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In potential theory on Riemann surfaces three kernels
are considered: the Green’s kernel on hyperbolic Riemann
surfaces; the Evans kernel on parabolic Riemann surfaces;
and the Sario kernel on arbitrary Riemann surfaces. Since
the Sario kernel has no restriction on the domain surface,
in contrast with the two other kernels, its potential theory
enjoys the advantage of full generality, From the point of
view of Riemannian spaces potential theory on Riemann
surfaces is included in that on Riemannian spaces.

The object of this note is to construct the Sario kernel
and to develop the corresponding theory of Sario kernel on
Riemannian spaces of dimension n =3, The Sario kernel,
which is positive, symmetric and jointly continuous, posseses
the property of Riez type decomposition (Theorem 1). The
continuity principle, unicity principle, Frostman’s maximum
principle, energy principle and capacity principle are valid for
potentials with respect to the Sario kernel. It is also shown
that a set of capacity zero with respect to the Sario kernel
is, considered locally, of Newtonian capacity zero (Theorem
7), and so the relation of capacity function and the equilib-
rium Newtonian potential in Euclidean n-space is obtained.

Historically the Sario kernel on Riemann surface is constructed
by Sario ([8], [9], [10]) as a generalization of the elliptic kernel on
the Riemann sphere, and the potential theory corresponding to the
Sario kernel has been systematically investigated by Nakai ([3], [4],
[5], [6]). Our main tools are similar to those of Nakai.

First we shall construect a Sario kernel which is positive and
symmetric and demonstrate its joint continuity (Theorem 1). These
properties will enable us to prove the continuity principle, unicity
principle, Frostman’s maximum principle, energy principle and capacity
principle for the Sario kernel, i.e., for Potentials with respect to the
Sario kernel. It will also be shown that a set of capacity zero with
respect to the Sario kernel is, considered locally, of Newtonian capacity
zero (Theorem 7). In view of this result we obtain a solution of
problem (10) in the monograph of Rodin-Sario [8, p. 257] and Sario
[12], i.e., the relation between the capacity function and the equi-
librium Newtonian potential in Euclidean space.

Let R" be a Riemannian space of dimension %, that is, a connected
countable oriented C=-manifold of dimension #n = 3* with C=-metric
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tensor g¢;;(1 < 4,5 < n). Throughout our presentation we denote by V,
a parametric ball with center at a in R", by 90V, the boundary sphere
of V, and by g,,((, @) the Green’s function of V, with pole at a.
For the Green’s function g,,({, a), we always take the normalization

g *dgV,(, @) = 1 and take *d to be the exterior normal. The dis-
Vg

tance between two points { = (&, ---, ") and a = (a', ---,a" in a
parametric ball V will be denoted |{ — a| = O3, (£ — ai)z)%.

1. Construction of the Sario kernel. We shall construct a
Sario kernel on an arbitrary Riemannian space R". On R" take
arbitrary but then fixed points {;( = 0,1) and parametric balls
Vi = 0,1) about the {; with disjoint closures in R". Let ¢,({) =
t(&, &, L) be a harmonic function on R* — {{,, {} with the following
properties (1°) ~ (5°):

(1°) t(8) — 2gVO(C, XS H(Vo) ’
(2°) t(8) + 29v,(C, L) e H(V) ,
(3°) & = (1)L,

in a neighborhood A of the ideal boundary g of R*, where (I)L, is
the normal operator with respect to the identity boundary partition.
By V,(j = 0,1) we mean the closure of V.

4°) t,|A =0Q),t, — ¢ = 0Q1),
with singularity function ¢ for the operator L, defined by

ngo(C, Co) in T7vo
o) =1—2¢,(,,¢) in TV,
0 in 4.

Since the function ¢,({) satisfying (1°) ~ (4°) is uniquely determimed
up to an additive constant, we impose the normalization condition:

(5°) t() — 25,((, &) — 0, as {— &, in V.

For the construction of ¢,({) we refer to Rodin-Sario [8] or Sario-
Schiffer-Glasner [13].
Next we define the function s,({) by

$(2) = log(1 + e®®@)

Since t0| Vo = ZQVO(C, Co) + 0(1), So| Vo = 2gV0(C, Co) + 0(1)' AlSO by (40)
t,|R* — Vo, — V, = 0(). Thus we obtain:

LEMMA 1. The function s({) is nonnegative on R", finitely
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continuwous on R" — {}, and
8| Vo =29V, &) + OQ1) .

For an arbitrary point a in B" — {,}, we construct ¢(,a) = ¢, a, &)
in the same manner as ¢(, {, {,). In this case we denote by V; and
V: the closure disjoint parametric balls with centers at {, and a
respectively, and choose the normalization condition:

t(¢, a) + 29V6(C’ Co) ’_’So(a): as {— ¢ in Vé .

Let s,(C, a) = s(C) + (£, @) and s,(, &) = s0(&,), i.e., (& &) = 0.
The functions s,({, @) and s,(C, a) + 29y,(C, &) are finitely continuous
on R* — {a} and V|, respectively. Hence by Lemma 1 s|Vy = O(1)
for the smaller parametric ball Vi of V, and Vi. Also by the
property of t(, a), t|R* — V) > O@1). Thus s, a) > O@1) and we
obtain:

LeMmMA 2. s,(C, a) is bounded from below.

For later use we list three properties of ¢({, @) which are easily
seen from the definition:

(a) C—t(, a) is harmonic on U for fixed ac V,
(b) a—t(, a) is finitely continuous on V for fixed (e U,
(e) (& a)—t, a) is bounded from below on Ux V,

where U and V are closure disjoint parametric balls about ¢ and a
respectively, and {,¢ U.

We finally define s(¢, a) = s,(¢, a) + C, where the constant C is
so chosen that

(1) s, a) >0
for all ({, aq)e R*x R*. Then s({, @) is symmetric:

LEMMA 8. For any ({,a)e R"x R"
(2) s(C, @) = s(a, Q) .

Proof. It suffices to prove that s(a,bd) = s(b, a) for any
(@, b)e R*x R*. Let {©2} be a regular exhaustion of R* such that every
£ properly contains the disjoint parametric balls V,, V, and V, about
the points &, a@ and b, V;(j = 0, 1, 2) properly. Let (¢, a), t3((), and
s¢(£) be the functions constructed in 2 corresponding to t(, a), £(C)
and s,(C) respectively. Take level spheres a,, , and a, of g, (¢, &),
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gv, (&, @) and g¢,,({,0) in V,, V, and V, respectively, and orient «, a,,
and «a, so that 02 — a, — @, — «,, with 092 the boundary surface of
£, is positively oriented. Then by Green’s formula we obtain

(3) to(S, @) x dto(C, b) — £o(C, b) xdt(C, @) = 0.

Saﬁ—ao—-alwaz
By the L,-behavior of ¢,({, a) and ¢,(Z, b) on 02, the integral of (3)
on 0f vanishes. The integral of (3) on «, + «, yields —2¢.(a, b) +
2t,(b, a). Also the calculation on «, yields 2s2(b) — 2sf(a) and we
obtain from (3)

si(a) + tola, b) = s7(b) + ta(b, @) ,

on letting » — 0 with » the radius of the parametric balls. Since
the convergences ¢,({, a) —t({, @) and t{y({) —t(() as 2— R" are
uniform on compacta (Rodin-Sario [8]; p. 246) the same is true of
s2(C). Hence on letting 2 — R", we obtain the equation s,(b, a) = s,(a, b).
From (1) and Lemma 3, ({, @) is a positive symmetric function.
We shall refer to it as the Sario kernel on R".
To obtain the subharmonicity of s,({), we show:

LEMMA 4. On R" — {, {}
4¢5,() = €1 + e9)7 [grad £(0) [,

holds, and hence 4:5,(C) is nonnegative there.

In terms of a local parameter { = (', & --., ("), the Laplacian
and gradient are

9
w 17 l
T o@ac 5 +4a Ogl/G> P

8{’ o

and

0
d.| i .,
lgrad - [* = ”ZLQ az e

where the ¢“s are elements of the inverse of the matrix (g;;) and
G = det(g;;). For any point { = (¢, & -+, (" in R — {C, {},

0

75 840) = L+ ) ), 31 (0”07 g logV T )0
= (L 4 ¢o09) z( Lo+ o0 Zloe/ @) 200,

and
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”Z:il 9 Srae a&ac: 5(8) = €1 + e @) |grad ¢, (C) [*

eto(C)l eto(O -1 & 7
+ €@(1 4 €"@) iélg aC%‘PC’

&(Q) .

Since 4:t,({) = 0, we obtain, on R" — {{,, {},
dgso(C) = €91 + e"@) " [grad £,(Q) [ .
Now consider an n-form \{)dV; on R" — {{,, {,} defined by
ML) = 4s80(8) = eV (1 + e@)* |grad ,(0) [,

with M{) = 0 and dV; the local Euclidean volume element on R™*, i.e.,
locally, dV; = nw,r""'dr with w,r" the volume of a ball of radius r.
Hence w,, = 7**/I"(n/2 + 1). Since M({)dV; = O(1) at {, and &, M()dV;
can be continued to a nonnegative finitely continuous n-form on R".
Also since s(g, a) = s,(C) + t(&, a), on R" — {a, {,, {} we have

(4) 4¢s(E, a) = 4s,(3) = N(E) .

The two points ¢, and , satisfy the removable condition of subhar-
monicity so that s({, a) is a finitely continuous subharmonic function
of { on R™ — {a}.

We shall prove the joint continuity and Riesz type decomposition
of s(C, a).

THEOREM 1. The Sario kernel s(C, a) is continuous on R*x R*
and finitely continuous on R*x R™ outside the diagonal set. Moreover,
for every regular region 2 of R the decomposition

(5) s, a) = 294(C, a) + v, @)

is valid, where ¢, is the Green’s kermel on 2 and v, 1s a finitely
continuwous function on 2x Q.

The proof of the first part is deduced from (a), (b), (c) and
Harnack’s inequality. If we prove the following two lemmas, the
second part is clear. To this end we define the following functions
on 2 and 2xQ:

GO = | Nbguld, DAV.

HG ) = | oufb, @) +dgab, O,

where
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vo(b, @) = s(C, @) — 29,(, @) .

LEMMA 5. The function Go(L) is continuwous on 2 and Hy(, a)
is finitely continuous on Q2x 0.

Proof. Let {'e2 and U be a parametric ball with center at {’
and radius 1 such that U < 2. Denote by U, the parametric ball
|6 — ' <rin U with 0 < < 1, and by g,(-, ') the Green’s kernel
on U with pole at {’. Then

900, O) = O(lb = L™ = c|b— L™

for a suitable constant c¢. Since g¢,(b, &) — ¢g(b, ) > 0 is finitely
continuous on Ux U, sup {go(d, &) — gu(b, {)} in Upx Uy is a finite
number M. Also for 0 < e < 1/6 and Le U, g,({,0) <g,({,0) + M
c|b—CP™ 4+ Min {}b — (| < 2s}. On setting m = sup{N*(b)|be U} < o
we obtain

2

g N(B)galb, DAV, < m-n- @, {cg “rdr + M S et dr} = 0() .
{1b—¢i<e} 0

0

Also for any (" e U..
[Go(L) — Go(L")| = SQ#U N (B) [go(D, C') — gqo(b, C) | AV,

+ C=_/Z;_” S <oe) >\'2<b)g.(2(ba C”)dVb .

o
Since go(b, ') — g(b, {') uniformly on 2 — U, as {"— ', we obtain
Hm sup [Go(C") — Go(C)] < OC) -
Thus
lim Gy(C") = Gul@) -
LEMMA 6. The function v,(C, a) has the representation
(5, @) = — Gu(Q) — Ho(G, a)

on 2x02. Consequently v,(0) is finitely continuous there.

Since this lemma may be proved in a manner similar to
the case » = 2 (Nakai [3] or Rodin-Sario [8; p. 309]), we omit the
proof.

2. Sario potential. Having obtained a positive symmetric kernel
s(¢, @) on R*x R", we shall now construct the potential with kernel
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function s(, @) and investigate its potential-theoretic properties.

By a regular Borel measure ¢ on R* with compact support S, in
R", we mean a measure ¢ such that for every parametric ball V' with
VUS,# @ and every local parameter z = ¢({) of V, u(@@)| VNS
is a regular Borel measure in n-dimensional Euclidean space E*, where
1e@)| VNS, is the restriction of #(®({)) to VN S.. Unless specified
otherwise we consider only nonnegative regular Borel measures g
with compact support S, in RB*. We define

5,0 = | (¢ @

and, as in the case n = 2, call s,({) the (n-dimensional) Sario potential
with respect to the measure p. By (1) it is nonnegative, and positive
unless # = 0. As a consequence of Theorem 1, s, is lower semicon-
tinuous on R” and finitely continuous on R" — S,. By (4) it is
subharmonic on R* — S,.

For convenience we list below several lemmas without proof. In
these lemmas we always suppose that R* is hyperbolic, i.e., a Green’s
kernel ¢(¢, a) exists on R*. Thus one can consider potentials ¢.({) =

[ ¢, (@

LemmA 7. (Local Maximum Principle). Let F be a compact
subset of R" containing S,. For any {'e F

lim sup g.(¢) =< lim sup g.(©) .
{eR"—F (-’ CeF (-0

LEmMA 8. (Frostman’s Maximum Principle). g¢.|S, < M implies
9. < M on R".

LEmMMA 9. (Equilibrium Principle). For any compact subset K
of R", there exists a unique measure v on K, called the equilibrium
measure of K, such that g, < 1,9, =1 a.e., on K and C(K) = y(K) =
[|lv|f, where C(K) s the capacity of K and ||v||* is the energy of g,.

LEmMMA 10. (Ninomiya [7]). Let 2 be a locally compact Haus-
dorff space and k(x,y) a continuous positive function on 2x8Q with
k(x, ) = o and k(x, y) = k(y, x). If the potential

k@) = | k@, @)

satisfies Frostman’s maximum principle and the wunicity principle,
then
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| ko, o) dotw) > 0
for any nonzero signed measure o.

With these preparations we shall now establish various principles
of potential theory with respect to Sario potentials. Since s, is
subharmonic in R* — S,, its magnitude is determined by its behavior
at the ideal boundary of R* and at S,, in view of the maximum
principle for subharmonic functions (Ito [2]).

THEOREM 2. (Local Maximum Principle). For a compact subset
F of R" containing S, and any point '€ F,
(6) lim sup s,({) < lim sup s.() .

LeR—F [0/ (P (-0

Proof. Take a parametric ball V with center at {’. Set ¢/ = |V,
ie, (-)=u(-NV), and ¢/ = p — . Then s, = s, + s.. and s,.
is continuous in V. Without loss of generality we may assume that
F C V. Hence it suffices to prove (6) for s, and F c V. Let

v, a) = s, a) — 2¢,((,a) on Vx V. By Theorem 1 Xv(C, a)dp(a) is
finitely continuous on Vx V. Thus the proof of (6) is reduced to

lim sup | 9, )d@) = lim sup | 0,(C a)duca) ,

CeRM—F [~

which is valid by Lemma 7.
As a consequence of the local maximum principle we have:

THEOREM 3. (Continuity Principle). If s,.|S,. is continuous (resp.
finitely continuous) on S., the same is true of s, on R”.

The linear operator ft—s, from the measure space into the
function space determined by the potential s, is injective:

THEOREM 4. (Unicity Principle). s, =s, implies ¢ =v. More
generally, if s, = s, + u with we H(R"), then ¢ = v.

Sketch of the Proof. For any point b ¢ R”, let V. be its parametric
ball of radius ¢ and 8V, be the clockwise oriented boundary sphere
of V.. Applying Green’s formula to the functions s(a, d) and f € C;7(R")
and the region R — V., and letting ¢ — 0, we obtain

£) = | fan@av, - | s by f@av.
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where Cp(R™ is the space of mth order continuously differentiable
functions with compact supports in R*. For a signed measure
c=pu—yand fecCy(R"), we obtain

(1) [s0do® = o(8) [ ran@av. - | s@s@arv.

from the above equation. Since s, = u, i.e., 4,s,(a) =0, and since
Ssa(a)da F@)dV, = Ssa(a)*d,, f =0, (7) implies that

[ AB@® — o@NGIV) =0

for any fe C3(R*). Thus we obtain
do(b) = a(R)N\Yb)AV, .

The fact that ¢ is a signed measure implies ¢ = ¢t — v = 0.
Next we shall show that s, satisfies Frostman’s maximum
principle:

THEOREM 5. (Frostman’s Maximum Principle). s,.|S. < M implies
s, < M on R".

We prove this theorem by dividing it into three lemmas. Let K
be any compact subset of RB" and g the ideal boundary of R". Define

M(K) = sup lim sup s(f, a)
acK [—B
if 8 # @; and otherwise M(K) = 0. Set B(M, ¢) = max{M, ¢(S,)}.

LemmA 11. M(K) is finite and the following maximum principle
18 valid: s,.|S, = M implies s, < B(M, 1) on R*.

Since the proof parallels that of the case n = 2, we omit it here
(cf. Nakai [3; p. 232], Rodin-Sario [8; p. 314]).

If R* is compact, Theorem 5 is true by Lemma 8. If R* is
parabolic, the theorem follows from Lemma 8, Theorem 2 and the
subharmonicity of s, on R*— S,. Thus we have only to prove
Theorem 5 for the case in which R” is hyperbolie, i.e., Green’s kernel
9(C, a) exists on R".

By the unicity of ¢({) and ¢, a), (8)-(10) hold with a suitable
constant k.

(8) to(C) = Zg(C, Co) - ZQ(C, CL) + k.
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(9) $o(8) = log(e™ %0 + 7200 +E) 4 29(C, §) .

(10) t(C, a) = 29(C, @) — 29(C, &) + so(@) — k.
Setting

(11) u(l) = log(e™204:%0 4 g20l0t0+k) — Joor(1 + €¥)

the Sario kernel s({,a) has the expression (12) with a suitable
constant m;

(12) s(€, @) = 29(C, @) + u(@) + u(a) + m .

Let ¢+ be a unit measure and set M' = M — m — Su(a)dﬂ(a).
Then it is easily seen that
(13) 29,0 +u®) <M on S, .

With these preparations we show
LEmMmaA 12. M' = 0.

Proof. By Lemma 9, there exists a unique equilibrium distribu-
tion v, on S,. Set » = V,(S,)|v. Since S g, dpdp < o by (13), the
property of v implies that the g-measure of the set {{e€ S,|9.({) = V,(S,)}
is zero. Here V,(S,) = inf § 9,d0d6 with the unit measures ¢ such
that S, © S,.. On integrating (13) with respect to v, and using
ggﬂdv = V,S,), we obtain

(14) 2V,(8) + | Qv = M.

By (11) we see that

(15) [ w0 = - 20 + [ p@d©
with

P©) = v (29(, &) — 29, C)) ,
(&) = log(l + €% — log(1 + €*) .

Since (&) is a convex function, applying Jensen’s inequality to (15)
with &) = 29(§, &) — 2¢9(, £), we obtain

—2V,(8,) = log{(e7 4 e7- @) /(1 + )} < S u(Q)dv(©)
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This with (14) implies M’ = 0.

LEmMMA 13. Let & be the family {{C.}o-, < R*|, — B as n— oo}
and Z * be the subfamily {{,} ¢ & |lim inf,g9(C,, @) > 0 for all a € R"}.
Then there exists a nonnegative superharmonic function v on R such
that lim,_. v(,) = « for {{,}e & *.

By the monotone compactness of H(R") and the solvability of the
Dirichlet problem for regular regions and continuous boundary func-
tions in R", the method in Constantinescu-Cornea [1; p. 48] is valid
in R~. We omit the proof.

We now prove Theorem 5 in the hyperbolic case. Without loss
of generality we may assume that ¢(S,) =1. By (12) and (13) it
suffices to prove that 2¢.(8) + u({) < M’ on S, implies 2¢9,.(0) + w(l) < M’
on R*. For the function » in Lemma 13 and m =1, 2,3, ..., define
superharmonic function W, on R* — S as

W) = M — (29.0) + u(8)) + v»(©)/m .
Then by Lemma 7, we obtain

(16) lim inf W,(5) =0

CeRM—Sp Lot
for {'edS,. Also for {{,} € & © we have
a7 lim, inf W,.({,) = 0.

By (16), (17) and the minimum principle for superharmonic functions
we see that W,() =0 on R*— S,. On letting m — -, we have
29.(0) + u() < M' on R* — S, and hence on R".
From the above statement it follows that Sario potentials enjoy
both Frostman’s maximum principle and the unicity principle.
Applying Lemma 10 we obtain

THEOREM 6. (Energy Principle). For measures ¢ and v with
oc=p—v=+0,

o

S (¢, a)da(Q)do(a) > 0 .

3. Sario capacity and the fundamental theorem. We define

a set function V(K) first for compact sets K < R" by

V(K) = inf, | s(C, @dp©dp(a)
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where ¢ runs over all unit measures with S, < K. For general sets
X < R" we set

V(X) = supx V(K)

where K runs over all compact sets K — X.
The quantity

o(X) = ¢,(X) = 1/V(X)

will be referred to as the (inner) Sario capacity of X. For Borel
sets X, ¢(X) = 0 is equivalent to

(18) X)) = 0 for each p¢ with SS(C, a)dpQ)du(a) = oo .
Using this we can prove:

THEOREM 7. A set X in R" s of Sario capacity zero if and
only 1f X s locally of Newtonian capacity zero.

Proof. We may suppose that X is compact. By virtue of (5)
and (18), ¢(X) = 0 is characterized by (XN V) =0 for every g in
each parametric ball V with

SgV<Cy af)dﬂ(C)dﬂ(@) = oo .,

Since g¢,(C, a) = O( — a™), ¢(X) = 0 means that X N V has New-
tonian capacity zero for each parametric ball V.

As a consequence of Theorem 7, we obtain a solution of problem
(10) in Rodin-Sario [8] and Sario [12].

THEOREM 8. Let P be the equilibrium potential of a unit mass
distribution dy¢ on a compact set K of R* defined by

o [ Lo =gl
Pl = | 2= dutw)

Let 2 be a regular region of R™ which contains the set K and let
Do, be the capacity function for Q2 with p,, |02 = kgﬁ (e.f. Sario [12],
Rodin-Sario [8]). Then we have locally

P@) = ko, — | 9oy, dp) + M,

with a suitable positive constant M.
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Proof. Without loss of generality we may assume that K is
contained in some local coordinate system (@, V) of R”, that is, we
may regard K as a compact set in the parametric ball V and the
point y as the center ¢ of V. Thus it suffices to show that

— ql
| oo 4@ = ko, — | 2o, (6 @dpta) + M
in the parametric ball V, with / a unit measure such that S, = K c V.
Since go(C, @) = ko, — po, (Rodin-Sario; p. 253) and g | V = ¢,(C, @) + (C)
with () e H(V), g4, a) = kpﬁ — pgﬁ(C, a) + (&) in V. Integrating
both sides with respect to ¢, we obtain the desired equation with

M = | h©)dp).

Let K be a compact set in R" with ¢(K) > 0. Since s, a) is
jointly continuous, by the selection theorem for a sequence of measure
in B" we obtain the capacity measure f, that is, the unit measure

with S, © K such that Ssdyd/x = V(K). Our final aim is to obtain

the capacity principle for the Sario kernel,

THEOREM 9. (Fundamental Theorem of Potential Theory). Let
K be a compact subset of R™ with ¢(K) > 0 and pt its capacity measure.
Then s, < V(K) on R and s, = V(K) except for an F,-set of Sario

capactty zero. Furthermore, this capacity measure 1s uURiIque.

Proof. First we shall show that s, = V(K) on K except for an
F-set of Sario capacity zero. Let A and A, be the subsets of K on
which s, < V(K) and s, < V(K) —1/n (n=1,2,-.+) respectively.
Then the A4,’s are compact sets with 4, c 4, --- Cc 4, C ---, and
A=U>A, Hence A is an F,-set and we need only show that
¢(4) = 0. Suppose, to the contrary, that for a suitable ¢ > 0 there
exists A, = K, C K with s,/K, < V(K) —2¢ and c¢(K,) >0. The

equality Ss,tdp.dy = V(K) implies the existence of a point {, €S, with

s(C) > V(K) —e. Thus (€ K,. Therefore we may take an open
ball U concentrated at {, with UNK= @ and s,|U > V(K) — e.
Moreover since €8, #(U) > 0. The fact ¢(X,) > 0 implies the
existence of a measure v with S, ¢ K,

w(K,) = p#(U), and with Ssdvdy < oo

Construct a signed measure v, by

v | K =v|K,v|U=—plUvv|Rr—KUU=0.
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Clearly p, = ¢ + tv, is a unit measure for every te (0, 1) with S, < K.
Therefore

(19) Ssdytd;zt > Ssdpzd/x - V(K) .
A simple calculation shows that
S sdy,dp, < — t{p(U)e —t S sdvldvl} <0

for sufficiently small ¢. This violates (19) and we have ¢(4) = 0.

If we show that s.|S. < V(K), by virtue of Theorem 5 the proof
is complete except for the uniqueness of p. Contrary to the assertion,
assume that s,({;) > V(K) for a {,€S,. Choose an open ball U, about
£, such that

s, /U, > V(K) +¢6,¢e>0.
Then ¢(U,) > 0 and we see that

VE) = | s+ | sde> VIE) +euU) > VE)
1 —uY1
a contradiction.
The unicity of the capacity measure follows from Theorem 6 in
the same manner as in Nakai [6], or Rodin-Sario [8; p. 332].

As an application of the fundamental theorem, we obtain the
subadditivity of the Sario capacity. Since the method is similar to
that of Nakai [4; no. 7], we state this without proof.

THEOREM 10. If X, (n = 1,2, --.) are sets in R* and X = U7-, X,
then

oX) = 3 e(X.) -
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