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MULTIPLIERS OF QUOTIENTS OF Lx

I. GLICKSBERG AND I. WIK

Let G be a locally compact abelian group with dual Γ.
The multiplier problem for Li(G) has a well known and easy
solution, while the corresponding problem for its ideals is
subtle. So far as we have been able to determine, the
problem for quotient algebras of Li((?) has not received
attention. The purpose of this note is to point that out and
to give a condition on the quotient, which ensures that the
simplest possible answer holds, and an example, which shows
that in general that answer is false.

1. The multiplier problem for ideals is treated in [2]. We
denote by M(G) the finite, regular, complex valued measures on G,
by A(Γ) the Fourier transforms of functions in L^G), by B(Γ) the
Fourier-Stieltjes transforms of measures in M(G) and by f\ E the
restriction of a function / to the set E. Finally A(E) = A(Γ)\E and
B(E) = B(Γ)\ E. The problem can be stated in a somewhat greater
generality as follows:

Let E be a subset of Γ and ψ a (necessarily bounded and con-
tinuous) function on E, for which

(1.1) φA{E) c A(E) .

Under what conditions on E does this imply that φ e B{E)1 If Γ is
compact / = 1 belongs to A(Γ) and it follows that (1.1) implies
φ e A(E)(=B{E)) for every E. In the present section we shall see
that if E is sufficiently nice near oo, all such φ are restrictions of
Fourier-Stieltjes transforms, and in the second section we shall charac-
terize the sets E, such that every bounded continuous function on E is
a multiplier of A(E). This gives an easy proof that any noncompact
/-group contains a set E for which some φ satisfying (1.1) is not
contained in B{E).

First, however, we make explicit the connection between this
problem and that of multipliers of quotients of Lt(G).

If I is any closed ideal in LX(G) with hull EaΓ, a multiplier
of L^Gj/I is a bounded operator T on £i((?)// which commutes with
translation.

We denote by kE the set {feL^Gy.f^ 0, on E}, which is the
largest ideal with hull E (or E~ if E is not assumed closed). / will
denote the coset / + kE. A multiplier of L^G)// then satisfies
T(f*g) =f*Tg = Tf*g, for / and ginL^G)/!. In terms of Fourier
transforms this says that in E, (Γ/)"//= (Tg)~/g near points 7 in E
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620 I. GLICKSBERG AND I. WIK

where (/)" and (g)~ are nonzero. Defining φ locally on E as this
common ratio yields a continuous function satisfying (1.1). Con-
versely any such φ is easily seen to define a multiplier in L1(G)/kE.

Our problem is to find necessary and sufficient conditions on E
insuring that (1.1) implies φeB(E). At present we can only give a
sufficient condition, the real content of which is in no way clear and
mainly arises as just the requirement for our proof to apply.

We pair Lx and L«« via </, K)> = /*λ(0) and denote by (JcE)L the
subspace of L«o(G) orthogonal to kE. This is precisely the w* closed
span of E (and of E) in L^G). With this terminology our positive
result is the following.

THEOREM 1.1. If φ satisfies (1.1) while

(1.2) E\(C0(G) Π

has compact closure in Γ, then φeB(E). (The bar denotes w*
closure.)

COROLLARY 1.2. The conclusion of the theorem holds if E coin-
cides off some compact set with a set F

(a) such that Co Π k(VΓϊ F)1 Φ {0} for every open V with
VΠFΦ 0, or

(b) which is a subset of a discrete subgroup of Γ.
Our corollary merely exhibits a few situations in which our less
than transparent hypothesis in 1.1. obtains. In particular (a) is
satisfied if E, off some compact set, locally carries measures with
transforms in C0(G). This is the case if E, off some compact set, is
open or locally of positive measure or is the support of a measure
with transform C0(G).

The proof of 1.1 itself is simple enough. The operator

Γ: Lάty/kE > Lx(G)/kE

defined by

T(f +kE) = g + kE iff g = φf on E ,

is bounded by the closed graph theorem and commutes with trans-
lations. Thus the adjoint T* is a bounded map, of (&S)1 = (L1(G)/&£r)*
into itself, which also commutes with translations. Consequently,
for g e C0(G) Π (kE)1 we have

|| T*g - BmT*g\U = \\T*(g - Rjj)\\» ^ \\ T*\\ \\g - Rxg\U .

(Rx is translation by x.) This shows that T*g is (essentially) con-
tinuous and g —> T*g(0) is a bounded linear functional on a subspace
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of Co(Cr). By the Hahn-Banach and Riesz theorems we have a measure
μ in M(G) with

= μ*g(0), g e C0(G) n

Replacing g by Rxg of course yields

T*g{x) = μ*flr(α?) for all a eG

and T*g = μ*#. But now for feL^G) we have

<Γ/ - JK /, </> = /*T*</(0) - f*μ*g(0) = 0

for all geC0(G) ΓΊ (&&)1, so that 5Γ/- μ*/ is orthogonal to (C0(G) Π
(kE)L)~~, and in particular its Fourier transform φf—βf vanishes on
the part of Γ lying in that span, for all feL^G), so φ = μ on that
subset of Γ. Thus φ — μ\E is supported by (1.2) and by our
hypothesis there is an fe LX(G)9 with /== 1 on (1.2). Since φf\ Ee A(E)
and μf\EeA(E) we have an heL^G), for which φ—μ = (φ—μ)f=h
on E and our desired measure v is simply the sum of μ and the
measure corresponding to h.

To prove part (a) of the corollary we assume that there are
points of F that do not belong to (CQ(G) Π {kE)L)~. That is, there
is a T O G F and a function / in L^G), orthogonal to CQ(G)f](kE)l

1 but
with /(τ0) Φ 0. Then | / | is bounded away from zero on some compact
neighborhood V of τ0 and there is a function heLλ such that h — ljf
near V. By assumption there is a nonzero function g e C0(G) Π
(fcίF Π F)) 1 . Since [f*L, ±C0Π (kF)1

 D C 0 Π k(F Π F) 1 ,

0 = </*Lly sr> = ζf*h*Lu gy = ζLlff*h*g> = <LX, ̂ > .

This implies g = 0, a contradiction which proves part (a).
To prove part (b) of the corollary we denote by Δ the discrete

subgroup in question and by Λ its annihilator. If F lies in A then
we have a measure μ on G/A, with μ — φ on F, since JP7 is an opew
subset of A. Any measure λ, which maps onto μ under the map
induced by G-+G/A then satisfies X = φ on F. We obtain a measure
v with ΐ) — φ on E as before, since E\F has compact closure.

2* We are indebted to Professor Y. Katznelson for pointing out
the following result, which can be used to obtain the promised
example.

THEOREM 2.1. Suppose E is closed. A necessary and sufficient
condition for Φ to be a multiplier of A(E) is that \\Φ\\A{E0) is uni-
formly bounded for all compact Eo c E.
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Proof. If φ is a multiplier then there exists a constant k (by
the closed graph theorem), such that

\\Φf\UE) ^ k\\f\\A{E) for every feA(E) .

For / we can take a function == 1 on Eo and with norm less than 2.
It follows that

|| φ \\ME) <; 2k for every compact Eo c E .

To prove that the condition is sufficient we assume that H^IU^,^
k for every compact EocE. Let feA(E) and Fe A(Γ) with F\E=
f. Write F = Σ? Fj, where FjeA(Γ),Fj has compact support σi9

and ΣΠIΉILn <°° Let Φά be in A(Γ), ||Φy | |<2fc and Φό\E(λσό=
Φ\ E Π tf;. Now

Σ ^i^i e A(Γ) and on J
1

Σ ^^ i = Σ 1 ^ = Φf -

Thus φ is a multiplier of A(E).
The following theorem, which we state for closed sets E, can of

course be modified to suit any E.

THEOREM 2.2, The following three conditions on a closed set E
are equivalent.

(a) Co(E) = A(E).
(b) Every bounded continuous on E is a multiplier of A{E).
(c) There exists a number λ > 0, such that feA(E0) and

for every J e CQ and every compact Eo c E.

Proof. We prove that (a) <=> (b) and (a) <=> (c).
That (a) => (b) is obvious.

To prove that (b) => (a) we note that (b) implies

C0(E).A(E)aA(E) .

Since C0(Γ) A(Γ) = C0(Γ) [1] we obtain the following inclusions

C0(E) = C0(E)A(E) c A(E) c Cϋ(E)

and thus C0(E) = A(E).
To prove that (a) => (c) we use the fact that \\f\\c ^ | | / | | Λ to

conclude from the open mapping theorem that there exists a constant
λ such that
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ll/IUw ^ M\f\\c0iE) for every feC0(E) .

Given any / e C(JE70) we extend it to a function /* e Co with maxi-
mum on Eo. Then

II/IUW ^ ll/ΊUw ^ λ i i r n ^ = λ| |/ιuo )

and (c) obtains.
To prove that (c) => (a) we use the fact that A{E) = C0(E) if

and only if

(2-1) || μ |U ̂  λ-11| μ ||, for every μ € Λf(S) .

[2. p. 141] Assumption (c) is the same as to say that (2.1) is valid
(for one λ) for all compact Eo c E. Obviously it is then also valid
for E itself.

COROLLARY 2.3. // E is an independent sequence {Ύn}?, then
every bounded function on E is a multiplier of A{E).

Proof. This is an immediate consequence of Theorem 2.1 or 2.2
since every compact subset of E is a Helson set and satisfies (c) for
λ = 1.

Note that if φeB(E), then φ is uniformly continuous. Thus if
E is an independent sequence {7»}Γ tending to infinity in R, then
every bounded function on E is a multiplier, but if 7n+1 — Ύn —* 0
then only few of them will be in B(E). We use this in the follow-
ing theorem.

THEOREM 2.4. Every noncompact I-group Γ contains a set
E, such that φA(E)czA(E) does not imply φeB(E).

Proof. Let V be a neighbourhood of 0 in Γ. Since Γ is non-
compact there exists a sequence of disjoint open sets Vn = Ύn + V,
with the property that only a finite number of the sets intersect a
given compact set. Furthermore, since Γ is an J-group it contains
a closed metric subgroup /\, (with metric d) which is also an /-group.
We are interested in the sets En—7n+ V Π A-> Our set E is constructed
as the sequence obtained by taking two points Ύ'n and Ί'ή in each En, such
that d(Ύι

n — 7», 7» — Ύn) < 1/n and E = U Γ {X, Ό is independent. The
bounded continuous function ^ defined on E by #(7») = 1, Φ(Ύ'ή) = 0,
w = 1, 2, •••, is a multiplier of A(E) but does not belong to B(E)
since it is not uniformly continuous.

REMARK. AS has been pointed out by Professor Katznelson, even
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the condition of uniform continuity is not sufficient. If E = {771}_OO°°
and I Ύn — n | —• 0 and E is independent then every bounded function
on E is a multiplier and uniformly continuous, but B(E) consists of
those functions φ for which there exists a measure μ on the circle
such that I φ(Ύn) — μ(n) | —> 0 as n —» °o. But this of course cannot
hold if limw_+oo φ(Ύn) = 1, l i m ^ ^ φ(7n) = - 1 .
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