Let πn : A1A2⋯Ar be a
polygon of real order n in real projective n-space Ln,r ≧ n + 3, with the vertices
At.,A2,⋯ , Ar. If Hn−1 be a hyperplane for which Ai∉Hn−1,1 ≦ i ≦ r, let H(πn) be
the convex full of the set {A1,A2,⋯,Ar} defined in the affine space Ln∖Hn−1. This
paper gives a classification of the combinatorial types of the sets H(πn) for a fixed
πn.
|