BIHOLOMORPHIC MAPS IN HILBERT SPACE HAVE A FIXED POINT

Thomas Lee Hayden and Ted Joe Suffridge
The results in this paper reveal a dichotomy in regard to the existence of fixed points for smooth real maps and biholomorphic maps in Hilbert space. Kakutani has shown that there exists a homeomorphism of the closed unit sphere of Hilbert space onto itself which has no fixed point. A slight modification of his example shows that there is a diffeomorphism having the same property. Our results show that in the complex case every biholomorphic map of the unit ball onto itself in Hilbert space has a fixed point.

A function h defined on an open subset D of a Banach space into a Banach space is called holomorphic in D if h has a Fréchet derivative at each point of D. Standard results about holomorphic maps may be found in [4]. By biholomorphic we mean a holomorphic map with a holomorphic inverse. It is a known result that in C^n an injective holomorphic map is biholomorphic. The corresponding result does not seem to be known in infinite dimensions even assuming the range is an open set.

Our proofs make use of some results obtained recently for holomorphic mappings in Banach spaces. One knows that in the plane every bijective holomorphic map of the unit disk which takes zero to zero is given by a rotation. In Hilbert Space the analogous result is that every biholomorphic map of the unit ball onto the unit ball which leaves zero fixed is given by a unitary operator. This result follows easily from the work of R. S. Phillips [6]. Also L. Harris [3] has obtained more general results in this direction. Our result is the following theorem for a complex Hilbert space H.

Theorem: Suppose $B = \{z \in H: \|z\| < 1\}$ and h is a biholomorphic map of B onto B. Then h is biholomorphic in a larger region, maps \overline{B} onto \overline{B}, and has a fixed point in \overline{B}.

In § 2 we give a proof of the above result and in § 3 we show that the fixed points are either isolated points or the fixed point sets are affine subspaces.

2. **Proof.** Let H be a complex Hilbert space and

$$B = \{z \in H: \|z\| < 1\}.$$
LEMMA. (Phillips, Harris) If T maps B biholomorphically onto B and $T(0) = 0$, then T is unitary.

We now obtain an explicit representation of all biholomorphic maps of B onto B. Let $\{e_\alpha\}_{\alpha \in I}$ be an orthonormal basis in H and let $\alpha_0 \in I$ be fixed. Define $f : B \to H$ by

$$f(z e_{\alpha_0} + \sum_{\alpha \neq \alpha_0} z_\alpha e_\alpha) = \frac{z - \beta}{1 - \overline{\beta} z} e_{\alpha_0} + \frac{\sqrt{1 - |\beta|^2}}{1 - \overline{\beta} z} \sum_{\alpha \neq \alpha_0} z_\alpha e_\alpha$$

where β is a fixed complex number, $|\beta| < 1$.

THEOREM 1. Suppose $h : B \to B$ is a biholomorphic map of B onto B, with $h(x^0) = 0$. Then $h = T \circ f \circ S$ where T and S are unitary operators and f is defined by (1) with $|\beta| = ||x^0||$. Therefore h is biholomorphic in $\{x \in H : ||x|| < 1/||x^0||\}$ and h has a fixed point in B.

Proof. Let us first show that f is $1 - 1$ and onto B. Suppose that $||x|| = r < 1$ and $x = z e_{\alpha_0} + \sum_{\alpha \neq \alpha_0} z_\alpha e_\alpha$. Then

$$||f(x)||^2 = ||z - \beta|^2 + (1 - |\beta|^2)(\sum_{\alpha \neq \alpha_0} |z_\alpha|^2)/|1 - \overline{\beta} z|^2 = 1 - (1 - |\beta|^2)(1 - r^2)(|1 - \overline{\beta} z|^2)^{-1} < 1.$$

Hence $f(B) \subset B$.

Let

$$g(x) = \frac{z + \beta}{1 + \overline{\beta} z} e_{\alpha_0} + \frac{\sqrt{1 - |\beta|^2}}{1 + \overline{\beta} z} \sum_{\alpha \neq \alpha_0} z_\alpha e_\alpha.$$

Then $g \circ f = f \circ g = I$ (the identity map). Also $g(B) \subset B$ by repeating the above argument for f with β replaced by $-\beta$. Hence f is $1 - 1$ and onto. A rather tedious but straight forward argument shows that the Fréchet derivative $Df(x, o)$ of f at x is given by:

$$Df(x; y) = \frac{1 - |\beta|^2}{(1 - \overline{\beta} z)^2} y_{\alpha_0} e_{\alpha_0}$$

$$+ \sum_{\alpha \neq \alpha_0} \left[\frac{\overline{\beta}}{(1 - \overline{\beta} z)^2} z_\alpha y_{\alpha_0} + \frac{\sqrt{1 - |\beta|^2}}{1 - \overline{\beta} z} y_{\alpha} \right] e_{\alpha}$$

where $y = y_{\alpha_0} e_{\alpha_0} + \sum_{\alpha \neq \alpha_0} y_{\alpha} e_{\alpha}$, for all $||x|| < 1/||\beta||$. Similarly one may show that f^{-1} is holomorphic. We now show that $h = T \circ f \circ S$. Let $\beta = ||h(0)||$ and let T be a unitary operator such that $T(-\beta e_{\alpha_0}) = h(0)$. Since $f^{-1}(-\beta e_{\alpha_0}) = 0$, then the map $f^{-1} \circ T^{-1} \circ h$ is a biholomorphic map of B onto B with fixed origin. Hence by the Lemma, $f^{-1} \circ T^{-1} \circ h$ is a unitary operator and we have the desired representation.
We now show that h has a fixed point in B.

Our original proof made use of the following interesting result of Earle and Hamilton [2].

Theorem. If D is a bounded connected open subset of a complex Banach space then any holomorphic map g from D strictly inside D (i.e., $\exists \varepsilon > 0$ such that $\|g(x) - y\| > \varepsilon$ for all $x \in D, y \in D$) has a fixed point.

However J. W. Helton noted that our mapping was weakly continuous and the following direct proof is due to him.

Suppose $x_k \xrightarrow{w} x_0$, where $x_k = z^{(k)} e_{a_0} + \sum_{\alpha \neq a_0} z^{(k)} \alpha e_\alpha$ is a net in B, and $x_0 = z^{(0)} e_{a_0} + \sum_{\alpha \neq a_0} z^{(0)} \alpha e_\alpha$. We wish to show that the net $f(x_k) \xrightarrow{w} f(x_0)$. Let $y \in H$, $y = y_0 e_{a_0} + \sum_{\alpha \neq a_0} y_\alpha e_\alpha$, then

$$< y, f(x_k) > = y_0 \left(\frac{\overline{z}^{(k)} - \overline{\beta}}{1 - \beta \overline{z}^{(k)}} \right) + \frac{\sqrt{1 - |\beta|^2}}{1 - \beta \overline{z}^{(k)}} \sum_{\alpha \neq a_0} y_\alpha \overline{z}^{(k)}_\alpha.$$

Since $x_k \xrightarrow{w} x_0$ we have that

$$\frac{\overline{z}^{(k)} - \overline{\beta}}{1 - \beta \overline{z}^{(k)}} \rightarrow \frac{\overline{z}^0 - \overline{\beta}}{1 - \beta \overline{z}^0} \quad \text{and} \quad \sum_{\alpha \neq a_0} y_\alpha \overline{z}^{(k)}_\alpha \rightarrow \sum_{\alpha \neq a_0} y_\alpha \overline{z}^0_\alpha$$

hence f is weakly continuous. Since S and T are weakly continuous, h is weakly continuous in a region containing B. Thus by an application of the Schauder-Tychonoff Theorem h has a fixed point in B since B is weakly compact.

3. Description of the fixed point sets. We thank the referee for pointing out that our original results in this section could be extended to infinite dimensions in the following simple way.

Suppose as before that B is the open unit ball in Hilbert space and that $h: B \rightarrow B$ is a biholomorphic map of B onto B. An affine subspace of B or its closure means the intersection of B or its closure with a closed complex affine subspace of H. The following result then follows easily from our representation of h.

Theorem 2. Every biholomorphic map of B preserves affine subspaces.

Now suppose h fixes a point y in B. Let g be a biholomorphic map which sends y to 0. Then ghg^{-1} fixes 0, so it is linear and its fixed point set is the affine subspace C. But the fixed point set of h is $g^{-1}(C)$ which is also affine by Theorem 2. Hence
Theorem 3. If $h: B \to B$ is biholomorphic and has a fixed point in B, its fixed point set is an affine subspace.

Finally, suppose h has no fixed point in B. It must have at least one fixed point on the boundary. If there are two fixed points, h must leave invariant the one-dimensional affine subspace C which contains them. Choose a biholomorphic map g so that $g(C)$ contains the origin. The map $h_0 = ghg^{-1}$ then maps the one-dimensional subspace $g(C)$ onto itself, fixing two boundary points. Denote one of these fixed points by x_0. Then $h_0 = Uf$, where U is unitary and

$$f(x) = \frac{(\langle x, x_0 \rangle - \beta)x_0 + (1 - |\beta|^2)^{1/2}(x - \langle x, x_0 \rangle x_0)}{1 - \beta \langle x, x_0 \rangle}.$$

It is easy to see that h_0 has only two fixed points, proving

Theorem 4. If $h: B \to B$ is biholomorphic and has no fixed point in B, then its fixed point set in B closure consists of either one point or two points.

References

Received May 28, 1970 and in revised form October 22, 1970.

University of Kentucky
Richard Davis Anderson and Thomas Ashland Chapman, *Extending homeomorphisms to Hilbert cube manifolds* ... 281
Nguyen Huu Anh, *Restriction of the principal series of SL(n, C) to some reductive subgroups* ... 295
David W. Boyd, *Indices for the Orlicz spaces* 315
William Garfield Bridges, *The polynomial of a non-regular digraph* 325
H. A. Çelik, *Commutative associative rings and anti-flexible rings* 351
Hsin Chu, *On the structure of almost periodic transformation groups* ... 359
David Allyn Drake, *The translation groups of n-uniform translation Hjelmslev planes* .. 365
Michael Benton Freeman, *The polynomial hull of a thin two-manifold* ... 377
Anthony Alfred Gioia and Donald Goldsmith, *Convolutions of arithmetic functions over cohesive basic sequences* 391
Leslie C. Glaser, *A proof of the most general polyhedral Schoenflies conjecture possible* .. 401
Thomas Lee Hayden and Ted Joe Suffridge, *Biholomorphic maps in Hilbert space have a fixed point* .. 419
Roger Alan Horn, *Schlicht mappings and infinitely divisible kernels* 423
Norman Ray Howes, *On completeness* .. 431
Hideo Imai, *Sario potentials on Riemannian spaces* 441
A. A. Iskander, *Subalgebra systems of powers of partial universal algebras* .. 457
Barry E. Johnson, *Norms of derivations of \(L(X) \)* 465
David Clifford Kay and Eugene W. Womble, *Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers* .. 471
Constantine G. Lascarides, *A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer* 487
C. N. Linden, *On Blaschke products of restricted growth* 501
John S. Lowndes, *Some triple integral equations* 515
Declan McCartan, *Bicontinuous preordered topological spaces* 523
S. Moedomo and J. Jerry Uhl, Jr., *Radon-Nikodým theorems for the Bochner and Pettis integrals* .. 531
Calvin Cooper Moore and Joseph Albert Wolf, *Totally real representations and real function spaces* ... 537
Reese Trego Prosser, *A form of the moment problem for Lie groups* 543
Larry Smith, *A note on annihilator ideals of complex bordism classes* 551
Joseph Warren, *Meromorphic annular functions* 559