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An axiomatic setting for the theory of convexity is
provided by taking an arbitrary set X and constructing a
family & of subsets of X which is closed under inter-
sections, The pair consisting of any ordered vector space
and its family of convex subsets thus become the prototype
for all such pairs (X, ). In this connection, Levi proved
that a Radon number r for & implies a Helly number
h = r—1; it is shown in this paper that exactly one addi-
tional relationship among the Carathéodory, Helly, and
Radon numbers is true, namely, that if & has Carathéodory
number ¢ and Helly number %~ then & has Radon number
r = ch+1, Further, characterizations of (finite) Caratheodory,
Helly, and Radon numbers are obtained in terms of separa-
tion properties, from which emerges a new proof of Levi’s
theorem, and finally, axiomatic foundations for convexity in
euclidean space are discussed, resulting in a theorem of the
type proved by Dvoretzky.

1. Preliminary definitions. A family of subsets of a space X
which is closed under intersection yields a weak type of closure, or
hull, operator on the power set of X, producing concepts which may
be readily applied to convexity and topology alike. Our main interest
is, however, convexity theory and the abstraction of certain classical
concepts from that area. (See in this regard the papers by Danzer,
Griinbaum and Klee [1], Hammer [5, 6, 7], Eckhoff [3], Ellis [4],
Koenen [8], and Levi [9].) We shall, therefore, introduce the follow-
ing terminology: A family & of subsets of a set X is termed a
convexity structure for X, with the pair (X, %) being called a
convexity space, whenever the following two conditions hold:

(a) © and X belong to &;

(b) N €Z for each subfamily & < &
<« is designated T, iff the further condition

(¢) {x}e® for each xc X
holds, and a subfamily <& of & is called a basis of & iff each
member of & is obtainable as an intersection of members of <%

The hull operator generated by a convexity structure &, defined
in the usual manner by the relation

z(S) =N{Cez:C>D S}, ScX,
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enjoys certain properties identical to those of the closure operator in
topology, among which are: (i) ScC & (S) for each Sc X; (i) if
S, S, the & (S) Cc&(S,); (i) (& (S)) = & (S); and, (iv) Se¥
iff (S)=_S8. The set & (S) will be termed the Z-hull of S, and
a set will be called &-comvexr iff &(S)=S. If S is finite and
consists of the points «,, --., 2, we shall write simply & (x,, +--, %)
for its Z>-hull.

An important concept in ordinary convexity theory is that of
the “cone” or “join” of a point over a set. We may extend this
concept to our general setting by defining the Z-join of x and S
to be the set

TS = L_!g%(x,s) .

A useful condition involving this concept is the following (for xe X
and Sc X):

(d) #@EUS)cz.Z(S).

Since the reverse inclusion can be easily proved, (d) is equivalent to
the condition

d) #@@US)=2.,2(S).

It is interesting that (d) is also equivalent to assuming that the
&-join and “-hull operators commute at xze X, that is, for each
ScX,

d" #@.S) =z2.Z(S).

This may be seen by simply verifying the relation & (z U S) = & (x.S).
A convexity structure satisfying either of the equivalent conditions
(d), @), or (d”) will be called join-hull commutative at x, and if &
is join-hull commutative for each xe X it will be said to be join-
hull commutative. Further, we say that & is finitely join-hull
commutative if (d), (d’), or (d”) holds for each e X and for each
finite subset Sc X. (Condition (d) was introduced for finite subsets
by Ellis [4].)

The next property is the direct analogue of the -classical
Carathéodory theorem on convex hulls in a vector space over an
ordered field, and will reveal a relationship between join-hull com-
mutativity and finite join-hull commutativity:

) ®S)=U{&E(T):TcS,|T| < } for each Sc X.

After Hammer [6], a convexity structure & having property (e) will
be termed domain finite.

The following two theorems will illustrate the application of
these properties.

THEOREM 1. If & 1is a convexity structure for X which is domain
finite, them finite join-hull commutativity implies join-hull com-
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mutativity.

Proof. It suffices to show that for xe X and Sc X, €@ US)C
2, (S). Let ye & (x U S); then there exists a finite set T S such
that ye & (x U T) and

U T)Cce,. s (T)Ca25(S).
Hence, yex,.Z(S).

THEOREM 2. If & s a convexity structure for X which s join-
hull commutative and domain finite, then a set CC X 1s & -convex
Wi € (x,y) < C for each x€C, yeC.

Proof. Suppose C is & -convex. Then if xeC and yeC,
& (x, y) c = (C) = C. Conversely, suppose for each xeC and yeC,
& (x, y) c C; we observe that the hypothesis implies by join-hull
commutativity that for any finite set T C, & (T)c C. It follows
immediately that ©”(C) = C, for, by domain finiteness,

zC)=U{e(T):TcC,|T|< «w}cC.

Finally, a convexity structure & is said to have Carathéodory
number ¢ iff ¢ is the smallest positive integer for which it is true
that the Z-hull of any set Sc X is the union of the Z>-hulls of
those subsets of S of cardinality < ¢. Further, a convexity structure
has Helly number h and Radon number r iff h and r are the smallest
positive integers for which it is true that, respectively, a finite sub-
family & of sets in & has nonempty intersection provided each A
members of & has nonempty intersection, and any set S with
|S| = r has a Radon partition, that is, may be partitioned into two
nonempty subsets (S, S;) such that & (S) N & (S,) = @.

These definitions imply that in general ¢ =1, A =1, and » = 2,
and that for any 7, convexity space having at least 3 points, ¢ =1,
h =2, and r = 3. The least value for ¢ in either case is attained
by taking & to be the largest possible convexity structure for X
(consisting of the power set of X), and the least values for 4 and r
are obtained when % is the smallest possible [7\] convexity structure
(consisting of ¢, [the singleton subsets of X], and X). If & is
the family of convex sets in euclidean space E?¢ of dimension d the
classical theorems of Carathéodory, Helly, and Radon imply that in
this case 2 has ce=h=d+1 and r=d + 2. It is easy to con-
struct examples to show that convexity structures can have a variety
of possible Carathéodory, Helly, and Radon numbers, but in general
there will be certain restrictions.
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2. Interrelationships between the numbers c, h, and r. Levi’s
theorem [9] shows that in any convexity space (X, &) if &« has
Radon number » then % has Helly number 2 < * — 1. To show
that no other possible relationships between the numbers ¢, %, and »
exist (taken singly) we cite the following examples (also discussed in
part using different definitions by M. Breen in a related unpublished
paper communicated to the authors by W. R. Hare and J. W. Kenelly):
Take X = E® and consider Hammer’s example of the convexity
structure generated by X and sets of the form C = H,U H,U (L, ~ L),
where L, and L, are any two perpendicular lines and H, and H, are
open half planes determined by them. As proved in [5], this con-
vexity structure has Carathéodory number 7 but no finite Helly or
Radon number. The example consisting of X = E? and all closed
convex sets in X provides a convexity structure which has Helly
number d + 1, Radon number d + 2, but no finite Carathéodory
number (since no point on the boundary of an open convex set S is
contained in the closed, convex hull—and thus <-hull—of any finite
subset of S).

The above two examples show that among the Carathéodory,
Helly, and Radon numbers ¢, h, and », the existence of ¢ does not
imply that of either % or », and neither the existence of & nor »
implies that of ¢. It remains to show that the existence of & does
not imply that of ». To that end, consider the following example.

ExaMPLE 1. In the sequence space X = E= = {(x, -+, X;, =++):
%; € R} (R = reals), let & consist of ¢, X, and the collection of all
closed and bounded rectangular hypersolids with faces orthogonal to
the coordinate axes, explicitly defined as C = ):.xC; (N = positive
integers), where, for each 1,

Ci={rvia; £a; b}, a; = b;,

A

x; denoting the 4 coordinate of . (This is Eckhoff’s product
. (X, ) with X, = E' and &, = family of closed intervals; see
[3] and a related paper by Reay [10].)
It is clear that if (X, %) is the convexity space defined in
Example 1 and Sc X,

‘K(S) B {x:ai§xi§bi,iEN},

where

a; = inf x; , b, = supz; .

zeS ze s

From reasoning of a similar nature it follows that & has Helly
number 2. But we show that & has no (finite) Radon number. Let
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?) = 2% — 2, construct the kt x n

matrix M, of zeroes and ones as follows: The first <llc> columns define
the characteristic functions of all one-element subsets of {1, ---, &},
the next (k> columns define the characteristic functions of all two-

2
element subsets, and in general, the (llc) columns 1+ 3izt <I;> through

S, k) define the characteristic functions of all [-element subsets
of {1, --+,k}, 1<1<k—1. Note that for k=5 (in which case
n = 30), this process yields the 5 x 30 matrix
10000 1111000000 1111110000 11110
01000 1000111000 1110001110 11101
M, = | 00100 0100100110 1001101101 11011
00010 0010010101 0101011011 10111
00001 0001001011 0010110111 01111 |

keN, k=2, and with == ;e;;(

Now let S be the k-element subset of X defined by taking those
points whose first #» coordinates are given by the rows of M, and
whose remaining coordinates are each zero. If (S,, S,) is any nontrivial
partitioning of S then 1 <|S, | <k —1 and there is an integer %
such that the ¢ coordinate of each member of S, is 1 and the *
coordinate of each member of S, is 0. Thus, the ¢'* coordinate of
each member of (S, is 1, and the ¢-th coordinate of each member
of Z°(S,) is 0, from which it follows that & (S)) N € (S.))= 2. There-
fore, no k-element subset of X has a Radon partition, and since k&
was arbitary, & has no radon number.

The preceding examples show that Levi’s theorem is the only
one possible if we assume the finiteness of exactly one of the num-
bers ¢, h, or r; however a possible implication arises by considering
pairs of numbers ¢, h, or, r and this is answered conclusively by
the following theorem.

THEOREM 3. If & s a convexity structure for X which has
Carathéodory number ¢ and Helly number h, then & possesses o
Radon number r < ch + 1.

Proof. Let S be a (ch + 1)-element subset of X, and define &
to be the subsets of S having at least ¢k + 1 — ¢ clements. By a
simple counting argument it follows that each & members of the
family & = {&(F): Fe ¥ }C% have nonempty intersection: Let
G; = € (F;) foreach F;e &#, i=1, ---, h, and consider |J,(S~G)| =
UilS~ Gl = UilS~Fi| < hl(ch +1) — (ch+1—¢)] <ch <|S].
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Since « has Helly number 2 there is a point x belonging to NZ,
and because Se.& and Z°(S)e & we have xe & (S). But ¥ has
Carathéodory number ¢ and therefore we can find a subset T of S
of cardinality ¢ or less such that xze < (T). Since S~ T has
cardinality at least ¢h +1 — ¢ then (S~ T)e & and xe & (S~ T).
Hence, the pair (7, S ~ T) is a Radon partition of S, proving that
«” has Radon number » < ¢k + 1.

COROLLARY 1. In a conwvexity space having finite Carathéodory
number ¢, the existence of a Helly number h and a Radon number r
are equivalent, and the corresponding numbers satisfy the inequality

h+1=Zr=<ch+1.

The following example due to Eckhoff [3] sheds further light on
the general behavior of the Carathéodory, Helly, and Radon numbers.

ExAMPLE 2. With X = F* and for a given integer &k >0 let &
consist of all the convex subsets of X and all finite subsets SC X
such that [S]| < k.

Since &~ contains the usual convex subsets of E? it is clear that
& has Carathéodory number ¢ =d + 1. Eckhoff proves that if
2<d<k+1, then ¥ has Radon number 2k + 2, and by Levi’s
theorem % has finite Helly number k. By our Theorem 3,

2%+ 2=r<hd+1) +1.

Thus, by allowing k— - we have a class of convexity structures
in which the Carathéodory number is a constant (as small as 3)
while both the Helly and Radon numbers take on arbitrarily large
values.

3. A characterization of the numbers ¢, h, and r by separa-
tion properties. Since separation theorems bear prominently on
problems in convexity, it is of interest to know how they may be
related to the Carathéodory, Radon, and Helly properties in a more
general setting. If two members H, and H, of a convexity structure
% for X partition X they are called complementary <-half-spaces.
If S, S, are respectively contained by a complementary pair H,, H,
of «-half-spaces, then S, and S, are said to be Z-separated.

The existence of ~half-spaces and the possibility of separating
disjoint members of %" in general is a problem discussed by Ellis in
[4], where he introduces a property which, together with join-hull
commutativity and domain finiteness, will guarantee such separation.
For our purposes, let us say that a convexity structure % has the
separation property if it satisfies the axiom
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(f) Each two disjoint members of & may be Z™-separated.

Following Hammer, a closely related idea is the following: H’ is
called a “-semispace iff it is a member of % which is maximal
with respect to being disjoint from some other member of . An
application of Zorn’s lemma shows that for each two disjoint members
C, and C, of & there exists a “™-semispace containing C, and disjoint
from C,, provided % is closed under unions of chains of its members
(it can be proved that such is the case if & is domain finite). Thus,
mere existence of &-semispaces in & is no problem, but the comple-
ment of a Z-semispace may not be a member of &. It turns out
that an alternate way to handle the separation problem is to assume
the following property, which can shown to be equivalent to (f) above
in domain finite convexity structures:

(f) The complement of each “-semispace is &-convex.

It is then clear that whenever (f) Jor (f’)] is assumed in a
domain finite convexity structure %, with . and 27 denoting the
&-semispaces and “-half-spaces of &, & C 9% C &"; moreover, if
% is T, then . and 5~ are both bases for =7, with the members
of 57 being generated by those of <4

We now proceed to the characterization theorems mentioned
earlier; the first two do not require domain finiteness.

THEOREM 4. In any T, convexity structure & on X having the
separation property, the following two conditions are equivalent:

(i) % has Helly number h < k.

(ii) If S is a (k + 1)-element subset of X, k = 2, there exists
pe X such that every < -half-space containing at least k elements of
S also contains p.

Proof. (i) — (ii). If S is any (k 4+ 1l)-element subset of X, form
the sets S; = S ~ {x;}, where x; €S, and the family & = {&7(S)} < &,
for i =1, ...,k + 1. Since each & members of & have nonempty
intersection and & has Helly number & < k, there is a point pc NF.
Hence if H is a Z-half-space containing % elements of S, H contains
one of the sets &°(S;) of &, and hence p.

(i) — (i). Suppose (ii) is satisfied for some k = 2, and that (i)
fails for that k. Then there is a smallest subfamily & of &« for
which it fails, with each & members thereof having nonempty inter-
section but N = @. Hence | F |=k+ 1, and it follows by
standard arguments and the minimal property of % that | & | =
k+1. Let C, --+,C,,, be the members of &, and for each ¢ =
1, -+, k + 1, choose ;€ N{C;: j #i}. Then x;+# x; for 1+ j, for other-
wise x;€[)#. Hence let p be as in (i) with S = {x, +--, x,,,} and
suppose p¢ C, for some [. By the separation property there is a
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&-half-space H containing C, but not p. But C,, and therefore H,
contains & members of S, so by (ii) H contains p, a contradiction.

THEOREM 5. In any T, convexity structure & on X having the
separation property, the following two conditions are equivalent:

(i) & has Radon number r < k.

(ii) If S is a k-element subset of X, k = 8, there exists a proper
subset T of S and pe X such that every &-half-space which contains
either T or S ~ T also contains p.

Proof. Obvious since (T) = {He &~ HOT) and € (S~T} =
N{Hes#: H>S~T}. Hence (T)NZ (S~ T) is nonempty iff
every <-half-space containing 7 meets every &-half-space containing
S ~ T at some point p.

The Carathéodory number may also be formulated in terms of
separation properties, but the additional property of domain finiteness
is needed. Since the proof is a routine application of the definitions
it will be omitted.

THEOREM 6. Let & be a T, convexity structure for X which
has the separation property and is domain finite. Then the following
conditions are equivalent:

(i) & has Carathéodory number ¢ < k.

(ii) If S is a subset of X having at least k 4+ 1 elements and
pe & (S), there is a proper subset T of S such that every <-half-
space containing T also contains p.

We now apply two of the above characterization theorems to
obtain an alternate proof of Levi’s theorem (in a less general
setting).

THEOREM 7 (Levi). Let ¥ be a T, convexity structure for X
which has the separation property. Then a Radon number r for &
amplies a Helly number h < r — 1.

Proof. Let S be an r-element subset of X. By property (ii) of
Theorem 5 there exists TC S and pe X such that every Z-half-space
H containing either T or S ~ T contains p. Let H be any <-half-
space containing  — 1 points of S. Then it follows that H contains
either T or S ~ T, and thus p, yielding property (ii) of Theorem 4.
Hence, % has Helly number & < » — 1.

REMARK. In view of the simple proof of Levi’s theorem using
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separation properties one suspects there are additional relationships
among the numbers ¢, &, and r» in convexity spaces satisfying the
above two properties (e) and (f).

The next result makes use of certain separation properties to
show that under certain conditions the existence of a Radon number
is a sufficient condition for the existence of a Carathéodory number.
The property needed is known to be true for X = E¢ when d =
1, 2,3, with & the usual convexity structure (for a discussion of
related versions of generalizations of Radon’s theorem, see [1, p. 118]).

(g) If S is a finite subset of X which has a Rador partition
(S, S.) and pe&(S) but peg & (S) N Z(S,), then S has a Radon
partition (T, T,) such that

N{Hes# Ho T, pe H}NT, + @ .

THEOREM 8. Let & be a T, convexity structure for X having
the separation property, domain finiteness, and the additional property
(g) mentioned above. Then, if € has Radon number r < oo, it has
Carathéodory number ¢ < r — 1.

Proof. Let G be a subset of X and pe & (G); by domain finite-
ness there is a finite subset SC G of minimal cardinality such that
pe&(S). If |S|=r, then S has a Radon partition; so by hypothesis
S has a Radon partition (T, T,) for which there exists a point
gcHes7:HOoT,p¢ H}NT, Let H be any %-half-space con-
taining S~ ¢. Then T,C H (since ¢qe T,), and if ¢¢ H, from the
choice of ¢ it follows that pe H; but if ¢e H then Sc H and again
pe H. Thus, pe%& (S~ q), denying the minimal property of S.
Therefore, | S| < r, and & has Carathéodory number ¢ < r — 1.

4. An axiomatic foundation for convexity in euclidean space.
It is of fundamental interest to derive the convexity structure of
euclidean space from an abstract convexity structure in the case
X = E¢ This can be done by assuming the axioms below [in addi-
tion to the previous conditions (a) and (b)]. Since the system is
independent it can be proved that this set of conditions is both
necessary and sufficient. A more difficult problem arises if we do
not assume a euclidean setting, or if the axioms themselves are stated
intrinsically—that is, solely in terms of the members of &. The
more general problem of deriving necessary and sufficient conditions
for a convexity space (X, &) to be a vector space over an ordered field
for which the members of & are the convex sets might be referred
to as the linearization problem for convexity.

A similarity transformation, or similitude, is any transformation
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f: E*— K" having the dilation (“contraction-expansion”) property

e(f(x), fly) = ae(x, y) , a>0,

where e denotes the euclidean metric. The geometric properties
of such mappings are well known, and we do not state them here.
A direct similitude is one for which the matrix representing f in
the usual manner has positive determinant. Throughout the section,
we assume that X = E¢ and the usual topology will be understood.

Axiom 1: & is closed under similitudes in X.

Axziom 2: % has a member of cardinality = 2 which is bounded
in X.

Axiom 3: For every finite set Sc X, if xzeecl&’(S) then
Z@xUuS)Cr.z(S).t

Axiom 4: %« has Helly numberhsd + 1.

Axiom 5. & is domain finite.

The first four axioms are needed to prove that the members of
& are each convex. This constitutes a theorem of the type dis-
covered by Dvoretzky [2], in that, the eclassical Helly property for
E? is used to derive convexity. The similarity ends there, for
while Dvoretzky uses the assumption that & is closed under affine
mappings (stronger than our Axiom 1) and the compactness of its
members (stronger than our Axiom 2), he does not assume the very
restrictive condition that % is closed under arbitrary intersection.
The closure of % under intersections coupled with closure under
affine mappings is quite strong indeed; for, it is not difficult to prove
that the only additional assumption needed to obtain the convexity
of each member of & is, for example, that the <-hull of two
points be connected in X or, alternatively, that the z~hull of two
points contain a third and be closed in X.

The following quite different independent set of axioms charac-
terizing the usual convexity structure in E¢ were given in Womble’s
dissertation, the first three of which imply that the members of &
are convex:

Axiom 1’: & is closed under isometries in X.

Axiom 2’ If xeC and Ce% then {x} and C can be weakly
separated (in the ordinary sense) in the flat of least dimension
containing « and C.

Axiom 38': & is T,

Axiom 4': & is finitely join-hull commutative.

Axiom 5': & is domain finite.

Axiom 6': Forue < (x,y)andv e & (x,2) then & (4,2) N & (v,y)# @

1 The restriction x € cl &7 (S) is contrived to achieve independence.
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(see Ellis [4]).

Now we prove the assertions made previously about Axioms 1-5.
We shall let L(x,y) denote the line (1-flat) determined by x and y
(if z #+ y), and zy the join (ordinary convex hull) of « and y. Recall
that any two corresponding points of a direct similitude may be
specified in advance.

LemMA 1. If & satisfies Axitoms 1 and 2 then for any two
distinct points x and vy,

% (v, y) C L(z, y) ,
and s T,

Proof. First, note the two fundamental properties of any one-
to-one mapping f: X — X having the property that for each Ce &,
fIC] and f—[C] are members of &:

(i) If Sc X then f[&(S)] = € (f[SD-

(ii) If fISJUTc & (S) then f[T]c Z(S).

The first being routine, the second may be proved from the first by
writing

fITIC fIZ(8)] = 2 (fIS) c Z[Z(8)] = 2(S) .

In particular, (i) and (ii) hold if f is any similitude. Now suppose
C=%(,y) and ze€ C ~ L(z,y). Let f be a direct similitude which
takes 2 to 2, ¥ to 2z, and leaves the plane of z and L(x, %) invariant.
With z_, = y and 2, = 2z, define

2y = f(zn—1) and A(Z’n—ly @, zn) =40, .

for n =0,1, .--. An inductive application of (ii) proves that z,eC
for all n. Note that 6, =6, for each » and that, therefore,
L(z_, x,2,) = (n+ 1), for all n such that (n + 1), < xw. Thus,
there is an integer = for which /(z_, =z, 2,) > /2. Set u =z,
and let » be the reflection of % in the perpendicular bisector of zy.
It follows that veC and thus C contains a (perhaps degenerate)
trapezoid (z, y, », w) with e(u, v) > e(x, y). If g is a direct similitude
which maps z to 4 and y to v, again define u,=u, v, =7, and

Upsr = J(U) , Vpsr = G(Vn)

for n =0,1, .... It follows that u,e C and «z,€ C for all =0 and
e(Un, V) = N'e(Uy, v,), wWhere M\ = e(u, v)/e(x,y) > 1. Thus, C is un-
bounded. But if B is the guaranteed set of Axiom 2 and % is a
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similitude which maps the two guaranteed points of B onto z and
y then A[B] is a member of & containing x and y and therefore

C=< @y chBl,

contradicting the boundedness of B.

LemMA 1. If & satisfies Axioms 1 and 2 then for amy two
distinct points x and vy,

Z(x, y) Cay .

Proof. Same proof as in Lemma 1, using a trapezoid of 0
height.

LEMMA 2. If & satisfies Axioms 1-3, then for any finite set of
POINLS Xy, * oy Lpy

B (s + v oy ) C CONY (g, =+ oy Ty)

Proof. The assertion is true for & = 2 by Lemma 1’, so suppose

it has been shown for any set of k—1 points, £ = 3. Let z, «--, x,

be given and choose the notation so that x, is an extreme point of

conv (¢, «++, 2, and put S = {x,, ---, ,}. Thus, 2, ¢clconvS and by

the induction hypothesis & (S) C conv S, so z, ¢ cl (S). By Axiom 3,
g(xu ct xk) = (g(xl U S) - (xl)((g(s) - U conv (xu S)

seconvs

= conv (T, *++, &) .

LEMMA 3. If & satisfies Axioms 1-4 and &, denotes the members
of & lying in a flat of dimension k, then &, has Helly number
E+1, 1<k Zd.

Proof. Using induction on the deficiency d — k of the flat,
suppose the assertion has been proved for any collection &7, and let
C, e+, Chiy be £+ 1 members of &,_, contained in a (k — 1)-flat F,
each % of which have nonempty intersection. We first replace the
C; by “-hulls P, of finite point sets. For each ¢ define z; € N} ;. C;
and let P; = & (xy, ++*y Xiyy Tizy *++y Tpry). 1t follows that P; < C;
for each 5. FKach %k of P, .-, P,., have nonempty intersection
since a;¢ P; if © # j, and, therefore, ;¢ il ;. P;. Let x¢ F and
define the sets C/=%(x U P,) for 1<i<k+1 and C],=F (%, +*+, Tpr1).
Then by Lemma 2 the sets C/, ---, Ci,, lie in a k-flat and each k+1
have nonempty intersection. By the induction assumption there
exists pe N2 C/. For each 4, one can use Axiom 3 and Lemma 2

to prove that
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peCi’ﬂC,£+2CFﬂngiCFﬂ(Uws) = P;.

3EP;

The standard inductive argument may now be used to extend the
property to any finite subcollection of &_,, and hence &, has
Helly number k.

LEMMA 4. If & satisfies Axioms 1-4, then for any finite set of
POINES By, oo oy Lpy

G (®yy oo, L) = CONV (T ooy &) o

Proof. Consider the case’k = 2, and suppose pecay ~ (2, ¥).
The sets C, = € (z, p), C, = &€ (p, ¥), and C, = & (x, y) are subsets of
F = L(xz,y) so that Lemma 3 applies, with £ = 2. Each 2 of the C;
intersect, but N, C; = @ since p¢ & (v, ¥). The contradiction proves
that zy C & (x,y) and establishes the result for £ = 2. Induction
may then be applied to finish the proof.

The obvious result of Lemma 4 is

THEOREM 9. If & is a convexity structure for X = E?¢ satisfy-
ing Axioms 1-4, then each member of & 1is convex.

The independence of our axioms show that at this point & need
not contain all the convex sets of X. But the use of Axiom 5
together with the result of Lemma 4 provides an easy proof of the
final result.

THEOREM 10. If & s a convexity structure for X = E° satisfy-
ing Axioms 1-5, then ¥ is precisely the family of convex sets of X.

Proof. Let Cc X be convex, and consider z € (C). By Axiom 5
there exist points x,, -+, %, in C such that

TEE (Ly soe, @) = cONV (T, +»+,2,) CeonvC = C .

Therefore = (C) < C, implying C = «(C). Hence, Ce & and, in view
of Theorem 9, the result is proved.

It is routine to show the independence of each of the above
axioms, except for Axiom 2. For, in order to deny exactly one each
of the Axioms 1, 3, 4, and 5, merely take & to be, respectively,

(i) @, X, and all convex subsets of diameter < 1;

(ii) @, X, and all convex subsets of dimension < k& for some
fixed k, 2< k< d%

2 It is easy to find examples in (i) and (ii) for which there are nonconvex members
of . This, together with Example 3, shows that no proper subsystem of Axioms
1-4 is sufficient to prove Theorem 9.
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(ili) @, X, and all subsets of cardinality < d + 2; and,

(iv) all compact convex subsets of X.

To show the independence of Axiom 2 more effort is required.
First, we observe the result: If @ denotes the set of all rational
points in E? and f is a similitude of E?, then QN f[Q] must be
either @, a singleton, or @ itself. This is proved by using the
analytic form of a plane similitude (the plane being coordinatized by

¢ 7):

g =at—pn+ 2,
7 =epE + ean + 1,

where ¢ = +1. Then if (§,%;), +=1,2, are points of Q N f[Q] it
may be readily shown that « and g are rational and that, therefore,
» and p are rational (call f rational in this case). Hence f[Q] = Q,
and the result follows.

ExampLE 3. With X = E?, define & as the collection consisting
of @, X, Q, all sets of the form f[@Q], where fe 2 = family of plane
similitudes, and all singleton subsets of X.

It may be proved that & is a convexity structure (to show that
S = Ni.fil®@] is a member of & if f,eR for each iel, write

i IS] = Nicr 9@, where g; = f;7f;, and thus g,[Q] = @; apply the

above observation to show that either f;'[S] is a singleton or g; is
rational for all 7). Axiom 1 is valid, Axiom 2 is obviously denied,
and Axiom 3 holds trivially since if Ce % has 2 or more points,
el C = X. Because of the pathological nature of the example it is
remarkable that ¢ =3, h =3, and » = 4—as in classical convexity!
(Thus, Axioms 4 and 5 are valid.) Leaving the other two proofs
for the reader, consider the following argument for % = 3: Let
C, -+, C, be members of & such that any 3 intersect (it is obvious
that & == 2 by considering the #-hulls of the pairs of three points
consisting of two rationals and one irrational point). Without loss
of generality, assume that C,# X and C, +# singleton, for each <.
Thus C; = fi[Q], fie 2.

Case 1. C,NC;=2x for some 4. Then let j % 1 and consider
CNC,NC;# @. Thus xeC; and xe NE, C;.

Case 2. C, N C; contains at least two points for each 7. Then
the set fi'[C, N C] = Q N f7'f:[Q] contains at least two points so that
TUCNCl=@Q or C N C;=f]Q], for all <. Therefore, £,[]Q] < Nk, C,,
and & has Helly number 3.
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