodym derivative of the corresponding
quotient measures is given by dg./du¢.(y) = f(x, ¥)/9(Y)™*. Therefore

(1) dB:(y) = f (@, y)dn(y) .

Using again the uniqueness of direct-integral decomposition into ir-
reducible representations for type I groups and taking (1) into account
we see that (1) is equivalent to

o(z, Y)dl(x)dn(y) ~ a (= f(x, y)dl(x)dn(y))

(iii) {
n'(x, y) = n(@, y), L X7 — a.e.



300 NGUYEN-HUU-ANH
Similarly (ii) is equivalent to (iii).

2. Description of some representations of G,,, *+*, ,,. Although
the representations of G,, -+, n, can be described by using the
known results on reductive Lie groups, we prefer to use another
method which is interesting in its own right and is used to simplify
our computations later on.

Let H and K be two subgroups of a group G. Then G is said to be
the “generalized direct product” of Hand K if: (i) HK = G; (ii) kk =
kh for he H and ke K. In the case HN K = {idg}. G is simply the
direct product of H and K.

Let G, and G, be two groups. Let Z, (resp. Z,) be a subgroup of
the center of G, (resp. G,). Suppose that there exists an isomorphism
t from Z, onto Z,. It is clear that Z = {(z, t(2)) |2€ Z} is a normal
subgroup of G, X G,. Let v be the canonical homomorphism of G, X G,
onto G = G, X G,/Z. Put H,=v(G,) (i =1,2). Then it is easy to see
that G is the generalized direct product of H, and H,. Moreover H,
and H, are isomorphic to G, and G, respectively. Under these iso-
morphisms, ¢ becomes the automorphism A+ 2™ of H, N H, Suppose
now G, and G, are topological groups, Z, and Z, are closed subgroups
of G, and G, respectively, and ¢ is also a homeomorphism. Then G,
equipped with the quotient topology, is a topological group containing
H, and H, as closed subgroups. If this is the case we say that G is
the topological generalized direct product of G, and G, via t. Assume
that G is a separable locally comact group. If G is the (algebraic)
generalized direct product of two closed subgroups H and K, then
it can be shown that G is (topologically and algebraically equivalent
to) the topological generalized direct product of H and K via the
automorphism z— 2z~ of HN K.?

We turn now to the representation theory of generalized direct
products. Note that while this notion is a generalization of that of
direct produects, it is also contained, in part, in the theory of group
extensions.

PRoOPOSITION 2.1. Let G be the generalized direct product of two
closed subgroups H and K. Let H' be closed subgrowp of H containing
HNK. Then G = H' K is a closed subgroup of G. Let V be a re-
presentation of G in the Hilbert space . Put W, = indg ;5 (V x).
Then indg ¢ V s equivalent to the representation of G defined by

(2) g=hk— W, (W) Wyk) (heH, kecK),
where W, is a repesentation of K equivalent to some multiple of V |g.

3 See, e.g., [1], Chapter 7, §2, no. 9.



RESTRICTION OF THE PRINCIPAL SERIES OF SL(n, C) 301

Proof. We first remark that the map H'h— G'h(he H) is a home-
omorphism of H\H onto G'\G which intertwines the actions of H by
right translations. Moreover it transforms a quasi invariant measure
£ of H'\H into a quasi invariant measure ¢# of G'\G.* For every
function f from G into §, put f = f1lg. Then fi— f is an isometry
of the Hilbert spaces “9" and *§"# in §1. In faet it sets up an
equivalence between ind; ., V' and the representation (2). The fact
that W, is equivalent to a multiple of V' |z can be checked directly
or by using Theorem 12.1 of [5].

The following corollary is useful for later application

COROLLARY 2.2. Let G, H, K, H', G’ be as in Proposition 2.1.
Let V be a one-dimensional representation of G'. Then indg 4 V is
equivalent to the representation defined by

(8) g=hk—V(EYW®), heH, keckK,
where W = indg 1 5(V | z).

Let us consider the important particular case in which H is
abelian.

LEMMA 2.8. Let G be the generalized direct product of a closed
subgroup K and an abelian closed subgroup H. Let U be any ir-
reducible representation of G. Then Uy s a wmultiple of some
character y of H and V = U g is an irreducible representation of
K such that

(4) Vigoxg = mult of ¥ |unx -

Conversely let ¥ be any character of H and V be any irreducible
representation of K satisfying (4). Then g=hk—y®) V() is a
well-defined irreducible representation of G.

Proof. Let U be an irreducible representation of G in the Hilbert
space . Since H is abelian it is contained in the center of G.
Therefore by Schur’s Lemma U (h) = y(h)I where y(h) is a complex
number and I is the unit operator of . It is clear that y is a
character of H. Let &' be a nonzero closed subspace of § which is
invariant under U (%), ke K. Let W be the component of K on &'
then W (k) = x(k)I', ke HN K where I’ is the unit operator of &’.
Hence g = hk+— y(h) W (k) is a well-defined subrepresentation of U. Thus
" = . This shows that U |, is irreducible. The converse is clear.

4+ This can be seen by a direct computation. See however [5] for the cor-
respondence between quasi-invariant measures and A-functions.
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COROLLARY 2.4. G s of type I if and only if K is.

We shall apply these results to the subgroup G,,.... First
we shall recall some facts on the representation theory of SL(n, C).
Let K,(resp.D,) be the subgroup of SL(n, C) consisting of all upper-
triangular (resp. diagonal) matrices. Let y be a character of D,,
then x extends uniquely to a one-dimensional representation of K,
which induces to an irreducible representation of SL(n, C) (see [3] and
[4]). This representation is called the element of the nondegenerate
principal series of SL(n, C) corresponding to ¥ and denoted by 7T'°.
Since the dual D, of D, is parametrized by Z* x R** ([3], see also
[4] for another parametrization of D,) we also use the notation
T'tmer-mai b2 00) for the element of the nondegenerate principal series
corresponding to (my, <+ +, My; Os +++, P,) €Z" X R**. A fundamental
domain of D, is a maximal subset D% of D, with respect to the fol-
lowing property: let ¥, %. be two different elements of D¢, then the
corresponding elements 7% and T'* of the nondegenerate principal series
are not equivalent.

Let D° be any fundamental domain of ﬁn. Then the regular

representation of SL(n, C) can be decomposed into S”’ oo T*dy, where
D

dy is the restriction of the Haar measure of D, to "ﬁi.ﬁ

We now return to the group G,,.... Let K, .., (resp.D,,....)
be the subgroup of G,,....,. consisting of all diagonal block matrices
(9;;) such that each block g¢;; is an upper triangular (resp. scalar)
matrix. It is clear that H = SL(n, C) X «++ X SL(n,, C) can be
embedded in G,,....,, and G, .., becomes the generalized direct
product of H and D,,...,,,. Moreover HN D,,...,, = C, X +++ X C,,
where C; is the center of SL(n; C). Thus by Lemma 2.3 every
irreducible representation of G,,,...,,, is of the form

U(g) = a(d)Tl(gr) Koeee X T’r(gr) ’
for
g:dgi"'gr’deDnl ,,,,, n,,!gieSL(nin) (lé’bé/f')-

Recall that « is a character of D, .., and each T; is an irredu-
cible representation of SL(n; C) whose restriction to C; is a multiple
of a|;. In the case T; is the element T* of the nondegenerate
principal series of SL(n; C), U may be obtained by inducing a one-
dimensional representation o of K, .., according to Corollary 2.2
and Theorem 1.2; o is uniquely determined by the conditions

5 See [3] and [7] for a description of D3 and the decomposition of the regular re-
presentation.
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o] Duyyeeym, — & 0 | Du; = Xis

where D, is the diagonal subgroup of SL(n; C).

DEFINITION 2.5. The irreducible representation of G,, ..., defined
as above is called the element of the principal series of G, ..., corre-
sponding to o and is denoted by U~*.

REMARK. Again the one-dimensional representations of K, ...,
are determined uniquely by their restrictions to D,. Therefore the
elements of the principal series of G,,... are parametrized by
Z"*x R'. For each 4, 1 < ¢ <7, choose a fundamental domain
ﬁ‘;i of ZA)M. Let D; be the subset of D, consisting of those characters
whose restrictions to D, belong to ﬁni. Then it is easy to verify
that D} is a fundamental domain of D, corresponding to the group
G.,.....n, in the sense that it is a maximal subset of D, Awith respect
to the property: let p,, 0, be two different elements of D}, then the
corresponding elements U and U?: of the principal series of G,,......,
are not equivalent. Suppose such a set is chosen, we have.

PROPOSITION 2.6. The regular representation of G,,,...., can be

decomposed as follows: S oo U dp, where do ts the restriction of the

A
Dn

Haar measure of D,.

Proof. Using the decomposition of the regular representation of
SL(n;, C) recalled earlier and Theorem 1.2, we see that the regular
representation of H = SL(n, C) X «++ X SL(n,, C) can be decomposed

. g oo T# % +vs x Thdyy +-++dy,. Therefore the

as follows: S
D

A0
Dy n

regular representation of G,,....n; 18 equivalent to

I

Note that we have used the Theorems 1.1 and 1.5. Now by Theorems
1.1 and 1.2 we have

S coind  (T% x +er x T%)dyy +o dy, .
o,

0
K31

ind (T* X eee x TH) = iTnd (O X 200 X %) -
Gn

H1Gnj,eeym, Kpy X =+ X Kq,

Put H'=K, x +-+ x K, . Then it is clear that K, ..., is the general-
ized direct porduct of H' and D,,,...,,, such that

Dy, NH' =C, X <o+ xC,.
Put y =%, X +++ X %, Then we have by Theorem 1.1
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ind = ind (ind %) -

H' 16y, yn, Enjyoeon, 16ny,eyn, H 1Knj,.on,

By Corollary 2.2

ind ¥ = Al ind Loyx-xo,

H 1K ogyyeeen, CiX-XCp  1Dny,-eym,

Since C, x «++ x C, is a compact (in fact finite) subgroup of the abelian

group D, ...,

»

14 ’
, we can write® indy =%lw . S Adh, wWhere S
H' 1 Kny,,-n,

is taken over the set of all character » of D, whose restriction

to C, x +++ X C,is X|¢x.xo,» Thus

r

,,,,, np

ind y = g'x;,,, - Adn

H’TKn-,»‘,nT
’
= | odo

’
where g is taken over the set of all one-dimensional representations

of K,,,....., extending .

3. Restriction of the nondegenerate principal series to G,,....,
Before treating the general case, we consider a special case which is
itself the main step for solving the general porblem, namely the
restriction of the nondegenerate principal series to G,_,, .

THEOREM 3.1. Let Tz muiezmen) bhe qny element of the mon-
degenerate principal series of SL(n, C). Then its restriction to G,_,, ,

18 equivalent to ..., S S U Greesrkns op000) dooos da,,  where
U kwoknionno) 4s an element of the principol series of G,_,, and

Zg cee iis the summation-integral over the set of all
(kz’ “en, ]gn; Oy * oo, o-n) e 7* ' x R*t

such that (e +++, ky_y; Gz *++, 0,_) € ZA)SWl and >rk; = 37 m; (mod n).
Proof. Let Gy = {(¢i1)izi.52n [ 9in = 0, L= 1 = — 1},

By Theorem 3 of [4], T‘"z~%' |, is equivalent to some fixed
representation W, of G, if 3 *m; =1 (mod m). In fact, W, -+, W,_,
are all irreducible as indicated in [3]. Recall that Tz e~ is ob-
tained by inducing the one-dimensional representation (ms,, «--, p,) of
K,. Since the complement of G,K, in G has Haar measure zero ([3];

6 This can be one by using the Fourier analysis on abelian groups or by Corollary
1.10.
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[4]) and G,NK, = K,,_,, ,, we have by applying Theorems 1.3 and 1.1:

Tomartnd | g, = ind (m, «++, 0) |5, ,
( 5 ) Kp—1,1 TG
= ind Umeea)
Gpe1 164
Therefore,
n
(6) ind Utmefn) = W, iff 3, m; = ¢ (mod n) .
Gypa,1 TGy 2

Note that a direct integral whose components are all equivalent
to the same fixed representation is in fact equivalent to a multiple
of that representation. Hence (6), Theorem 1.1 and Proposition 2.6
imply that the regular representation of (G, is decomposed as
oW oo+ @ coW,_,. Therefore we can apply Corollary 1.10 and
get:

Wilsy= S [ oo do, .. o,

ligyeensky,

where > Sg in the summation integral over the set of all
(ks ++-, 0,) such that

(Foy =y Koper; G2y +++,0,_) € DO, and s ki =1= 3>, m; (mod n) .
2 2

COROLLARY 3.2.

(7) ind U %2ron) = Zm S ‘e g T ) do, ««+ do,

Gpe1,1 1€ Myyenes

where > S cee S 18 the summation integral over the set of all
(M, + =+, Oo) € D! such that Sem; = >2 k; (mod n).

Proof. Corollary 1.10 also gives the decomposition of ind,; .q W;
(the notation as in Theorem 3.1). This together with (5) give the
desired decomposition.

REMARK 1. Since G, ,_, and G,_, , are conjugate in G we also
get the decomposition of indg, ,_ 1o U™ °». It turns out to be the
same as that of ind, ,,U"» """, hence the two representations
are equivalent.

2. A fundamental domain as defined earlier is also a fundamental
domain of D, with respect to the action of the permutation group
(the Weyl group) on ﬁn. Since every permutation preserves >.*k;

-1,
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(mod n), dropping the restriction to the fundamental domain in the
right hand side of (7) amounts to repeat every representation occur-
ring there n! times. Therefore the left-hand side of (7) must be
replaced by #n! times of itself. This technique will be used often and
we shall not mention it explicitly again.

LEMMA 3.8. Let n=mn, + n, n, > 1. Let y = (my +++, m,;
Oz *+*y 0,) be any one-dimensional representation of K,..... Then

(8) indy = ZS K co Tk g, ++v do,

Kq,++-1,m1C

where the summation extends over the set of all (ks <+, k,) such that
S ki = 333 m; (mod n).

Sketch of the Proof. Ki...m = Di.mgeimy (KimCSLins + 1, C)
are embedded in G,....,, ,+: 8s usual) and K, ,, O D, ..., 5. N SL(n,+1, C),
hence Corollary 2.2 shows that
(9) ind Y= AT R ind XLl xing «

Kl,---,l,nzTGI,‘-',n2+l Kl’nZTSL(n2+1,C)

Theorem 1.1 shows that the left hand side of (9) is equivalent to
ind U+,

Glyeen, g TGL,en 1, mg+1

where U”* is the element of the principal series of G,,...,, ., determined
by x. On the other hand Corollary 3.2 (and its remark) and Theorem
1.1 give the decomposition of the right hand side of (9) into a
direct integral of some elements of the principal series of Gi,...,; s, 41
Therefore the Lemma can be done by using an induction on %,. The
detailed computation based on some change of variables similar to
that in Theorem 3.5 and will be omitted here.

Let us consider another special case where » = 2, i.e., n = %, + .
Since G,, ., and G,,, are conjugate in G ([3]), we can assume n, = n,.
The case n, = 1 is contained in Theorem 3.1, hence we can suppose

n, = 2. Put
(I,,1 0 )
S = ’
s, L,

where I,, I,, are unit matrices and

31:@9 92}”29

Ty My
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0 .1
S = 1'. ’
+1 0

the + or — sign is chosen so that s,e SL(n, C).

LEMMA 3.4. The complement of the double coset K,sG,, ., in G has
Haar measure zero.

Proof. It is known (see [3] and [4]) that every element of G
except those in a finite number of manifolds of lower dimension can
be written as kz, where ke K,, z€ Z, (the unipotent lower triangular

matrices). Put
(ZI 0 >
2=, ,
2z

where z;€ Z,, (i = 1,2). Consider

_ (c"zklz1 0 cG
7=\ o ek, mene

where k;e€ K,, and ¢ is a nonzero complex number. Then

¢k 0 ) ( z, 0
sg = .
0 ck;? g cmtm g k2 2,

For fixed z,, z,, we want to find k,, k, such that

(c“”Zkf‘ 0 ) (z1 0 )
sg =
0 cmk;t 2 2,

i.e., ¢mt™ g k2 = 2, i.e.

(10) cmt gk = 2.

L= (B,
0 k!
where k] and k" are upper triangular of orders =, and (n, — m,) re-

spectively. (10) is equivalent to

(11) e (ks kel ks k) = 227t

Let us write

It is easy to see that complement of

femtm (sl ky'sik) [ce C*; k), ke K, K is a myX (n,—m,)-matrix}
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in the set of all n, x n, matrices has Haar measure zero.” In other
words, for fixed z, and for almost all 2, the equation (11) and hence
(10) has a solution. Thus for almost all z, there exists ge@G,, ., and
ke K, . C K, such that ksg = z.

We can now apply Theorem 1.3 and get T*|q, , = indu g, X-

It is easy to see that H’' = G,,.,Ns™" K,s is the subgroup of all
matrices of the from

where 0;€ C*, and k is an upper triangular matrix of order =, — mn,
such that 62.--02 det k = 1. Since shs™ = h for every he H', ] is
simply the restriction of ¥y to H’. Put

r
K - Klw--,l,nl-—nz, Lyeee51 9

ny ny

and let L' be the subgroup of all matrices of the form

%, 1

O ) ot

where 0;€ C*. Then K' is the generalized direct product of H’ and
L’ such that H’' N L’ is the finite subgroup of L’ consisting of all
matrices of the above form with 6, = +1 or —1. By Corollary 2.2
we have

N

ind ¥ =% lar * ind Z|H’QL'

H' 1K' HNL'tL'

’
| S 2di 0

n
N

where S' is taken over the set of all Z e I such that 2 lwor = X | anze

Therefore

7 This can be seen by using a similar result for SL (n, C) proved in [3].
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. Pvd "~ ~

= S _hdh,
Ay

where A is the set of all one-dimensional representations of K’ which

extends ¥ and dx is the transform of the Haar measure of A,,, (viewed

as a locally compact abelian group) by the translation

A ks ME Ay N

is a fixed element of A;. In summary, we have by Theorems 1.1 and
1.5

T = ind ind ¥
'Gnl,wz K'TGnl,ng (H’TK’X)

(12)
= g ind » dx .
4

K, 1Gny,ny

Since K’ is also the generalized direct product of D, ., and
K. 1n-n, X D,, we can write by using Corollary 2.2 and Theorem 1.2:

(18) ind N = N\ p, ind Mk,

1272
K'TGnl,nz Kly0eey 1Lyny—ng 18SL(ny,C)

XA»p,, ind

R N 18L(ng, Q)

oy, -

It remains to apply Lemma 3.3 or Corollary 3.2 and carry out the
computations. We have

THEOREM 3.5. Let n = n, + Ny, Ny, 0, = 2. Then the restriction
of the element T ™% of the non-degenerate principal series of
SL (n, C) to G, .., 18 equivalent to

Z‘ S v g o) U(k2""'kn: T210030p) do‘z coe do‘n

Z’z" ki = Z;" m; (mod n)

where U%» o 4s an element of the principal series of G, .,

Proof. Using the explicit parametrization of the set A; occurring
in (12) we see that the restriction of T+ to G, ., is equivalent
to

(14) s SS ind by +++e0,) doy -+ doy s s

K 1Gay,my

where k, o ++*, ky; Oppisy +++, 0, depend linearly on k;, -+, k05
Oy *++, Opyyy by some simple formula. Put A = (ky, -+, k,; 0y + 2+, 0,).
Then Lemma 3.3 (or Corollary 3.2) and (13) show that:
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ind =X XY eee ) oo N T g
Doy smg

K'1Gny,ng

(15)
X T e T Az e e del, dT) g+ - dT)

where X’ extends over all (h, -+, h,) such that 31k = >k
(mod n,), and X" over all (k. -+, hy) such that 37 k= 37 .k
(mod n,). By Corollary 2.2 XDnl‘nz T s w5 T'have%0) is equivalent
to an element U™ of the principal series of @, ,, where
(hay +++, T,) can be easily computed in terms of 4! and z;. Using this
parametrization, (15) becomes

(16) ind A=Y S o.e g co Uheroin dry oo dr, dT, 4o+ dT, ,

K’ TGnl,nz

where 3 extends over all (hy +++, h,) such that
S, hi=3 k; (mod )
n1+1 N+l

nzih@ — N, Zn‘h%: ’nziki“ n, i ks

ny+1 ny1

a7

and

Thus applying Theorem 1.5 to (14) and taking (16) into account we
get
I (mgyeens0) IG,,L N ~ Z S'S . S
1 kgatetskpgty

oo TP n) dg, « oo d0n2+1dfz e dz'”ldz-nl_H eeedz, .
Fix ky, =+, kppery oy 2 #, By 04y +++, 0,,. Then the mapping
(sz *0 0y Ty Ongirs Tyvay °° %y Tn) = (TZ) ) Tn)

is a measure preserving homeomorphism of R*™* onto itself. Since
each component in the above decomposition is independent of
0, +++, 0, and the multiplicity is already everywhere infinite, the
decomposition itself is equivalent to

5 SS oo | oo U gy e dey

koo s kngt1
Now it is easy to see (ks +=+, Ky, hoy *+*, By) > (B2, =+ +, h,) maps the
set of all (ks «++, kupry oy =+, h,) satisfying (17) onto the set of all
(hyy ++-, h,) such that >.rh; = 37 m; (mod n).
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We now come to the general case. Let Di be a fundamental
domain defined in § 2.

THEOREM 3.6 Let n=n,+ +++ + 0, * = 2. In the case r =2
we also assume n,, N, = 2. Then the restriction of T '™» % to

Gopoon, 18 equivalent to X S S co Utz ? dg, «-- do, where
and X g ces S 18
the summation integral over the set of all (k, ---, 0,) e D: such that
Srk; = > m; (mod n).

»

Utz on belongs to the principal series of G,,....,

r

Proof. We shall use an inductionon ». Put m =n,+ <+« + 5,
Then G,,..., CG,.,.. Thanks to Theorem 3.5 it is sufficient to
decompose the restriction to G,,...,, of any element U’ of the prin-
cipal series of G,,,. On the other hand Corollary 2.2. gives

Ue = ‘olemr (Tﬂl X T:02)

where 0, = 0|4, 0= 0] K, and T, T are the corresponding
elements of the non-degenerate principal series of SL(m, C) and SL
(n,, C) respectively. Therefore

UP | Gnlv”, np = (0 | Dm,n, (TPL !Gnl,... L X Tﬂg) .

By induction hypothesis, T | Gnpreeimy is decomposed in terms of the
principal series of G,,.... _,, hence we have decomposed Uy,
in terms of representations of the form ¢|,,, (U’ x T*%), where U*
is some element of the principal series of G, ..., . In fact those
representations oceurring in the decomposition are elements of the
principal series of G,, ..., as seen easily by Corollary 2.2.

Again the detailed computation is based on some change of vari-
ables similar to that in the proof of Theorem 3.5 and will not be
repeated here.

COROLLARY 3.7. The restriction of every element of the non-
degenerate principal series of SL(n, C) to SL{n,, C) X -++ x SL(n,, C)
is equivalent to the regular representation.

4. Application to the decomposition of some tensor products.
It is known that the character of D, .., is parametrized by
Z™'x R Let X = (ky, +++, 0,) be such a character, then Y extends
in an obvious manner to a one-dimensional representation of the sub-

8 See [3] for an explicit description and the proof of the irreducibility of the de-
generate principal series.
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group H, ..., consisting of all block matrices g = (¢5).<: ;< such that
g;; = 0 for © > j. More explicitly

X(9) = det(gs, )z [det g, o[ « - - (det g, )5+ |det g, , [T,
for g = (9:,)) € H,,......,- This representation induces to an irreducible
representation of G® belonging to the (n,, ---, n,)-degenerate principal

series of G and denoted by T* Let T* be any element of the non-

degenerate principal series. The problem is to decompose T*® T*
into irreducible repesentations of G. Since H, .., D K,, the com-
plement of the double coset K,s,H,, ..., in G has Haar measure
zero.” Recall that

S0 = " |eSL(n, C) .

It is clear that K,NsH,, ..5" =K, Put y'(k) =
x (k)X (si'ks,), for ke K, ..,. Theorems 1.4 and 1.1 give us

(18) TR T% = ind y = ind U* .
16

Eopipyeenymy Cppyereyny 10

LemmaA 4.1, Let n = n, + «++ + n, be as in Theorem 3.6. Then

(19) ind Umeorn = zg S oo T dg, +++ do,
G

Gongyeveymy,

where 2 S g is the summation-integral over the set of all

(feyy +++,0,) € ﬁﬁL such that ek, =S m; (mod ).

Proof. Corollary 1.10 together with Theorem 3.6 prove that (19)
is valid for every m,, .-+, m, and for almost all o, --+, 0, On the
other hand, let H; .., = sH, ... ;' DZ, Then the complement of
H, .., +K,in G has Haar measure zero. Thus by Theorems 1.3
and 1.1:

ind Umerpa) o= T moroen) |,
71

N
’ REERY
Gnyyeenyny THnug,eon,m,

On the other hand

(Mmgyeeey0,) ~ (mb,eeey00)
T My 0y, ‘Hfﬂ =~ Tmzy n !H;”

if and only if >\ m; = S:L] m} (mod n). This equivalence can be proved

by using a slight modification of the proof of Theorem 3 of [4].
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Therefore

ind U(mgv""pn) =~ ind U(mér"';P;L)
Gnyyeeryn, 16 Gnyyeenyny 16

if and only if 37 m; = >» m] (mod n).

THEOREM 4.2. The tensor product of an element T ™+ of the
non-degenerate and an element T %20 of the (n, +++, n,)-degenerate

principal series of SL(n, C) is equivalent to ¥ S SeT‘hz"""n’ drz,

e dz, where 3 S «eo \ is the summation-integral over the set of all
(Bay *+ %y b Toy » 2+, T € DY such that 33 b = 32 my + 33 mik; (mod 7).

The multiplicity ¢ = « if (@) » >2 or (b) »r =2 and =, n, = 2.
Otherwise ¢ = 1.

Proof. It is enough to apply Lemma 4.1 in the first case (6= <o)
or Corollary 3.2 in the second case (¢ =1) to obtain the decomposition
of the induced representation occurring in the right hand side of (18).

In the special case » = n, T %>~ is another element of the non-
degenerate principal series and hence

COROLLARY 4.8. The tensor product T ™z 2 & T ko of two
elements of the nondegenerate principal series of SL(n, C) can be de-

composed as follows: X S oo SeT‘”z"""n’ dt,-+-dr,, where 2 g S

is the summation-integral over the set of all (hy <+, r,) eﬁﬁ, such
that 2 h;= 2 (m; + k) (modn), and e=1 4f r=2, €= co 4f
r> 2.
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