SUBALGEBRA SYSTEMS OF POWERS OF PARTIAL UNIVERSAL ALGEBRAS

A. A. ISKANDER
SUBALGEBRA SYSTEMS OF POWERS OF PARTIAL UNIVERSAL ALGEBRAS

A. A. ISKANDER

A set \(A \) and an integer \(n > 1 \) are given. \(S \) is any family of subsets of \(A^n \). Necessary and sufficient conditions are found for the existence of a set \(F \) of finitary partial operations on \(A \) such that \(S \) is the set of all subalgebras of \(\langle A; F \rangle^n \). As a corollary, a family \(E \) of equivalence relations on \(A \) is the set of all congruences on \(\langle A; F \rangle \) for some \(F \) if and only if \(E \) is an algebraic closure system on \(A^2 \).

For any partial universal algebra, the subalgebras of its \(n \)th direct power form an algebraic lattice. The characterization of such lattices for the case \(n = 1 \) was essentially given by G. Birkhoff and O. Frink [1]. For the case \(n = 2 \), the characterization was given by the author [4] (see also [3]). The connection between the subalgebra lattices of partial universal algebras and their direct squares was described by the author [5].

In the present paper we are concerned with the subalgebra systems from the following point of view: given a set \(A \) and a positive integer \(n \), which systems of subsets of \(A^n \) are the subalgebra systems of \(\langle A; F \rangle^n \) for some set of partial operations \(F \) on \(A \)? The problem where \(F \) is required to be full is Problem 19 of G. Gratzer [2]. For \(n = 1 \), such systems are precisely the algebraic closure systems on \(A[1] \). The description of the case \(n \geq 2 \) is given here by the Characterization Theorem. We also show that there are partial universal algebras \(\langle A; F \rangle \) such that the subalgebra system of \(\langle A; F \rangle^2 \) is not equal to the subalgebra system of \(\langle A; G \rangle^2 \) for any set of full operations \(G \). The methods of this paper can be modified to get similar results for infinitary partial algebras, the arities of whose operations are less than a given infinite ordinal.

The author is grateful to the referee for a number of valuable indications.
a nonvoid subset of \(A \) which is closed under all elements of \(F \). We denote the set of all subalgebras of a partial algebra \(\langle A; F \rangle \) by \(S(\langle A; F \rangle) \) and we will consider \(\phi \in S(\langle A; F \rangle) \) if and only if the intersection of all nonvoid subalgebras of \(\langle A; F \rangle \) is empty.

Proposition 1. \(S(\langle A; F \rangle^n) \) is an algebraic closure system on \(A^n \).

If \(n = 1 \), this follows from the result of G. Birkhoff and O. Frink [1]. For any positive \(n \), \(S(\langle A; F \rangle^n) = S(\langle A^n; F \rangle) \).

We shall consider only the case \(n \geq 2 \).

2. Let \(S_n \) be the group of all permutations of \(\{1, \cdots, n\} \). Denote by \(P(A^n) \) the set of all subsets of \(A^n \). If \(s \in S_n \) and \(B \in P(A^n) \), we define

\[
B_s = \{ a: a \in A^n, b, b \in B, a(i) = b(is^{-1}), 1 \leq i \leq n \}.
\]

For \(n = 2 \), \(B \subseteq A^2 \), \(B(12) \) is the inverse binary relation of \(B \).

Proposition 2. The mapping which associates to every \(s \in S_n \) the operator on \(P(A^n) \) defined by (1) is a group homomorphism of \(S_n \) into the group of all automorphisms of the lattice \(\langle S(\langle A; F \rangle^n); \subseteq \rangle \).

3. Let \(\alpha \) be a nonvoid subset of \(\{1, \cdots, n\} \), \(i = \min \alpha \) and \(B \in P(A^n) \). Define

\[
B\alpha = \{ a: a \in A^n, b \in B, a(j) = b(j) \text{ if } j \notin \alpha, a(j) = b(i) \text{ if } j \in \alpha, 1 \leq j \leq n \}.
\]

It is easy to verify that if \(1 \leq i_1 < i_2 < \cdots < i_k \leq n \) then

\[
B\{i_1, \cdots, i_k\} = (\cdots((B\{i_1, i_2\} \{i_2, i_3\}) \cdots) \{i_{k-1}, i_k\}.
\]

If \(C \in P(A^n) \), we denote by \(F(C) \) the subalgebra of \(\langle A; F \rangle^n \) generated by \(C \).

Proposition 3. If \(C \in P(A^n) \), \(\alpha - \) a nonvoid subset of \(\{1, \cdots, n\} \) and \(s \in S_n \), then

\[
F(C)\alpha \subseteq F(C\alpha)
\]

\[
F(C)s = F(Cs).
\]

4. We denote by \(A^k \) the diagonal of \(A^k \) \(B \times A^n \) will be identified with \(B \).

The Characterization Theorem. Let \(S \subseteq P(A^n) \). \(S = S(\langle A; F \rangle^n) \) for some set of finitary partial operations \(F \) if and only if
(a) S is an algebraic closure system on A^n
(b) if $B \in S$, $1 \leq i < j \leq n$, then $B(ij) \in S$.
(c) $\Delta_n \times A^{n-2} \in S$
(d) $[C] \{1, 2\} \subseteq [C(1, 2)]$ for all nonvoid finite $C \in P(A^n)$
(e) if $\phi \in S$, then $\phi = \cap \{B : \phi \neq B \in S\}$.

([C] denotes the intersection of all elements of S containing C).

It can be shown that conditions (a), (b), (c), (d) and (e) are independent.

It is clear that $\Delta_n \times A^{n-2}$ is a subalgebra of $\langle A; F^* \rangle$ for all F.
That conditions (a), (b) and (d) are necessary follows from Propositions 1, 2 and 3.

Proof of Sufficiency. For every positive integer m and every ordered $m + 1$-tuple (a_1, \ldots, a_m, a) of elements of A^n such that $a \in [a_1, \ldots, a_m]$ we associate an m-ary partial operation f on A such that

$$Df = \text{domain of definition of } f = \{(a_i(i), \ldots, a_m(i)) : 1 \leq i \leq n\}$$

and

$$a_1(i) \cdots a_m(i) f = a(i), 1 \leq i \leq n.$$

Let F be the set of all such finitary partial operations.

The following lemmas constitute the proof of sufficiency:

LEMMA 1. If $C \in P(A^n)$, $s \in S_n$, then $[C]_s = [Cs]$.

By (a), S is a closure system hence $[C] \in S$. From (b) $[C](ij) \in S$ for all $1 \leq i < j \leq n$. Hence, by Proposition 2, $[C]_s \in S (P(A^n) = S(\langle A; \phi^* \rangle))$. But

$$Cs \subseteq [C]_s \in S.$$

Hence

$$[Cs] \subseteq [C]_s.$$

Also

$$C = (Cs)s^{-1}.$$

Hence

$$[C] = [(Cs)s^{-1}] \subseteq [Cs]s^{-1}.$$

And so

$$[C]_s \subseteq [Cs].$$

LEMMA 2. If α is a nonvoid subset of $\{1, \ldots, n\}$ and $C \in P(A^n)$, C is finite and nonvoid, then

$$[C]_\alpha \subseteq [C\alpha].$$
First we show Lemma 2 for the case $\alpha = \{i, j\}, 1 \leq i < j \leq n$.

$$
[C] \{i, j\} = ([C(1i)(2j)] \{1, 2\})(1i)(2j) \\
= ([C(1i)(2j)] \{1, 2\})(1i)(2j) \quad \text{(by Lemma 1)} \\
\subseteq [(C(1i)(2j)] \{1, 2\})(1i)(2j) \quad \text{by (d)} \\
= [(C(1i)(2j)] \{1, 2\})(1i)(2j)] \\
= [C\{i, j\}] .
$$

If $1 \leq i_1 < \cdots < i_k \leq n$, then

$$
[C] \{i_1, \cdots, i_k\} = \ldots (C[i_{k-1}, i_k]) \{i_{k-1}, i_k\} \quad \text{(by (3))} \\
\subseteq \ldots \cdot \{1, \cdots, 2\}(1i)(2j) \in S \quad \text{(by (c) and (b)) for all } 1 \leq i \leq m.
$$

LEMMA 3. *The definition of F is correct, i.e. every $f \in F$ is one valued.*

Lemma 3 will be established once we show that whenever $a_1, \cdots, a_m \in A^n, f \in F$ are such that $a_1(i) \cdots a_m(i)f$ is defined for every $1 \leq i \leq n$ and if for some $1 \leq p < q \leq n$ $a_i(p) = a_i(q), \cdots, a_m(p) = a_m(q)$; then

$$
a_1(p) \cdots a_m(p)f = a_1(q) \cdots a_m(q)f .
$$

By the definition of F, there are $c_1, \cdots, c_m, c \in A^n$ such that

$$
c \in \{c_1, \cdots, c_m\},
$$

$$
Df = \{(c_1(i), \cdots, c_m(i)): 1 \leq i \leq n\}
$$

and

$$
c_1(i) \cdots c_m(i)f = c(i); 1 \leq i \leq n .
$$

Hence

$$
\{(a_1(i), \cdots, a_m(i)): 1 \leq i \leq n\} \subseteq Df
$$

$$
= \{(c_1(i), \cdots, c_m(i)): 1 \leq i \leq n\} .
$$

So there are $s \in S_n$ and α nonvoid subset of $\{1, \cdots, n\}$ such that

$$
\alpha t = c, s\alpha, 1 \leq t \leq m .
$$

Since every a_t satisfies $a_t(p) = a_t(q)$. We have $a_t \in (A_2 \times A^{n-2})(1p)(2q) \in S$ (by (c) and (b)) for all $1 \leq t \leq m$. Then

$$
\{c_1, \cdots, c_m\} s\alpha = \{a_1, \cdots, a_m\} \subseteq (A_2 \times A^{n-2})(1p)(2q) .
$$

But

$$
[[c_1, \cdots, C_m]] s\alpha = [[c_1, \cdots, c_m]] s\alpha
$$
Define $a \in A^n$ by

$$a(j) = a_1(j) \cdots a_m(j) \cdot f \quad 1 \leq j \leq n.$$

Then

$$a = cs\alpha \in [(a_1, \cdots, a_m)]s\alpha \subseteq (\Delta \times A^{n-2})(1p)(2q).$$

Hence

$$a_1(p) \cdots a_m(p) \cdot f = a(p) = a(q) = a_1(q) \cdots a_m(q) \cdot f.$$

Lemma 4. If $\phi \neq B \in S(\langle A; F^* \rangle^n)$ then $B \in S.$

Since S is an algebraic closure system it will be sufficient to show that if C is a finite nonvoid subset of $B,$ the $[C] \subseteq B.$

Let $b_1, \cdots, b_m \in B$ and $b \in [b_1, \cdots, b_m]$. By the definition of $F,$ there is $f \in F'$ such that $b_1(i) \cdots b_m(i) \cdot f$ is defined and is equal to $b(i)$ for all $1 \leq i \leq n$. B is a subalgebra of $\langle A; F^* \rangle^n,$ hence $b \in B.$

Lemma 5. If $\phi \neq B \in S$ then $B \in S(\langle A; F^* \rangle^n).$

Let $f \in F'$; $a_1, \cdots, a_m \in B$ and $a_1(i) \cdots a_m(i) \cdot f = a(i)$, $1 \leq i \leq n$. We must show that $a \in B$.

By the definition of F' there are $c_1, \cdots, c_m, c \in A^n$ such that $c \in [[c_1, \cdots, c_m]]$

$$Df = \{(c_1(i), \cdots, c_m(i)): 1 \leq i \leq n\}$$

and

$$c_1(i) \cdots c_m(i) \cdot f = c(i), 1 \leq i \leq n.$$

So

$$\{(a_1(i), \cdots, a_m(i)): 1 \leq i \leq n\} \subseteq Df = \{(c_1(i), \cdots, c_m(i)): 1 \leq i \leq n\}.$$

As in Lemma 3

$$a_t = c_i s\alpha, 1 \leq t \leq m; a = csd,$$

for some $s \in S_n$ and $\phi \neq a \subseteq \{1, \cdots, n\}.$

But

$$c \in [[c_1, \cdots, c_m]].$$

Hence

$$a = cs\alpha \in [[c_1, \cdots, c_m]]s\alpha \subseteq [[c_1, \cdots, c_m]]s\alpha$$

$$= [[a_1, \cdots, a_m]] \subseteq B.$$

Theorem 5. Let $C \subseteq P(A^2)$. C is the set of all congruence
relations on \(\langle A; F \rangle \) for some set of finitary partial operations \(F \) if and only if \(C \) is an algebraic closure system on \(A^2 \) and every element of \(C \) is an equivalence relation on \(A \).

That the set of all congruence relations on \(\langle A; F \rangle \) is an algebraic closure system on \(A^2 \) is well known.

If \(C \subseteq P(A^2) \) is a set of equivalence relations which is also an algebraic closure system on \(A^2 \) then \(C \) satisfies all the conditions (a), (b), (c), (d) and (e) of the Characterization Theorem. Hence \(C = S(\langle A; F' \rangle^2) \) for some set of finitary partial operations \(F \). Since every element of \(C \) is an equivalence relation on \(A \) and a subalgebra of \(\langle A; F' \rangle^2 \), it is a congruence relation on \(\langle A; F' \rangle \). Since a congruence relation on \(\langle A; F' \rangle \) is an equivalence relation on \(A \) which is also a subalgebra of \(\langle A; F' \rangle^2 \), the Theorem is proved.

6. The following proposition shows that our Characterization Theorem does not solve the corresponding problem for full algebras.

Proposition 4. There are partial algebras \(\langle A; F \rangle \) such that \(S(\langle A; F' \rangle^2) \neq S(\langle A; G' \rangle^2) \) for any set of full finitary operations \(G \).

Let \(A = \{1, 2, 3\} \), \(F = \{f_1, f_2, f_3, g\} \); \(f_1, f_2, f_3 \) are full unary operations, \(g \) is a partial binary operation.

\(f_i \) is the constant function taking the value \(i \), \(i = 1, 2, 3 \).

\[
Dg = \{(1, 2), (2, 1)\} \\
12g = 3, (21)g = 2, \\
B = A_1 \cup \{(1, 2)\}, C = A_2 \cup \{(2, 1)\} \\
BoC = B \cup C, \\
B, C \in S(\langle A; F' \rangle^2), \text{ but} \\
BoC \notin S(\langle A; F' \rangle^2)
\]

since any subalgebra of \(\langle A; F' \rangle^2 \) containing \((1, 2) \) and \((2, 1) \) contains also \((3, 2) \) and \((2, 3) \).

References

Received January 20, 1970

AMERICAN UNIVERSITY OF BEIRUT
AND
VANDERBILT UNIVERSITY
Richard Davis Anderson and Thomas Ashland Chapman, *Extending homeomorphisms to Hilbert cube manifolds* .. 281
Nguyen Huu Anh, *Restriction of the principal series of SL(n, C) to some reductive subgroups* .. 295
David W. Boyd, *Indices for the Orlicz spaces* 315
William Garfield Bridges, *The polynomial of a non-regular digraph* 325
H. A. Çelik, *Commutative associative rings and anti-flexible rings* 351
Hsin Chu, *On the structure of almost periodic transformation groups* 359
David Allyn Drake, *The translation groups of n-uniform translation Hjelmslev planes* ... 365
Michael Benton Freeman, *The polynomial hull of a thin two-manifold* 377
Anthony Alfred Gioia and Donald Goldsmith, *Convolutions of arithmetic functions over cohesive basic sequences* 391
Leslie C. Glaser, *A proof of the most general polyhedral Schoenflies conjecture possible* ... 401
Thomas Lee Hayden and Ted Joe Suffridge, *Biholomorphic maps in Hilbert space have a fixed point* ... 419
Roger Alan Horn, *Schlicht mappings and infinitely divisible kernels* 423
Norman Ray Howes, *On completeness* ... 431
Hideo Imai, *Sario potentials on Riemannian spaces* 441
A. A. Iskander, *Subalgebra systems of powers of partial universal algebras* .. 457
Barry E. Johnson, *Norms of derivations of \(L(X) \) 465
David Clifford Kay and Eugene W. Womble, *Axiomatic convexity theory and relationships between the Carathéodory, Helly, and Radon numbers* .. 471
Constantine G. Lascarides, *A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer* 487
C. N. Linden, *On Blaschke products of restricted growth* 501
John S. Lowndes, *Some triple integral equations* 515
Declan McCartan, *Bicontinuous preordered topological spaces* 523
S. Moedomo and J. Jerry Uhl, Jr., *Radon-Nikodým theorems for the Bochner and Pettis integrals* ... 531
Calvin Cooper Moore and Joseph Albert Wolf, *Totally real representations and real function spaces* ... 537
Reese Trego Prosser, *A form of the moment problem for Lie groups* 543
Larry Smith, *A note on annihilator ideals of complex bordism classes* 551
Joseph Warren, *Meromorphic annular functions* 559