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In this paper we solve the triple integral equations

( D ^ { r g + £ f l I S )

 φ(s>> *} = 0, 0 <: s < α, 6 < s < oo ,

(2) ^ - ' ί π Γ ( i + l " ~ * / t f ) , > Φ(s); x] = Ux\ a<x<b,
[ Γ(l + η + a — s/σ) J

where a, β, ξ> η, δ > 0, <τ > 0, are real parameters, /2O&) is a

known function, Φ(s) is to be determined and

( 3 ) m{h(x); s} = H(s), Tl^His); x) = h(x) ,

denote the Mellin transform of h(x) and its inversion formula
respectively.

The above equations are an extension of the dual integral equations
solved in a recent paper by Erdelyi [2] by means of a systematic
application of the Erdelyi-Kober operators of fractional integration [4].

Using the properties of some slightly extended forms of the
Erdelyi-Kober operators we show, in a purely formal manner, that
the solution of the triple integral equations can be expressed in terms
of the solution of a Fredholm integral equation of the second kind.
Srivastav and Parihar [5] have solved a very special case of the
equations by a completely different method from that used in this
paper. The method of solution employed here will be seen to follow
closely that used by Cooke [1] to obtain the solution to some triple
integral equations involving Bessel functions; indeed Cooke's equations
may be regarded as a special case of equations (1) and (2) and it is
shown that a solution of his equations can be readily obtained from
that presented in this paper.

2* The integral operators* We shall use the integral operators
defined by

(4) IVιa(a, x: σ)f(x) = ™~σ{a+η) [ (^ _ t°)°-H'W-'f{t)dt , a > 0 ,
1 (a) Ja

= x JL (s* _ trt^+1)^f(t)dt ,
Γ(l + a) dx Jα

- 1 < a<0,

5)
Γ(l + a)

(6) Kη,a(x,bι σ)f(x) - -££!- Γ ψ - xr-^—^fiUt , a > 0 ,
Γ{a) u
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where a < x < 6, σ > 0.
When a = 0, b = oo, these become the extended form of the

Erdelyi-Kober operators used in [2] and when σ — 2 they are the
same as the operators defined by Cooke [1].

From the theory of Abel integral equations it follows that the
inverse operators are given by

(8) I~)a (α, x: σ)f(x) = !,+«,_«(α, a?: <7)/(α?) ,

(9) K£a (x, b: σ)f{x) = Kv+a,_a (x, b: σ)f(x) .

We shall also find it convenient to have expressions for integral
operators of the type

(10) Lv>a(0, x: σ)f{x) = I£a(a, x: σ) Iv,a(0, a: σ)f{x) , 0 < a < x ,

(11) Mη,a (x, b: σ)f{x) = K^a (x, a: σ) Kη,a (α, b: σ)f(x) , x < a < b .

When 0 < a < 1, we see on using the results (4), (5) and (8) that

LUO, xι σ)f(x) = σ* -SL (of - tT't-'dt
Γ(a)Γ(l — a) dx U

Γ (tσ - ua)a-ιua^γ)-γf{v)du .
Jo

Inverting the order of integration and using the result

jZ_ f * t°-ιdt = xβ-ι(aσ - < T
dx Jβ (x° - tσ)a(tσ - ua)ι~a ~ (xσ - ua)(xσ - aa)a '

u < a< x, 0 < α < 1 ,
we find

LU0,x:σ)f(x)
(12) π (xσ - aσ)a

Γ
Jo

U*. b: σ)f(x) = *™W f

Similarly we can show that

(13)

where 0 < a < 1.
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When — 1 < a < 0, the formulae for Lη,a and Mη,a are exactly
the same as those given by the above equations.

We also have the expressions

Iv+a,-a (0, a: σ) Iv,a (0, x: σ)f(x)

= [!?;«(0, x: σ) - I£a (a, x: σ)] Iv>a (0, x: σ)f(x)
(14)

= f{x) - I£a (a, x: σ) [Iη>a (0, a: σ) + I 9 > β (α, x: σ)]f(x)

= -Iΐϊa(a, x: σ)Iv,a(0, a: σ)f{x) = -Lv,a(0, x: σ)f(x) ,

(15) ϋΓ,+α,_α(α, 6: σ)Kη,a(x, b: σ)f(x) - - Mη,a(x, b: σ)f(x) .

Two well known results [2] which play an important part in our
solution are

(16) m(IVta(0, x: σ)f(x); s} = ^ ^ + 1 ~ sJ_σ^ m{f(x); s} ,

(17) %

In what follows we are concerned with three ranges of the
variable x, namely

(18) I, = {x: 0 ^ x < α}, I2 = {x: a < x < 6}, 73 = {aj: & < x < oo} ,

and we shall write any function f(x), x ^ 0, in the form

(19) f(x) =

where

(20) /«(*) ί ^ l Γ -
(0, otherwise ,

With these definitions it is easily seen that if we evaluate the
equations

(21) g(x) = J9 ι β(0, x: σ)f(x), h(x) = Kη,Λ(x, oo: σ)f(x) ,

on the intervals I1912 and J3 respectively, we get

(22) ^ / v f β ^ 0 > Xl

h^x) = Kv>a(x, a: σjf^x) + KVa(a, b: σ)f2{x) + Kη,a(b, ™:σ)fz{x) ,

h2(x) = £•,,„(«, 6: σ)/a(aj) + ΛΓ9tβ(6, oo: σ)f3(x) ,

(24) ^ 3 ^ Iη a®' al σ ^ χ ) + Iη a(a' b: σW*(χ) + IΎI a(b> x:

h3(x) = KVya(x, oo:
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3* Solution of the integral equations* Using the notation of
equations (19) and (20) we can write the triple integral equations (1)
and (2) as

< 2 5 ) TOΊ r™+

β ΐlβ) Φ{ty x) =

where gλ — g% = 0, f2 is given and g2, fι and f3 are unknown functions.
If we write

(27) Φ(s) = m{φ(x);s} ,

and use the formulae (16) and (17) we find that equations (25) and
(26) assume the operational form

(28) Iη,a(0,x:σ)φ(x) = / ( » ) ,

(29) Kζ,β(x, c«:d)φ(x) = g{χ) .

Using the formulae (8) and (9) and solving the above equations for
Φ(x) we obtain

(30) φ(x) = Iv+a,_a(0,x:σ)f(x)

(31) =Kξ+βt-β(x, °°

Now remembering that gγ — g% = 0, and using the relations (22),
(23) and (24) to evaluate equation (28) on the interval I19 equation
(30) on /2, equation (31) on 73, equation (29) on I2 and equation (31)
on ii, we arrive at the following results

(32) f,(x) =I,,a(0,x:σ)φ1(x) ,

(33) φ,{x) - /9 + β f-α(0, α: &)/&) + I^a(a, x: σ)f2(x) ,

(34) φ3(x) = Kγt

ί

β(x, c*:d)g3(x) = 0,

(35) g2(x) - Kξtβ(v, b:δ)φ2(x) ,

(36) φ,(x) = Kξ+β,^β(a, h: δ)g2(x) .

After eliminating fλ(x) between equations (32) and (33), and
eliminating g2(x) between equations (35) and (36), we find that the
functions φx{x) and φ2(x) satisfy the pair of simultaneous integral
equations

(37) φ2(x) = -Lv,a(0, x: σ)φ1(x) + /-^(α, x: σ)f2(x) ,

(38) φ,(x) = -Mξ>β(x,b:δ)φ2(x) ,
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where we have used the formulae (14) and (15).
From these results it is easily seen that φ2(x) can be determined

from the Fredholm integral equation of the second kind

(39) φ2(x) = LVta(0, x: σ)Mξ>β(x, b: δ)ψt(x) + I£Λ(a, x: σ)f%(x) .

The solution to the triple integral equations can then be obtained
from equations (27), (34), (38) and (39).

As an example we consider the case when 0 < a < 1, and
— 1 < /3 < 0, o r O < / 3 < l ; in this instance equation (39) when written
out in detail is

Cb

φ2(x) — \ φ2(u)S(x, u)du
Ja

(40) ι~σ{v+1) -j

Γ(l -a) dx u (χ° - ta)a

where

S(x, u) — — sin(aTr) sin (βπ) •

Mt)dt ,

o (of - t°){uδ - tδ)(ad -

4. An application. Certain mixed boundary value problems
[4] may be reduced to the solution of triple integral equations of the
type

(42) ί~ ψ(u)J2p(ux)du = 0 , 0 ^ £ < α , b < x < oo ,
Jo

(43) ί°° u~2nψ(u)J2q(ux)du = F(x) , a < x < b ,
Jo

where J2p(ux) is the Bessel function of the first kind of order 2p, F(x)
is a prescribed function and ψ(u) is to be determined. When p — q
these are the equations investigated by Cooke [1]. We now show, in
a fairly straightforward manner, that the above equations can be
transformed into equations of the type (1) and (2).

Denoting the Mellin transform of ψ(u) by

(44) m{ψ(u); s} = Ψ(s) ,

and using the result [3]

(45) m{ξ-2"J2q(ξ); s} - 2*-1-2* £to -n + 8/2)
Γ(l + n + q — s/2)

we have, on applying the Faltung theorem for Mellin transforms [3],
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that the integral equations (42) and (43) can be written in the form

(46) m-4 ^(p + g/2> Φ(s); x} = 0,
I Γ(q — n + β/2) J

(47) J K - 1 ! — Γ ( 1 + p ~ 8 / 2 ) — Φ(s); x\ = 2ί+2nχ-2nF(x) , a < x < b ,
I .Γ(l + n + g — 8/2) J.Γ(l + n + g — 8/2)

where

,48)

These are the same as equations (1) and (2) with

σ = d = 2, ζ = η = p, a = q - p + n, β = q - p - n ,
{ ] ft(x) = 21+2nχ-2»F(x) .

Using the results of the previous section we have therefore that
the solution of equations (46) and (47) can be found in terms of a
function φ(x) by

(50) Φ(s) =ίl!t{φ(x);8},

where φB(x) = 0 and the functions φ^x) and φ2(x) are obtained from
equations (38) and (39) with the parameters ξ, η, etc. given by
equations (49).

Finally, in order to find the solution of the integral equations
(42) and (43) in terms of φ(x), we proceed in the following way.

From equation (44) we have that the solution is

*<«*•• * - *- q — n — i

on using equations (48) and (50). Inverting the order of integration
in the last equation we get

Ψ(u) = r φ(x)m-42°-> Ai/2 + v + s/2) i dχ
Ψ )° I Γ(l/2 + q - n - β/2) J

after applying the result (45). When p = q this solution is exactly
the same as that found by Cooke [1, pp. 61-62].
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