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This paper studies the matrix equation f(Z)=D+ AJ
where f is a polynomial, Z a square (0, 1)-matrix, D is diago-
nal, 2+ 0 and J is the matrix of ones. If Z is thought of
as the incidence matrix of a digraph G, the equation implies
various path length properties for G. It is shown that such
a graph is an amalgamation of regular subgraphs with simi-
lar path length properties, Necessary and sufficient parameter
conditions on the matrix Z are given in order that it satisfy
such an equation for a fixed polynomial f and all non-regular
digraphs corresponding to quadratic polynomials f are found.

1. Introduction. The concept of the polynomial of a graph
was introduced by Hoffman [3] for regular, connected, non-oriented
graphs, and discussed by Hoffman and McAndrew [4] for regular
directed graphs. If A is the adjacency matrix of such a graph G, the
polynomial of G is taken to be the polynomial p(x) of least degree
with p(4) = J, the matrix of ones. In extending this notion to non-
regular, directed graphs we are concerned with the matrix equation

1.1) f(Z) =D +\J

where f is a polynomial, Z a square (0,1) matrix, D a diagonal
matrix and A # 0. Given (1.1) the conditions: (a) Z has constant row
sums; (b) D is a scalar matrix; (¢) Z has constant line sums; and
(d) The graph of Z is regular; are easily seen to be equivalent. The
regular case of (1.1) embraces such studies as the (v, k, \)-problem
[7], (m, k, \)-systems on k and k& + 1 [1], Moore graphs [4], strongly
regular graphs [9, 10, 11, 12] and even the algebraic studies of central
groupoids and universal algebras }2], [6].

In [8] Ryser opens the non-regular question by considering (1.1)
with f(x) = 2% and finding all nonregular solutions.

The case in which f of (1.1) has degree two is particularly inter-
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esting. Here we are studying directed graphs with the feature that
there are constants g, g, so that for distinet points p;, p; the
number of directed paths from p; to p; of length two is g, or g,
depending on whether or not there is a directed edge from p; to p;.
For example the digraph G of figure one has this property with g, =
1, #,=2. Its adjacency matrix is given by

0111
1010
T1001
1100

satisfying
Z*+ Z = diag (1, —1, —1, —=1) + 2J .

It is easy to see how various graph theoretic properties expressi-
ble in terms of path lengths can be reflected in (1.1) by suitably
choosing the polynomial f.

In the next section we give a general structure result for matri-
ces satisfying (1.1) showing them to be an “amalgamation” of regular
solutions to similar equations. We refine this structure result by
considering certain special polynomials f(x). Finally we determine
all non-regular quadratic graphs, i.e., those whose adjacency matrix
satisfies (1.1) with f a quadratic polynomial.

Throughout J will denote a matrix of ones, I an identity matrix
and subscripts on these symbols will denote their orders when neces-
sary.

2. The structure of f-graphs. Let G be a directed graph (loops
allowed) on = vertices {1, ---, »} with adjacency matrix Z=(2;;)(z;;=
1 if there is an edge from ¢ to j and z;;=0 otherwise). Further let
f be a monic polynomial with f(0) = 0. We say that G is an f~graph
or that Z carries an f-graph if there is a diagonal matrix D and a
number )\ = 0 so that

2.1) f(Z)y=D+\J.

We shall sometimes say, for Z with constant line sums, that Z
carries a degenerate f-graph if f(Z) is a scalar matrix.

Let Z; be a square (0,1)-matrix of order n; for ¢ =1,2, ++-,¢
and n = >,i_, n;. We define the complementary direct sum (c.d.s) of

the matrices Z; by

2.2) cds(Zli=1, ) =Jo— SO, — Z)
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where 3 @ denotes the usual direct sum.

Finally since evidently for P a permutation matrix with trans-
pose P? the matrix PZP* will satisfy (2.1) if Z does we define 4
and B to be equivalent, A = B, if there is a permutation matrix P
so that A = PBP!. The relevance of these definitions will be clear
from the following theorem.

THEOREM 2.1. Let Z be a (0, 1)-matriz of order m. Suppose Z
carries an f-graph. Then we have

2.3) Zz=cds. (Z]i=1,+4,1)

where the matrices Z;, of order m; have constant line sums r; with
Tri — Ny FE r; — 0y for 1% § and each Z; carries an f-graph (possibly
degenerate).

We delay the proof of this elementary observation as we can say
considerably more. We only state Theorem 2.1 in order to put the
next theorem in proper perspective.

THEOREM 2.2. Let Z; be a (0, 1)-matriz of order n; with constant
line sums r; for i =1, - t. For i+ j suppose r; — N; = r; — N;.
Put
(2.4) Z=cds.(Z;]1=1,2, +++,0)

(2.5) Tig = (r; — n)0; +m; (5,7 =1, 4,0

(0;; denoting Kronecker’s delta) and
(2.6) R = (ry) .

Finally left f be a monic polynomial of degree at least two with
f(0) = 0.

Then Z carries an f-graph if and only if there exist constants b
and » with = 0, and numbers d;, N; (1 =1, +++, t) so that

(2.7) di=Mr;— ) +b (@E=1,..-%
(2.8) Z)=dIl+N\J,, =1, 0
and

2.9 f(R) =\R + 0bI.

We proceed to prove both theorems. It follows from (2.1) that
Z commutes with D 4+ \J if Z carries an f-graph. Denoting D =
diag (d,, +++, d,), the row sums of Z by p; (¢ =1, -+, n) and the
column sums by 0;(j =1, ---, n) this fact may be expressed as
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(2.10) zii(di — d;) = Mo; — 0) .

We thus have p,=0; and if we permute the rows of Z so that rows
with equal sum occur together and then perform the corresponding
column permutations we obtain PZP® with say rows 1,2, .-+, n, of
equal sum and then rows =, +1,n, + 2, -+, n, + n, of equal sum
etc. Let Z; denote the principal submatrix of PZP*’ on the lines
iy + 1, oo, myy + n; (0, = 0). We assert that no entry of Z outside
one of these Z; can be a zero for then from (2.10) we have p;=0;=
o; contrary to our grouping of the rows. Thus we have established
(2.3) where ¢ is the number of distinct row sums of Z. It is im-
mediate that Z; of order =, has constant line sums say r;(i=1, <+, ¢)
and that »; — n; # »; — n; for ¢ # j since p; = r; + n — n;.

We now deal with Z in the equivalent c.d.s. form and take t >1
lest Z be regular. Note from (2.10) that the diagonal matrix D has
different entries in positions corresponding to different blocks Z;. It
is further clear from (2.10) that the entries in D in positions corre-
sponding to the same block Z, are the same. We therefore revise
our notation so that d,, d,, ---, d, denote the distinct diagonal entries
of D, d; occurring n; times. Then (2.10) says that the points (d;, r;—
n;) for 1 =1,2, --., ¢t lie on the line y = A2 + b for some constant b.
[Note it is the choice of normalization (f(0) = 0) which brings the
constant b into play. We could, of course, force b = 0 by altering
the constant term of f(x).]

We now investigate the powers of the matrix Z in c.d.s. form
and assert that in block form, the (¢,7)™ block of size n; x n; we
have

(2.12) ZF=[By] (i,5 =1, -, ¢
where
(2-13) Bij = aijZik + gé’;)Jnanj .

The numbers g{¥ are given by

(2.14) g =0, g =1 for ¢
and for £ > 1
t
(2.15) gi¥ = Z ngh" + (s — gl + i (1 — 0y) .

This claim is easily verified inductively.

We introduce the following notational convention: If o(x) =
S, bt is a polynomial in 2 and a® is a symbol in use with super-
scripts then by p(«) we will mean the expression p(a) = S, ba®,
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using the iterates of « in place of the powers of x. Then from
(2.12) — (2.18) we have

(2.16) fZ)=[Cl G3=1,++,1)
C;; being an n; x m; block given by

2.17) Cii = f(Z) + Jg:dd., G=1, -+, )
(2.18) Cis = (@) nyxn; v+ (4,5 =1, -2+, 0) .
with

(2.19) GP =(9i7) (4,5 =1,-+,0)

we see that the structure of f(Z) depends on the matrix F@. We
note, however, from (2.16), (21.7) that if Z carries an f-graph

£Z) + flgi)., = & + \J so that
fZ) =dI+ (»— fA(gi'i))Jni

and the Z, carry f-graphs, degenerate should \ = f(gﬁ). We have
thus completely proven Theorem 2.1 and continue with the necessity
in Theorem 2.2 where we have already established (2.7) and (2.8).
To obtain (2.9) we proceed to observe that the recursion (2.24), (2.15)
can be written: GY = J — I and for k > 1:

(2.21) G¥ = RG* + (J — I)F*

where F = diag (r,, ---, 7). We obtain an explicit formula for G*
as follows. Let K = diag (1/n,, ---, 1/%,) and consider

(2.22) H® = [R*— FYE, k=1.

We claim that H® satisfies the recursion (2.21). For £t =1, HY =
GY =J — 1. Now for k> 1 we have:

RH%™ 4 (J — )F** = [R* — RF*|E + (J — )F*~
S¢]
RH*™ 4 (J — [)F*"* = R'E — (R — (J — DE")F*~E .

But R— (J—I)E*=F so we have RH*? 4 (J— )F*' = [R* —
FYE = H%, Thus H® = G* and

(2.23) @) = [A(R) — AFIE .

Now if Z is carrying an f-graph the off-diagonal entries of f(G)
are all n. Thus the off-diagonal entries of f(R) are given by

(2.24) SR ;= (L#754,5=1,--+,0.
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From (2.20) we see that

fr) =d; + (M — f(gii))ni
so that

(2.25) Flg) = LB = Fr) _ ds + Wi — fr9)

n; n;
Since d; = \Mr; — n;) + b we have
(2'26) f(R)ii =d;+Mm;=Mm;+0b,

and (2.24) and (2.26) establish (2.9).
As to the sufficiency of (2.7) — (2.9) we need only note that

(2.23) is a valid expression for any polynomial f and that using
2.7), (2.8) with

F(@ = [MR + bI — f(F)IE
we see f(()i; = flgi) =N (i # ;4,4 =1, -+, t) and

Fgn) = Mt b= fer) _ ds + M — fr)
* n; n;

so that in view of f(r;) = d; + n\
FZ) + Flgi)d = dil + N .

This completes the proof of Theorems 2.1 and 2.2. An immediate
corollary of these results is that we may define the notion of the
polynomial of a directed graph if the graph is an f-graph for some f.

COROLLARY 2.8. Let Z carry an f-graph for some f. Then there
exists a unique monic polynomial P,(x) with P,(0)=0 of least degree so
that Z carries a P,-graph.

Proof. Let g(x) and h(x) be two such polynomials. Suppose
9(Z) =D + N, MZ) = H+ pJ
D, H diagonal A s 0, £ 0. Then since
(9—MZ=D-H)+N—-pJ

evidently Z carries a degenerate (g — h)-graph, i.e., A = g#. But for
suitable constants b, ¢ we have d; = \r;—n;) + b and h;=p(r;—n;)+c
so that D — H is a scalar matrix and since surely g and % have
degree less than that of Z’s minimal polynomial and ¢(0) = 2(0) = 0
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we have g(x) = h(x).

Professor Hoffman has observed that the condition that Z carry
an f-graph for some f can be expressed in terms of the spectra of
the matrices Z; of (2.4) and that of the parameter matrix R of (2.6)
as follows. For n; > 1 delete from the eigenvalue set of Z; the line
sum 7; if Z,; is irreducible and call the resultant set 4;. Let 4, be
the set of eigenvalues of the matrix R. Then Z carries an f-graph
for some f if and only if

AinAj: ¢ fOI‘ all ’ni,n]’>1, ’iij, ?:,j: 0’1-..’t.
To see this one need only observe that the congruences

f(x) = d; mod m,(x)
flx) = Az + bmod g(x)

(where 7;(x) is the minimal polynomial of Z; with (x — »;) divided
out in case Z; is irreducible and g¢(x) is the minimal polynomial of
R) are satisfied by f so that the a;(x) and ¢(x) cannot share roots.
Note that for ,(x) and g(x) one needs the fact that »,—n; = (d;—b)/»
is mot a root of g(x). The converse statement is also quite immediate
in view of Theorem 2.2.

We shall call the matrices Z; (or the obviously associated sub-
graphs ;) in the c.d.s. form of Z the regular constituents of Z. So
Z is regular if it has one constituent and we will call Z near-regular
if it has precisely two regular-constituents.

Now the parameter matrix R (2.6) is readily seen to be similar
to the symmetric matrix

(2.27) S = diag (r, — n;, < ++, 7. — n) + (V'0i0;5) .
Indeed
R = E'*SE-

where E = diag 1/n,, ---+, 1/n,). Easily for the (r; —n,) distinct the
matrix R has ¢ distinet real characteristic roots, and that precisely
one of these roots is positive. Now if Z carries an f-graph we have
f(R) = MR + bl so that the minimal polynomial (= characteristic poly-
nomial) of R divides f(®) — xxz — b. We thus establish

COROLLARY 2.4. Let Z carry an f-graph with t regular con-
stituents. Then t < degree f, and, if equality holds, f(x) — Az — b 1s

the characteristic polynomial of R.

The case of equality may occur. For example the matrix
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o
RO -
S O
S O - oM

has 38 regular constituents and its polynomial is #* — x* — 4x. How-
ever with various restrictions on f(x) we can make stronger state-
ments about the number of constituents of an f-graph.

COROLLARY 2.5. Suppose f(x) is an even polynomial with non-
negative coefficients. Then a non-regular f-graph is near-regular.

Proof. For suitable A > 0 and b we have that ¢(x), the charac-
teristic polynomial of the parameter matrix R, devides g(x) = f(x) —
ae — b, But g(—z) = f(®) + A2 — b so that g has at most one nega-
tive root. However q(x) has ¢t — 1 negative roots. Thus ¢t < 2.

An interesting class of polynomial graphs are the x"-graphs in-
vestigated by Ryser [7] for » = 2. These graphs have the feature
that the number of paths of length 7 joining any two distinct points
is constant. The preceding corollary shows that for + even such
graphs, if not regular, are near regular. This property extends to
all z"-graphs.

COROLLARY 2.6. A mnon-regular x"-graph (r = 2) is near regular.

Proof. Again g(x) = f(x) — xx — b= 2" — Az — b must have at
least ¢ distinet real roots, where ¢ is the number of regular con-
stituents of the graph. But ¢'(x) has at most two real roots so that
t <38. The following argument suggested by Professor Hoffman
shows that ¢+ 8. Suppose t=38. Then ¢(x) = 2* — ax® + ht— 4 where
a=7+ 1+ 1y h= D4 ra; — nm;) and 4 = det R, is the charac-
teristic polynomial of R. Easily ¢ >0, h <0, 4> 0. Since q(x)
divides f(x) — Mz — b we may write

2.28) (x'—xz—b)=@—ar*+hx—DHEE>+ax "+ +a,x+a,).
Equating coefficients in this identity we obtain

a,—a=20

as— aa, + h =0

s — ady + ha, — 4 =10

Qjrs = QQjye + by, — da; =0 A =j=r—3).

(2.29)

The relations (2.29) imply for 1=4, ---, » that ¢,>0. Now equating
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the coefficients of x* we obtain the contradiction
—aa, + ha,_, — da,_, = 0.

Of course r = 3 implies a = 0.

We remark that the existence of a non-regular x"-graph on more
than two points r > 2 remains in question.

Suppose one constituent of an f-graph is a (looped or unlooped)
point. Then we shall refer to the graph as a (looped or unlooped)
cone. For example let K, denote the full (looped) directed clique on
a vertices. Take some number say m > 1 of copies of K, and form
the looped cone over this graph with respect to an additional point.
The resulting graph is a non-regular (x* — ax)-graph. We shall in
fact see in the next section that with one exception all non-regular
quadratic graphs are cones.

3. Non-regular quadratic graphs. In this section we determine
all non-regular f-graphs for f(x) = 2* — ax. We characterized these
graphs in the introduction in terms of path lengths. From Corollary
2.4 we know such graphs are near regular. Our first observation is
that there is precisely one such graph which is not a cone.

THEOREM 3.1. Let Z carry a non-regular quadratic graph which
is not a cone. Then
10111
01111
(8.1) Z=11001
11100
11010

and carries an (x* + x)-graph.
Proof. Let Z,, Z, of orders =u,, n, and line sums », and r, be

the regular constituents of Z and suppose #;>1 (1=1,2). We
note from Corollary 2.4 that

3.2 P+ res=N-+a.

We first remark that neither constituent can be J — I. For suppose
r,=mn, — 1. Then from (8.2) r,=X +a — n, + 1 and we have

_ @) +nJ| N
(3.3) A e VAR

So with Z, = J — I we have
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n+n—a—2=x=r,—a+mn —1

which forces n, — 7, =1 = n, — r, implying Z is regular. One can
similarly eliminate Z, = J for m, > 1. Consider next the possibility
Z, = 1. From (3.2) and (3.3) we have

A=n=14+7r—a
so the constituent Z, satisfies
Zi+ (Mg — vy — 1)Zy = [(ny — 1)(ry — Ny) — NJL + Ny
where N\, = m,— n, and the coefficient of I is determined by equating
line sums. Since the elements of Z? cannot exceed 7, we have
(M, — D)(r, — X)) < (, — 1) with r», = A,

If »,=N,+1 we have r,=n,— n, +1 whence r,—n,=1—mn, =
r, — n, and Z is regular. Thus », = A, and trace Z, = 0 with

(3.4) Z2 4+ (g — 1 — V= 1] — I) .

Now row 4 and column 7 of Z, are different while z;; = 0 forces row
7 equal column j. Hence there is at most one off diagonal zero in
any row of Z, and r,=n,—2, a = —1. It is then almost immediate
from (3.4) that », =1, n, = 3 and

001

Z,=100.
010

Then \,=n,—n, =1 so n, =2 and we obtain (3.1). We-now suppose
neither constituent is a point, J — I or I and assert:

N+ nt+a—2r + n) =0

(3.5) .
N+n+a—2r,+n)=0

This can be seen by considering (0, —1)-matrix Z — J. The
quantities (3.5) are off diagonal entries in f(Z — J) and for Z;, = I
these entries are nonnegative. But in view of (3.2) adding the entries
in (3.5) gives zero.

Thus
" At = ta M+t
= =
2 2
(3.6)
AT+ a Mt a
e = 2 - 2

where N, = N+ n; — n, f(Z) = d.J + NJ (see 3.3). Now f(r) = d; +
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nh; gives d; = (r; — N)(n; — r;) and if Z;, has a zero in diagonal
position we can assert that d; + »; £ r,. Whence

(r; — N)(ms — 1) < (ri — M),

forcing »;, = »; and a = N\, — n; = r; — n,. Thus Z is regular unless
trace (Z;) = m,. But in that event we have d; + \; + a < »; which,
viewed with (3.6) implies d; < n; — 7; or

(3.7) (ri — N — 1) = (0 — 1)

Hence r; = N, M; + 1. From (8.6) if we are to avoid », — n, =
r, — n, we conclude 7, =\, r, =N+ 1 with a = »r, — n,=r,— n, + 1.
Now (8.3) and (8.2) imply »=M+m=N+n=7 + 7 —a and
hence a =9, — n, +1 =, — n, which contradiction completes the
proof.

As all remaining non-regular quadratic graphs are cones they
fall naturally into two classes: looped and unlooped. We determine
these classes separately in the next two theorems.

THEOREM 3.2. Let G be a non-regular (x* — ax)-graph which 1s
the looped cone over G, carried by the matrix Z,. Then one of the
following holds:

(i) a is a positive integer and

(3.8 Z, =3 D, .
(ii) a=1 and

110

3.9 Z, =011

101

(3.10) (i) @ =0, Z = 0.

Proof. The matrix Z, with line sums », must satisfy
(3.11) 2P —aZ, =dl+ (r, — a)J

with d, = (r, — n)(r, — a) [See (3.3)]. Note here that if »,=n, — 1
then Z, = J — P for P a permutation. Now (3.11) will force n, = 3
and P carrying either of the cycles (123) or (132) yielding (3.9) of
the theorem or n, =2, a=1 of case (i) — (3.8). Hence we take
1<r,£n,—2. We must have 7, = a since r, < a implies d,+(a,—a) > 0
and the entries of Z? do not exceed »,. We further assert that r»,=a
only for the family (i) of the theorem for here Z? = rZ,.

Quite generally from (3.11) we see that z;; =1, ¢+ j, implies
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row ¢ equal to column j. Further if some z;; = 0 we have
d+r—a=w—n+Dr —a =0,

and since », = @ we must conclude that », =a and obtain the family
(i). The remaining candidates for Z, have trace n,. If for some i,
row 7 and column ¢ are equal then evidently d, =0 and 7 =a
again. But we still have that row 7 and column j are indentical if
z;; = 1 for 1 = 5. To avoid an occurrence of row % equals column ¢
easily , = 1,2. In the former instance Z, = I (of family (i)) in the
latter since 7 == 7 and z;; = 0 forces row ¢ and column j to meet in
a 2-a positions we deduce that a =1, n, =3 =1r,+1 and we have
case (ii).

Finally we treat the case of a non-looped cone. There are several
such graphs as the next theorem shows.

THEOREM 3.3. Let G be a non-regular (x*—ax)-graph which is a
non-~looped cone over G, carried by Z,. Then one of the following holds.
(i) a=0 and Z, is a symmetric permutation matriz or Z, =0.
010
(iil) a=—-land Z, =001
100
(iii) a =2 and
11110000)
11000011
11110000
00111100
00001111
00111100
11000011
00001111

(iv) a= +1 and Z, is equivalent to one of the following six
matrices:

10110 011100 0111000
01011 110001 0101100
(a) 10101 () 011100 () 0110001
11010 001110 0011010
01101 100011 1000101
100011 1000110

1000011
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111000 1111000 111100

110001 0110011 110011

001110 0011110 111100

@ 100101 @ 0101101 P 001111

011010 1100110 110011

000111 1001011 001111
1010101

(v) a+ 2 is a positive integer and

Ja+2 0a+2, a+1

@ Z, =30~ 1. or (b) Z, =

PR Y e P

0a+2 Ja+2,a+1

Proof. We have
(3.12) i —aZy=dl+ (r,—a—1)J
with
@313 di=(r—ar—n)+n=0r—a—1)r —mn)+nr

using (3.3) and f(r) = d, + n.(r, — a—1). We note that r, =1 easily
gives a = 0 with Z, a symmetric permutation or ¢« = —1 with Z,
carrying either of the three cycles (123) or (132). We also note that
the preceding Theorm 3.2 finds all candidates here with trace zero.
For then W = Z + I carries a non-regular (¢* — (a + 2)x)-graph with
a looped point as one constituent. These observations give cases (ii)
and (va) of the present theorem as the only Z's with trace Z, = 0.
We further remark that Z, = J and that the examples (va) are
characterized by », = a + 1. For in this case d, = r, and Z*?—aZ, =
(¢ + 1)1, so that if Z, has a diagonal entry equal to one a cannot be
positive since the entries of Z? do not exceed ¢ - 1. Thusa=0,r=1
discussed above, or ¢ = —1, Z, =0, case v with a = —1. The re-
maining possibilities have trace Z, = 0 and are also discussed above.
We have to consider then trace Z, positive and easily here:

(3.14) a+l<r<n —1.
We first suppose some Z;; = 0. With Z? = (Q,;) we have
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(3.15) Qu=r—a—Dr —n+1) +7r.
But surely », — Q; < n, — r, — 1 so that (3.15) implies
(3.16) n—-—r—-—Dr,—a—-1D=Zn—-7r—1).

Thus »,=a + 2 and we may suppose a = 0. Now (3.12) will become

(8.17) Z:—aZ, =2+ 2) —n]I+ J.
Take
a+ 2
0j1——1,0——0
(3.18) Z, = B * }a + 2
1
1, .
1

The matrix B of (3.18) has column sums (¢ + 1) and so contains
(¢ + 2) zeros. Thus B has a row with at most one zero. This row
will meet any column of B in at least a positions. If this row has
a zero in an off-diagonal position we have ¢ = 0, 1. If this row has
its single zero on the diagonal, say b, = Z,, = 0 then Z, =1 so that
row 2 of Z, can meet column 3 of Z, in the proper number of positions
s =1=>Qy=0a+1). But then @, =a+1=2a+4—mn, so n =
a -+ 3 and Z would be regular with », — n;, = —1. Thus unless B
has a row of all ones ¢ = 0,1. We consider the case that B indeed
has a row of all ones.

Placing this row initially in B and maintaining equivalence a
look at row two and column one of Z, gives n,=2(a+2), Z!—aZ, =J.
Recall we are avoiding a row in B with precisely one zero, so that
B has a row with at least two zeros. This row in Z, has a one in
its first position and by checking the row and column through its
off-diagonal zero we see this row in B has at most one nonzero entry.
This row accounts for at least a + 1 of the zeros of B. Were the
remaining zero not in this row we would have a row in B with pre-
cisely one zero. Thus B has a zero row and all other rows are full.
This gives Z, the form of case v.

We are left with the cases ¢ = 0,1 and note from (3.17) that
4<n =7 With a=0, n,=4,5 and n, =5 gives trace (Z) =10
while n, =4 gives (vb) with a = 0. The choice a =1, n, =5 is
easily eliminated and, for n, = 6, one obtains (4vb) and (vb). Finally
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with n, = 7 the matrix (iwc) is obtained after some work.

As this discussion was on the assumption of some z;; = 0 we are
left to investigate those Z, satisfying (3.12), (3.13) and trace Z, =
n,. To that end we investigate W = Z, — I. Evidently

(3.19) W+ @-—a)W=(d+a—DI+ (@ —a—1)J.

Let S=»r — 1, the line sum of W. Consider the principal sub-
matrix B of W through the columns with ones in row one. This
S xS matrix B has column sums S — 2 and trace zero. So B has a
row with sum at least S—2 and this row will meet the corresponding
column of B in at least S — 3 positions. Thusd, + S—1=S — 3or
d,= —2. Since d,>1 would force corresponding hits in W to exceed
S we deduce

(3.20) —-2=5d, 1.

Now with d, = —2 we have that B has line sums S — 2 and row 1
of B hits column 7 of Z for 2<+< S+ 1 in a minimum of S — 3
positions. Since now d, + S — 1 =S — 3 we conclude that column
one of Z has zeros in positions 2 through S + 1 forcing row 1 to
miss column 1 and d, +-s—1=0 so S=3. One then easily eliminates
a=0and a =3 and a =2 forces W* = J—1I of order 10. But J—1T
of order 10 has a negative determinant, so we are left with a = 1,
n, = 7 and the matrix IVe pops up unique to within equivalence.

We proceed with the cases on d, according to (3.20). If d,=-1
(3.19) becomes

(3.21) W2t 2—a)W=(a—2)I+ (S— a)J
with
(3.22) nm—-—S—1DIS—a=S+2.

The eigenvalues of W are then S of multiplicity one (S+*a so W
is irreducible) and then the roots of 2*+ 2 — a)x + (2 — a) = 0.
These roots are (@ — 2) = V'a® — 4)/2. For a # 2 these are irrational
or imaginary so that trace W = 0 means n, is odd and

S+ﬁ€im~m=0.

Then o =0,1 with S=ux, — 1, n, — 1/2 respectively. The former
gives Z, = J earlier eliminated and the latter is incompatible with
(8.22). In case r =2 we have W*= (S — 2)J. The eigenvalues of
W are then S and 0 denying trace W = 0.

The case d, = +1 is similarly eliminated as follows. The eigen-
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values of W other than S are

a—2+1Va+4
2 .

For a=0 these are not rational. Hence #, is odd and S+ (n,—1)/2(a—2) =
0, yielding a=1, S=(n,—1)/2. This is incompatible with S*+(2—a)S=
d+8S—1+4+ @ —1)(S—a) unless S=2,n, =5, W2+ W=+ J),
yielding the matrix (iva). In case ¢ =0 we have W2+ 2W = SJ,
S2+2S=nSs0o S=n—-2, r,=mn,—1 and Z is regular.

The final case is d, = 0. Here the above techniques fail as the
spectrum of W is {a — 1, —1, S} with appropriate multiplicities. So
consider the structure of W:

S
A
olt .. .1lo- - -0
1[0
W= (B . a ¢
1
(3.23) 0 0
1/1..-100[010---0
0 € .
0 0

It is not difficult to see that W has the structure of (3.23). The
(S + 2)rd row being obtained by considering its inner product with
column one. Now investigating this row and column S + 1 recalling
that B has column sums S — 2 we have

(8.24) l474+e=8S—a.

Where ¢ =0,1, =8 — 2, §— 3 depending on whether a is zero
or one. In any case (3.24) shows a¢=0,1,2. From our remaks about
the spectrum of W it follows that if a =0 n, =S 4+ 1 and Z, = J*
If a=1 we have W?+ W= (S~ 1)T so 8* + S = n,(S— 1) yielding

(3.25) S=m -1 +vV(n —3°—8
2

From (3.25) and the fact that S is a nonnegative integer with S<n,—1
we conclude that n, =6, S=2,3. These parameters give cases (ivd)
and (ivf).

1 M(W)={S, ~1,a — 1}, if m is the multiplicity of ¢ — 1= —1 we have S —
m—(mi—m—1)=0o0r S=mn—1.
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Finally for ¢ = 2 we have
W2=1+ (S— 2)J with §? =1+ n,(S — 2)

or

(3.26) S = n, * 1/(?21 — 4)2 — 12 .
2

Then (3.26) forces n, =8, S =3,5. In case S =3 one obtains
the matrix (iii) and the case S =5 violates a < n, — S — 2 easily
seen to be necessary from (3.23) since the matrix C has column S—a.

We remark in conclusion that the various matrices in Theorem
3.8 are easily seen to be non-equivalent by considerations of parameters
and trace.
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