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Examples are given of polyhedra K and L which have
the homotopy invariant fixed point property, in the sense
that all polyhedra of the same homotopy type have the fixed
point property (in fact K and L have no self-maps of zero
Lefschetz number) but for which K X L fails to have the
fixed point property.

Examples have been constructed (see [2,4]) of polyhedra K and
L with the fixed point property such that K x L does not have the
fixed point property. However, these examples are not completely
satisfactory in the sense that the fixed point property for K can be
lost by a minor alteration of K without changing its homotopy type
(such as by adding a 2-simplex along two edges). Indeed, this is
crucial for the examples.

It would be of much greater interest to give examples of this
phenomenon such that K and L have the homotopy invariant fixed
point property, and this question was essentially asked by Bing [1]
and Fadell [2]. We shall give the first such examples in this note.

For completeness, we note that it is known that, for instance,
if K is simply connected and satisfies the Shi condition (that dim K ^ 3
and no point of K separates K locally) then K has the fixed point pro-
perty if and only if it has no self-maps of zero Lefschetz number;
see [2] for references. All the spaces we shall consider are of this
type, but we shall not make use of this fact.

The spaces we shall be concerned with are the (reduced) mapping
cones Cφ = Sn \Jφ e

m+ί of maps φ: Sm —+ Sn with m > n. We treat them
as CTF-complexes, but they can be assumed to be triangulable. Reduced
suspension is denoted by S. Note that SCφ = Csψ.

THEOREM A. Suppose that φ: Sm —• Sn (m > n) is a suspension.
If m and n have the same parity then Cφ has the fixed point property
if and only if [φ] Φ 0 in πm(Sn). If m and n have opposite parity ,
then Cψ has a self-map of Lefschetz number zero if and only if
[ψ] e πm(Sn) has odd order.

Proof. Let /: Cφ —• Cψ and let us compute the Lefschetz number
L(f). We may change / by a homotopy so that / takes Sna Cφ into
itself. Let D be the image in Cφ, under the characteristic map, of the
(m + l)-disk of radius 1/2 in the unit disk em+1. Then by a well-
known approximation argument (either simplicial or smooth), which
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we shall not give, / may be again altered by a homotopy so that it
satisfies the following condition: There are (m + l)-disks A, A, •••,
Dr in the interior of the (m + l)-cell of Cψ such that / takes each
A homeomorphically onto D (and thus has degree ± 1 there) and
f(Cφ — \jDi)(zCφ — D. We may as well also assume that the A
are all inside D. There is the canonical deformation retraction

ψ: CΨ - int D -> Sn

and we may, and shall, identify φ with ψ\dD. Now let xeHn(Cψ)
and y e Hm+1(Cψ) be generators. Let

f*{x) = jx and f*{y) = ky .

Then j = deg/i where / :: S
n—* Sn is the restriction of /. Also k is

the sum of the degrees (each ±1) of / on the A to D (or, equival-
ently, of / on dA to 3D). Let η:dD—>Cφ be the inclusion and con-
sider the composition

ψofoη: dD->Sn .

By the homotopy addition theorem, the homotopy class of this in

πm(Sn) is

[ψofoV] = Σ[<P°σi3A)I = k[φ].

Since ^ is homotopic, through Cψ — int A to <£>: 3D —> Sn c Cp, we see

that ψofoγj'is homotopic to ψof^φ ~ f^φ. Thus

with the last equality holding since ψ is a suspension. Thus we
conclude that

k ~ j (mod ord [φ])

Now

L(f) - 1 + (-l) i + (-ir+1Λ
Ξ 1 + [(-1)* - (-l)wb* (mod ord [φ]) .

Thus if L(/) = 0, then ord [φ] divides 1 + [(-l)n - (-l)w]i which is
odd, and hence ord [φ] is odd. If, moreover, n and m have the same
parity then 0 = L(f) = 1 so that [φ] = 0.

If [<p] = 0, there is a retraction r: Ĉ  —> $\ Following this by
the antipodal map on Sn and the inclusion Sn c Cφ gives a fixed point
free map on Cφ.

Suppose now that n and m have opposite parity and that p =
ord[<p] is odd. For sake of simplicity of argument, let us suppose
that n is even and m is odd. Then define j by p — 1 + 2j and put
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k = - ( 1 + j) so that j - k = p. Let j : Sn-*Sn and k: Sm->Sm also
stand for maps of degrees j and k respectively. Since [φok] = k[φ] =
j[φ] — [jΌφ] it follows easily that there is a map g of the mapping
cylinder Mφ —> Mφ which is k on the top face Sm and is j on the bottom
face Sn. Let /: Cφ —• Cφ be the union of g with the cone on the map k.
Then L(f) = 1 + j + k = 0 as desired.

Many cases of nonpreservation of the fixed point property under
suspension follow from Theorem A. Perhaps the most interesting ones
are the following:

THEOREM B. Let K be the spaze obtained from Sk x Sk by identi-
fying (xQi x) with (x, xQ) for some fixed xQ and all x. (Thus K = Cψ

for a map φ: S216"1 —> Sk representing the Whitehead product [e, e] where
e e πk(Sk) is the class of the identity.) Then for k Φ 1, 3, 7, K has the
fixed point property but SK does not.

Proof. SK = Csφ and [Sφ] = S[e, e] = 0, as is well-known. (See
[3] or [5; pp. 488-502] and note that φ — ak in the latter reference.)
Thus SK admits a map without fixed points as noted in the proof of
Theorem A. Moreover, [e, e] = 0 only for k = 1, 3, 7 since these are
the only spheres which are iϊ-spaces. If k is odd, then the suspen-
sion 7c2k_2(Sk~1) —> π2Je_ι(Sk) is onto by [5; pp. 489-501] so that the re-
sult follows from Theorem A. Suppose now that k is even. Then
the Hopf invariant of φ is 2 (see [3; p. 336] or [5; pp. 488-502]).
Thus if x G Hk{K) and y e H2k(K) are suitable generators we have that
x2 = 2y. If f:K^K has f*(x) = nx, then

2f*(y) = f*{2y) = /*(^2) - f*(x)2 = (nx)2 = 2n*y .

Thus the Lefschetz number

L(f) =l + n + n2Φ0

since n is an integer.

Now we come to the main result of this note. See the remarks
following the proof for specific instances for which the hypotheses
are satisfied.

THEOREM C. Let n be odd and let k and I be even. Let [φ] e πn+k(Sn)
and [ψ] e πn+ί(Sn) be nonzero suspensions of orders p and q respectively.
Suppose that p and q are relatively prime. Then K — Cψ and L = Cψ
both have the (homotopy invariant) fixed point property, but K x L
has fixed point free self-maps.

Proof. K and L have the fixed point property by Theorem A.
At least one, say q, of p and q is odd. Then we can find integers
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a and b such that

2ap + bq = 1 .

Since a map Sn~>Sn of degree ap kills [<p], it extends to K = GΨ.
That is, there is a map /: K—>Sn which has degree ap on Sn —> S*.
Similarly, there is a map g: L—>Sn which has degree δg on S\ Let
a? e Hn(Sn) be a generator. Since w is odd there exists a map r: S% x
Sn~*Sn of bidegree (2, 1); see [6; p. 14]. That is, τ* takes x x 1 to
2# and takes 1 x x to x. Let A: Sn -+ K x L be the diagonal S71 —•
Sw x Sn followed by inculsion, and note that A*(x) = x x 1 + 1 x x.

Consider the composition Aoτo(f x g): K x L-+K x L, whose
image is in Sn considered as the diagonal in Sn x Sn c K x L. The
restriction of τo(f x g) to the diagonal Sn-+Sn is just τo(/ x ^r)oj
which, in homology, takes a? to 2apx + 6g# = a?. Thus ro(/ x gr)oj has
degree one and, since n is odd, is homotopic to a fixed point free
map. By the homotopy extension theorem, τo(f x g); K x L-+Sn is
homotopic to a map μ: K x L—>Sn whose restriction to the diagonal
Sn has no fixed points. Then J°ro(/ x g) is homotopic to Aoμ: Kx
L-+K x L. Now Aoμ has no fixed points since it has none on the
diagonal Sn and its image is in Sn. This completes the proof. (Al-
ternatively, one could compute directly that Aoτo(f x g) has zero
Lefschetz number and use known results which imply that this must
be homotopic to a fixed point free map, since K x L is simply con-
nected and satisfies the Shi condition.)

REMARKS. (1) Although such homotopy classes probably exist
in profusion, they are not easy to find. The only stable class [ψ] e
πn+ι(Sn), I even, of odd order appearing in toda's tables [7; p. 186] is
for I = 10. However, many more cases can be found in his tables
in [8]. Of course, classes of even order abound.

(2) Taking n ^ 13 and odd, there are examples with both [φ]
and [i/r] in the stable group πn+10(Sn) &* ZQ; see [7].

(3) The example in the least dimension seems to be [φ] e TΓ9(S7)

of order 2 and [ψ] e πι7(S7) of order 3 (which is a suspension since
S: π16(S2) -> τr17(S

7) is onto).
(4) In the case n = 7 one could use Cayley multiplication, having

bidegree (1,1), rather than r.
(5) It is of interest to note that the fixed point free map Aoμ:

K x L-+K x L can be so chosen that none of its iterates has fixed
points.

(6) We believe that our examples show that failure for the fixed
point property to be preserved by suspensions and products should be
regarded as a normal phenomenon.

(7) I have been told that W. Holsztynski also noticed that
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mapping cones give examples of the nonpreservation of the fixed
point property under suspension.
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