MOORE SPACES AND $w \Delta$-SPACES

RICHARD EARL HODEL
MOORE SPACES AND $w\Omega$-SPACES

R. E. HODEL

This paper is dedicated to Professor J. H. Roberts on the occasion of his sixty-fifth birthday.

This paper is a study of conditions under which a $w\Omega$-space is a Moore space. In §2 we introduce the notion of a G^*_Ω-diagonal and show that every $w\Omega$-space with a G^*_Ω-diagonal is developable. In §3 we prove that every regular θ-refinable $w\Omega$-space with a point-countable separating open cover is a Moore space. In §4 we introduce the class of α-spaces and show that a regular $w\Omega$-space is a Moore space if and only if it is an α-space. Finally, in §5 we study a new class of spaces which generalizes both semi-stratifiable and $w\Omega$-spaces.

1. Preliminaries. We begin with some definitions and known results which will be used throughout this paper. Unless otherwise stated no separation axioms are assumed; however regular spaces are always T_1 and paracompact spaces are always Hausdorff. The set of natural numbers will be denoted by N.

Let X be a set, \mathcal{G} a cover of X, x an element of X. The star of x with respect to \mathcal{G}, denoted $\text{st}(x, \mathcal{G})$, is the union of all elements of \mathcal{G} containing x. The order of x with respect to \mathcal{G}, denoted $\text{ord}(x, \mathcal{G})$, is the number of elements of \mathcal{G} containing x.

A space X is developable if there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \cdots$ of open covers of X such that, for each x in X, $\{\text{st}(x, \mathcal{G}_n) : n = 1, 2, \cdots\}$ is a fundamental system of neighborhoods of x. Such a sequence of open covers is called a development for X. A regular developable space is called a Moore space. Bing [1] proved that every paracompact Moore space is metrizable.

According to Borges [3] a space X is a $w\Omega$-space if there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \cdots$ of open covers of X such that, for each x in X, if $x_n \in \text{st}(x, \mathcal{G}_n)$ for $n = 1, 2, \cdots$ then the sequence $\langle x_n \rangle$ has a cluster point. Such a sequence of open covers is called a $w\Omega$-sequence for X. Clearly every countably compact space is a $w\Omega$-space, and in [3] Borges proved that every developable space and every M-space is a $w\Omega$-space. For the relationship between $w\Omega$-spaces, strict p-spaces, and p-spaces, see [6].

A space X is subparacompact if every open cover of X has a σ-discrete closed refinement. Every paracompact space is subparacompact [16], and in [8] Creede proved that every semi-stratifiable space is subparacompact. For further properties of subparacompact spaces see [5], [11], and [15].
A space X is \(\theta\)-refinable if for each open cover \mathcal{V} of X there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \ldots$ of open refinements of \mathcal{V} such that, for each x in X, there is an n in \mathbb{N} such that $\text{ord}(x, \mathcal{G}_n)$ is finite. Such a sequence of open covers is called a θ-refinement of \mathcal{V}. In [24] Wicke and Worrell state that every subparacompact space is θ-refinable and that a countably compact T_1 space is compact if and only if it is θ-refinable.

2. Spaces with a G_γ-diagonal. Recall that a space X has a G_γ-diagonal if its diagonal $\Delta = \{(x, x) : x \in X\}$ is a G_γ-subset of $X \times X$. The notion of a G_γ-diagonal plays an important role in metrization theorems; see, for example, [2], [3], [7], [14], and [22]. Every semi-stratifiable Hausdorff space has a G_γ-diagonal [8]. On the other hand the space $[0, 1] \times \{0, 1\}$ with the lexicographic order is a compact perfectly normal space which fails to have a G_γ-diagonal [14].

In [7] Ceder obtained this characterization of spaces with a G_γ-diagonal.

Proposition 2.1. (Ceder) A space X has a G_γ-diagonal if and only if there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \ldots$ of open covers of X such that, for any two distinct points x and y of X, there is an n in \mathbb{N} such that $y \notin \text{st}(x, \mathcal{G}_n)$.

In light of this characterization of a G_γ-diagonal and Borges' study of spaces with a \bar{G}_δ-diagonal (see [3]), we introduce the following definition.

Definition 2.2. A space X has a G_δ^\ast-diagonal if there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \ldots$ of open covers of X such that, for any two distinct points x and y of X, there is an n in \mathbb{N} such that $y \notin \text{st}(x, \mathcal{G}_n)$. Such a sequence of open covers is called a G_δ^\ast-sequence for X.

In [13] Kullman proved that every regular θ-refinable space with a G_γ-diagonal has a \bar{G}_δ-diagonal. Since every space with a \bar{G}_δ-diagonal has a G_δ^\ast-diagonal, we have the following proposition.

Proposition 2.3. Every regular θ-refinable space with a G_γ-diagonal has a G_δ^\ast-diagonal. In particular every regular semi-stratifiable space has a G_δ^\ast-diagonal.

The next result relates the G_δ^\ast-diagonal property to the diagonal Δ.

Proposition 2.4. Let X be a space, let $\{V_n : n = 1, 2, \ldots\}$ be a
sequence of open subsets of $X \times X$ containing Δ, and suppose that
$\bigcap_{n=1}^{\infty} V_n = \Delta$. Then X has a G^*_δ-diagonal. In particular, if X is
Hausdorff and $X \times X$ is perfectly normal then X has a G^*_δ-diagonal.

Proof. For $n = 1, 2, \ldots$ let $\mathcal{G}_n = \{G \subseteq X : G \text{ open, } G \times G \subseteq V_n\}$. Since V_n is open and contains Δ, \mathcal{G}_n covers X. To show that $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is a G^*_δ-sequence for X, let x and y be distinct points of X. Choose n in \mathbb{N} such that $(x, y) \notin V_n$, and let U and W be open neighborhoods of x and y respectively such that $(U \times W) \cap V_n = \emptyset$. It follows that $W \cap \text{st}(x, \mathcal{G}_n) = \emptyset$ and so $y \notin \text{st}(x, \mathcal{G}_n)$.

We now prove the main result in this section.

Theorem 2.5. Every w_4-space with a G^*_δ-diagonal is developable.

Proof. Let X be a space, let $\mathcal{H}_1, \mathcal{H}_2, \ldots$ be a w_4-sequence for X, and let $\mathcal{G}_1, \mathcal{G}_2, \ldots$ be a G^*_δ-sequence for X. For each positive integer n let

$$
\mathcal{G}_n = \left\{ G : G = \left(\bigcap_{i=1}^{n} H_i \right) \cap \left(\bigcap_{i=1}^{n} K_i \right), H_i \in \mathcal{H}_i, K_i \in \mathcal{H}_i, i = 1, \ldots, n \right\}.
$$

It is easy to check that \mathcal{G}_{n+1} is an open refinement of \mathcal{G}_n for all n in \mathbb{N} and that $\mathcal{G}_1, \mathcal{G}_2, \ldots$ in a w_4-sequence and a G^*_δ-sequence for X.

Suppose that $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is not a development for X. Then there is a point x, a neighborhood W of x, and a sequence $\langle x_n \rangle$ such that for all n, $x_n \in \text{st}(x, \mathcal{G}_n)$ and $x_n \notin W$. Since $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is a w_4-sequence for X, the sequence $\langle x_n \rangle$ has a cluster point p. Clearly $p \notin W$ so $p \neq x$. Since $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is a G^*_δ-sequence for X, there is a positive integer k and a neighborhood V of p such that $V \cap \text{st}(x, \mathcal{G}_k) = \emptyset$. Now for $n \geq k$, $x_n \in \text{st}(x, \mathcal{G}_n) \subseteq \text{st}(x, \mathcal{G}_k)$ and so $x_n \notin V$. This contradicts the fact that p is a cluster point of $\langle x_n \rangle$. Thus $\mathcal{G}_1, \mathcal{G}_2, \ldots$ is a development for X.

Corollary 2.6. The following are equivalent for a regular w_4-space X:

(a) X is a Moore space.
(b) X is semi-stratifiable.
(c) X is θ-refinable and has a G^*_δ-diagonal.
(d) X has a G^*_δ-diagonal.

Proof. The implication (a) \Rightarrow (b) is due to Creede [8]; (b) \Rightarrow (c) follows from results by Creede [8] and Wicke and Worrell [24]; (c) \Rightarrow (d) follows from Proposition 2.3; (d) \Rightarrow (a) follows from Theorem 2.5.
Remark 2.7. The equivalence of (a) and (b) was first proved by Creede in [8], and the equivalence of (a) and (c) is due to Siwiec [23]. It is not known if every regular ωI-space with a G_δ-diagonal is a Moore space. For a study of p-spaces with a G_δ-diagonal, see [13].

Corollary 2.8. The following are equivalent for a regular countably compact space X:

(a) X is metrizable.
(b) $X \times X \times X$ is completely normal.
(c) $X \times X$ is perfectly normal.
(d) X has a G_δ^*-diagonal.

Proof. Clearly (a) \Rightarrow (b); (b) \Rightarrow (c) follows from a theorem due to Katetov [12]; (c) \Rightarrow (d) follows from Proposition 2.4. To prove (d) \Rightarrow (a) observe that X is a Moore space (by Corollary 2.6) and recall that every countably compact Moore space is metrizable.

3. Separating covers. In 1938 Filippov [9] proved that every paracompact M-space with a point-countable base is metrizable. Filippov's theorem was generalized by Burke and Stoltenberg in [4], and recently Burke [6] obtained another generalization as follows.

Burke's Theorem. Every regular subparacompact wJ-space with a point-countable base is a Moore space.

In another direction Nagata [20] proved a metrization theorem which not only generalizes Filippov's theorem but a result by Okuyama as well [22]. In order to state Nagata's theorem succinctly we use the following terminology due to Michael [17]. A cover \mathcal{V} of a set X is said to be separating if given distinct points x and y of X, there is a V in \mathcal{V} such that $x \in V, y \notin V$.

Nagata's Theorem. Every paracompact M-space with a point-countable separating open cover is metrizable.

In this section we use the techniques developed by Burke, Filippov, Nagata, and Stoltenberg, together with the results in §2, to obtain a generalization of the abovementioned theorems by Burke and Nagata.

In light of the usefulness of the concept of a θ-base in the study of developable spaces (see [24]), we begin with the following definition.
DEFINITION 3.1. A θ-separating cover of a space X is a sequence $\mathcal{G}_1, \mathcal{G}_2, \cdots$ of open collections such that, for any two distinct points x and y in X, there is a n in N such that
(a) $\text{ord}(x, \mathcal{G}_n)$ is finite;
(b) there is a G in \mathcal{G}_n such that $x \in G$ and $y \notin G$.

The relationship between a θ-separating cover and a G_δ-diagonal is given by the following two propositions.

PROPOSITION 3.2. Let X be a space with a θ-separating cover. If every closed subset of X is a G_δ then X has a G_δ-diagonal.

Proof. Let $\mathcal{G}_1, \mathcal{G}_2, \cdots$ be a θ-separating cover of X. For each pair of positive integers n and k let $\mathcal{H}_{nk} = \{H: H \neq \emptyset, H = \bigcap_{i=1}^{k} G_i, G_1, \cdots, G_k \} \text{ distinct elements of } \mathcal{G}_n$ and let $F_{nk} = X - \bigcup \{H: H \in \mathcal{H}_{nk}\}$. Now F_{nk} is a closed set and so $F_{nk} = \bigcap_{j=1}^{n} W_{nj}$, where each W_{nj} is open. For $j = 1, 2, \cdots$ let $\mathcal{K}_{nkj} = \mathcal{H}_{nk} \cup \{W_{nj}\}$. Then each \mathcal{K}_{nkj} is an open cover of X and the sequence $\{\mathcal{K}_{nkj}: n, k, j \text{ in } N\}$ exhibits the G_δ-diagonal property for X.

PROPOSITION 3.3. Every θ-refinable space with a G_δ-diagonal has a θ-separating cover.

Proof. Let $\mathcal{G}_1, \mathcal{G}_2, \cdots$ be a θ-separating cover of X. For each n in N let $\mathcal{K}_n, \mathcal{K}_{n2}, \cdots$ be a θ-refinement of \mathcal{G}_n. Then
\[\{\mathcal{K}_n: n = 1, 2, \cdots, k = 1, 2, \cdots\} \]

is a θ-separating cover of X.

The following lemmas, due to Burke and Miscenko [19], play a key role in the proof of our theorem. For the sake of completeness we sketch the proof of Burke’s result. (See Remark 1.9 in [6]).

LEMMA 3.4. (Burke) Let X be a regular, θ-refinable \mathcal{W}_Δ-space. Then there is a sequence $\mathcal{H}_1, \mathcal{H}_2, \cdots$ of open covers of X such that for each x in X,
(a) $C_x = \bigcap_{n=1}^{\infty} \text{st}(x, \mathcal{G}_n)$ is compact;
(b) $\{\text{st}(x, \mathcal{G}_n): n = 1, 2, \cdots\}$ is a base for C_x.

Proof. Let $\mathcal{V}_1, \mathcal{V}_2, \cdots$ be a \mathcal{W}_Δ-sequence for X. By induction on n construct for each positive integer n a sequence $\mathcal{W}_{n1}, \mathcal{W}_{n2}, \cdots$ of open covers of X such that
\[\text{ for } k = 1, 2, \cdots, \{\mathcal{W}: W \in \mathcal{W}_{nk}\} \text{ refines } \mathcal{V}_n \text{ and } \mathcal{W}_{nk}, \]
\[1 \leq i \leq n - 1, 1 \leq j \leq n - 1; \]
(2) for each \(x \) in \(X \) there is a \(k \) in \(N \) such that \(\text{ord}(x, W_{nk}) \) is finite.

For \(n = 1, 2, \ldots \) let \(\mathcal{G}_n = W_{n1} \). Then the sequence \(\mathcal{G}_1, \mathcal{G}_2, \ldots \) satisfies properties (a) and (b).

Lemma 3.5. (Miščenko) Let \(\mathcal{V} \) be a point-countable collection of subsets of a set \(X \) and let \(M \) be a subset of \(X \). Then there are at most countably many finite minimal covers of \(M \) by elements of \(\mathcal{V} \).

We now state and prove the main result in this section.

Theorem 3.6. Let \(X \) be a regular, \(\theta \)-refinable \(w\Delta \)-space with a point-countable separating open cover. Then \(X \) is a Moore space.

Proof. We are going to show that \(X \) has a \(\theta \)-separating cover and that every closed subset of \(X \) is a \(G_\delta \). It follows by Proposition 3.2 that \(X \) has a \(G_\delta \)-diagonal and hence by Corollary 2.6 \(X \) is a Moore space.

Let \(\mathcal{V} \) be a point-countable separating open cover of \(X \). We assume that \(X \in \mathcal{V} \); and hence for every subset \(M \) of \(X \) there is a finite subcollection of \(\mathcal{V} \) which covers \(M \), namely \(\{X\} \). Let \(\mathcal{G}_1, \mathcal{G}_2, \ldots \) be open covers of \(X \) such that for each \(x \) in \(X \),

- (a) \(C_x = \bigcap_{n=1}^\infty \text{st}(x, \mathcal{G}_n) \) is compact;
- (b) \(\{\text{st}(x, \mathcal{G}_n) : n = 1, 2, \ldots \} \) is a base for \(C_x \).

For each \(n \) in \(N \) let \(H_{nk1}, H_{nk2}, \ldots \) be a \(\theta \)-refinement of \(\mathcal{G}_n \). Recall that

- (c) \(H_{nk} \) refines \(\mathcal{G}_n \), \(k = 1, 2, \ldots \);
- (d) for each \(x \) in \(X \) there is a \(k \) in \(N \) such that \(\text{ord}(x, H_{nk}) \) is finite.

\(X \) has a \(\theta \)-separating cover. For each pair of positive integers \(n \) and \(k \) and for each \(H \) in \(H_{nk} \) let \(H(n, k, 1), H(n, k, 2), \ldots \) be all finite minimal covers of \(H \) by elements of \(\mathcal{V} \); and let

\[H_{nkJ} = \{H \cap V : H \in H_{nk}, V \in H(n, k, j)\} . \]

To show that \(\{H_{nkJ} : n, k, j \in N\} \) is a \(\theta \)-separating cover of \(X \), let \(x \) and \(y \) be two distinct points of \(X \). Choose \(V_i \) in \(\mathcal{V} \) such that \(x \in V_i \) and \(y \notin V_i \), and let \(\{V_1, \ldots, V_t\} \) be a finite cover of \(C_x \) by elements of \(\mathcal{V} \) such that \(x \in V_i \) for \(i = 2, \ldots, t \). Now \(C_x \subseteq \bigcup_{i=1}^t V_i \) and so by (b) there is a \(n \) in \(N \) such that \(\text{st}(x, \mathcal{G}_n) \subseteq \bigcup_{i=1}^t V_i \).

Choose \(k \) in \(N \) such that \(\text{ord}(x, H_{nk}) \) is finite, and let \(H \) be some element of \(H_{nk} \) such that \(x \in H \). Since \(H_{nk} \) refines \(\mathcal{G}_n \), \(H \subseteq \text{st}(x, \mathcal{G}_n) \).
and so $H \subseteq \bigcup_{i=-1}^{\infty} V_i$. Choose a minimal subcollection of \{V_1, \ldots, V_t\} which covers H and label it $H(n, k, j)$. Note that $V_i \in H(n, k, j)$. Thus $(H \cap V_i) \in \mathcal{H}_{nkj}$, $x \in (H \cap V_i)$, and $y \notin (H \cap V_i)$. Finally, suppose H_i, \ldots, H_s are all elements of \mathcal{H}_{nk} containing x. Since $H_i(n, k, j)$ is finite for $i = 1, \ldots, s$ it follows that $\text{ord}(x, \mathcal{H}_{nk})$ is finite. This completes the proof that X has a θ-separating cover.

Every closed subset of X is a G_δ. Let M be a closed subset of X. For each pair of positive integers n and k, and for each H in \mathcal{H}_{nk} such that $H \cap M \neq \emptyset$, let $H(n, k, j)$, $j = 1, 2, \ldots$ be all finite minimal covers of $H \cap M$ by elements of \mathcal{V}. By repeatedly counting a cover if necessary, we may assume that $H(n, k, j)$ exists for all j in N. For $j = 1, 2, \ldots$ let $H^*(n, k, j)$ denote the union of all elements of $H(n, k, j)$, and let $W_{nk} = \bigcup \{H \cap (\bigcap_{i=1}^{k} H^*(n, k, i)) : H \in \mathcal{H}_{nk} \}$. Clearly each W_{nk} is open and contains M. To complete the proof that M is a G_δ it suffices to show that if $x \in M$ then there exist n, k, and j such that $x \in W_{nkj}$.

First suppose that $C_x \cap M = \emptyset$. Choose n in N such that $\text{st}(x, \mathcal{C}_n) \cap M = \emptyset$, and let k and j be any positive integers. Suppose $x \in W_{nkj}$. Then there is a H in \mathcal{H}_{nk} such that $x \in H$ and $H \cap M \neq \emptyset$. Now \mathcal{H}_{nk} refines \mathcal{C}_n and so $H \subseteq \text{st}(x, \mathcal{C}_n)$. Hence $\text{st}(x, \mathcal{C}_n) \cap M = \emptyset$ and this contradicts the choice of n.

Next suppose that $C_x \cap M \neq \emptyset$. Let $\{V_1, \ldots, V_t\}$ be a finite cover of $C_x \cap M$ by elements of \mathcal{V} such that $x \notin V_r$, $r = 1, \ldots, t$. Choose n in N such that $\text{st}(x, \mathcal{C}_n) \subseteq (\bigcup_{r=1}^{t} V_r) \cup (X - M)$. Let k in N be such that $\text{ord}(x, \mathcal{H}_{nk})$ is finite and let H_1, \ldots, H_s be all elements of \mathcal{H}_{nk} which contain x and intersect M. For $i = 1, \ldots, s$, $H_i \subseteq \text{st}(x, \mathcal{C}_n)$ and so $H_i \cap M \subseteq \bigcup_{r=1}^{t} V_r$. Select from $\{V_1, \ldots, V_t\}$ a minimal subcollection which covers $H_i \cap M$ and label it $H_i(n, k, j_i)$. Now $x \notin H_i(n, k, j_i)$ and so if we take $j = \max\{j_1, \ldots, j_s\}$ then $x \in W_{nkj}$.

4. α-spaces. A space with a σ-closure preserving separating closed cover is called a σ^α-space. This definition was introduced by Nagata and Siwiec in [21].

Proposition 4.1. Every subparacompact space with a G_δ-diagonal is a σ^α-space.

Proof. Let X be a subparacompact space and let $\mathcal{F}_1, \mathcal{F}_2, \ldots$ be open covers of X exhibiting the G_δ-diagonal property for X. For each n in N let $\mathcal{F}_{n1}, \mathcal{F}_{n2}, \ldots$ be a σ-discrete closed refinement of \mathcal{F}_n. Then $\{\mathcal{F}_{nk} : n = 1, 2, \ldots, k = 1, 2, \ldots\}$ is a σ-closure preserving
separating closed cover of X.

In [6] Burke showed that a regular $w \Delta$-space is a Moore space if and only if it is a σ^*-space. His method of proof suggests introducing a new class of spaces which we call α-spaces. We shall show that σ^*-spaces are α-spaces and that a regular $w \Delta$-space is a Moore space if and only if it is an α-space.

DEFINITION 4.2. A space X is an α-space if there is a function g from $\mathbb{N} \times X$ into the topology of X such that for each x in X,

(a) $\bigcap_{n=1}^{\infty} g(n, x) = \{x\}$;

(b) if $y \in g(n, x)$ then $g(n, y) \subseteq g(n, x)$.

Such a function is called an α-function for X.

PROPOSITION 4.3. Every σ^*-space is an α-space.

Proof. Let $\mathcal{F}_1, \mathcal{F}_2, \cdots$ be a σ-closure preserving separating closed cover of a σ^*-space X. For n in \mathbb{N} and x in X let

$$g(n, x) = X - \bigcup \{F \in \mathcal{F}_n : x \notin F\}.$$

It is easy to check that the function g is an α-function for X.

PROPOSITION 4.4. Every space with a σ-point finite separating open cover is an α-space. In particular, every T_1 space with a σ-point finite base is an α-space.

Proof. Let $\mathcal{G}_1, \mathcal{G}_2, \cdots$ be a σ-point finite separating open cover of a space X. We may assume that $X \in \mathcal{G}_n$ for all n in \mathbb{N}. For $n = 1, 2, \cdots$ and x in X let $g(n, x) = \bigcap \{G \in \mathcal{G}_n : x \in G\}$. Then the function g is an α-function for X.

The following characterization of semi-stratifiable spaces will be useful in proving the main theorem in this section.

LEMMA 4.5. The following are equivalent for a space X:

(a) X is semi-stratifiable.

(b) There is a function g from $\mathbb{N} \times X$ into the topology of X such that (1) for each x in X, $\bigcap_{n=1}^{\infty} g(n, x) = \{x\}$; (2) if $x \in g(n, x_n)$ for $n = 1, 2, \cdots$ then the sequence $\langle x_n \rangle$ converges to x.

(c) There is a function g from $\mathbb{N} \times X$ into the topology of X such that (1) for each x in X and n in \mathbb{N}, $x \in g(n, x)$; (2) if $x \in g(n, x_n)$ for $n = 1, 2, \cdots$ then x is a cluster point of the sequence $\langle x_n \rangle$.

Proof. The equivalence of (a) and (b) is due to Creede [8], and
(b) \implies (c) is obvious. To complete the proof we show that (c) \implies (b). Thus, let g be a function satisfying (c), and assume that $g(n + 1, x) \subseteq g(n, x)$ for all n in \mathbb{N} and x in X.

To prove (1) of (b), first let $y \in \bigcap_{n=1}^{\infty} g(n, x)$. Then by (2) of (c), y is a cluster point of the sequence $\{x, x, \ldots\}$ and so $y \in \{x\}^-$. Next let $y \in \{x\}^-$. Then $x \in g(n, y)$ for $n = 1, 2, \ldots$ so by (2) of (c) it follows that x is a cluster point of the sequence $\{y, y, \ldots\}$. Thus $y \in g(n, x)$ for $n = 1, 2, \ldots$ and so $y \in \bigcap_{n=1}^{\infty} g(n, x)$.

To prove (2) of (b), let $x \in g(n, x_n)$, $n = 1, 2, \ldots$ and suppose that the sequence $\langle x_n \rangle$ does not converge to x. Then there is a neighborhood W of x and a subsequence $\langle x_{n_k} \rangle$ of $\langle x_n \rangle$ such that $x_{n_k} \notin W$ for all k in \mathbb{N}. Now $x \in g(n_x, x_{n_k}) \subseteq g(k, x_{n_k})$ for $k = 1, 2, \ldots$ so by (2) of (c), x is a cluster point of the sequence $\langle x_{n_k} \rangle$. But this is impossible, and so we conclude that $\langle x_n \rangle$ converges to x.

Theorem 4.6. A regular ω-space is a Moore space if and only if it is an α-space.

Proof. By Propositions 4.1 and 4.3 every Moore space is an α-space. To complete the proof let X be a regular ω-space which is also an α-space and let us show that X is a Moore space. By Corollary 2.6 it suffices to show that X is semi-stratifiable.

Let $\mathcal{G}_1, \mathcal{G}_2, \cdots$ be a ω-sequence for X, let g be an α-function for X. We may assume that for x in X and n in \mathbb{N}, $g(n + 1, x) \subseteq g(n, x)$. For x in X and $n = 1, 2, \cdots$ let $h(n, x) = g(n, x) \cap \text{st}(x, \mathcal{G}_n)$. We shall show that the function h satisfies (c) of Lemma 4.5.

Clearly (1) of (c) is satisfied. To check (2) let $x \in h(n, x_n)$ for $n = 1, 2, \cdots$. Then for $n = 1, 2, \cdots$, $x \in \text{st}(x_n, \mathcal{G}_n)$ and so $x_n \in \text{st}(x, \mathcal{G}_n)$. Thus the sequence $\langle x_n \rangle$ has a cluster point y. Suppose $y \neq x$. Now $\{y\} = \bigcap_{n=1}^{\infty} g(n, y)$ and so there is a k in \mathbb{N} such that $x \in g(k, y)$. Since y is a cluster point of $\langle x_n \rangle$ there is a $m \geq k$ such that $x_m \in g(k, y)$. Since g is an α-function for X, $x_m \in g(k, y)$ implies $g(k, x_m) \subseteq g(k, y)$. But $x \in h(m, x_m) \subseteq g(m, x_m) \subseteq g(k, x_m)$ and so $x \in g(k, y)$, a contradiction. Thus $x = y$ and x is a cluster point of $\langle x_n \rangle$.

Corollary 4.7. Every regular ω-space with a σ-point finite separating open cover is a Moore space.

Corollary 4.8. Every regular countably compact space with a σ-point finite separating open cover is metrizable.

5. A generalization of semi-stratifiable and ω-spaces. Let X be a space and let g be a function from $\mathbb{N} \times X$ into the topology of
such that for all \(x \in X \) and \(n \in \mathbb{N} \), \(x \in g(n, x) \). Consider the following properties of the function \(g \).

(A) If \(x \in g(n, x_n) \) and \(y_n \in g(n, x_n) \) for \(n = 1, 2, \cdots \) then \(x \) is a cluster point of the sequence \(\langle y_n \rangle \).

(B) If \(x \in g(n, x_n) \) and \(y_n \in g(n, x_n) \) for \(n = 1, 2, \cdots \) then the sequence \(\langle y_n \rangle \) has a cluster point.

(C) If \(x_n \in g(n, x) \) for \(n = 1, 2, \cdots \) then \(x \) is a cluster point of the sequence \(\langle x_n \rangle \).

(D) If \(x_n \in g(n, x) \) for \(n = 1, 2, \cdots \) then the sequence \(\langle x_n \rangle \) has a cluster point.

(E) If \(x \in g(n, x_n) \) for \(n = 1, 2, \cdots \) then \(x \) is a cluster point of the sequence \(\langle x_n \rangle \).

(F) If \(x \in g(n, x_n) \) for \(n = 1, 2, \cdots \) then the sequence \(\langle x_n \rangle \) has a cluster point.

In [10] Heath proved that developable spaces can be characterized in terms of a function \(g \) satisfying (A), and similarly \(wJ \)-spaces can be characterized in terms of a function \(g \) satisfying (B). Clearly 1st countable spaces are characterized by (C), and (D) is precisely the definition of a \(q \)-space [18]. Finally, as proved in §4, semi-stratifiable spaces are characterized by a function \(g \) satisfying (E). These observations suggest introducing a new class of spaces, based on (F), which generalizes semi-stratifiable and \(wJ \)-spaces.

Definition 5.1. A space \(X \) is a \(\beta \)-space if there is a function \(g \) from \(\mathbb{N} \times X \) into the topology of \(X \) such that

(a) for all \(x \) in \(X \) and \(n \) in \(\mathbb{N} \), \(x \in g(n, x) \);

(b) if \(x \in g(n, x_n) \) for \(n = 1, 2, \cdots \) then the sequence \(\langle x_n \rangle \) has a cluster point.

Such a function is called a \(\beta \)-function for \(X \).

Theorem 5.2. The following are equivalent for a regular space \(X \):

(a) \(X \) is semi-stratifiable.

(b) \(X \) is a \(\beta \)-space with a \(G^*_\beta \)-diagonal.

(c) \(X \) is an \(\alpha \)-space and a \(\beta \)-space.

Proof. Clearly (a) \(\Rightarrow \) (b) and (a) \(\Rightarrow \) (c). To prove (b) \(\Rightarrow \) (a) let \(g \) be a \(\beta \)-function for \(X \) and let \(\mathcal{U}, \mathcal{V}, \cdots \) be a \(G^*_\beta \)-sequence for \(X \), where it is assumed that \(\mathcal{V}_{n+1} \) refines \(\mathcal{V}_n \) for all \(n \). For \(x \) in \(X \) and \(n \) in \(\mathbb{N} \) let \(h(n, x) = g(n, x) \cap \mathrm{st}(x, \mathcal{V}_n) \). Then \(h \) satisfies (c) of Lemma 4.5 and so \(X \) is semi-stratifiable.

To prove (c) \(\Rightarrow \) (a) let \(g \) be a \(\beta \)-function for \(X \) and let \(h \) be an \(\alpha \)-function for \(X \), where \(h(n+1, x) \subseteq h(n, x) \) for all \(n \) in \(\mathbb{N} \) and \(x \)
in X. For x in X and $n = 1, 2, \ldots$ let $k(n, x) = g(n, x) \cap h(n, x)$. Then k satisfies (c) of Lemma 4.5 and so X is semi-stratifiable.

Remark 5.3. The implication $(d) \Rightarrow (a)$ of Corollary 2.6 and Theorem 4.6 can be proved using the above theorem together with Creede’s result that every regular semi-stratifiable $w\mathcal{A}$-space is a Moore space.

6. **Summary.** The relationship between some of the classes of spaces considered in this paper can be summarized in a diagram as follows.

![Diagram](attachment:image.png)

Fig. 1

References

Received June 8, 1970.

DUKE UNIVERSITY
J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, *Uniquely representable semigroups on the two-cell* .. 565
Glen Eugene Bredon, *Some examples for the fixed point property* 571
William Lee Bynum, *Characterizations of uniform convexity* 577
Douglas Derry, *The convex hulls of the vertices of a polygon of order n* 583
Edwin Duda and Jack Warren Smith, *Reflexive open mappings* 597
Y. K. Feng and M. V. Subba Rao, *On the density of (k, r) integers* 613
Irving Leonard Glicksberg and Ingemar Wik, *Multipliers of quotients of L₁* ... 619
John William Green, *Separating certain plane-like spaces by Peano continua* ... 625
Lawrence Albert Harris, *A continuous form of Schwarz’s lemma in normed linear spaces* .. 635
Richard Earl Hodel, *Moore spaces and w Δ-spaces* 641
Lawrence Stanislaus Husch, Jr., *Homotopy groups of PL-embedding spaces. II* .. 653
Yoshinori Isomichi, *New concepts in the theory of topological space—supercondensed set, subcondensed set, and condensed set* 657
J. E. Kerlin, *On algebra actions on a group algebra* 669
Keizō Kikuchi, *Canonical domains and their geometry in Cⁿ* 681
Ralph David McWilliams, *On iterated w*-sequential closure of cones* 697
C. Robert Miers, *Lie homomorphisms of operator algebras* 717
Louise Elizabeth Moser, *Elementary surgery along a torus knot* 737
Hiroshi Onose, *Oscillatory properties of solutions of even order differential equations* ... 747
Wellington Ham Ow, *Wiener’s compactification and Φ-bounded harmonic functions in the classification of harmonic spaces* 759
Zalman Rubinstein, *On the multivalence of a class of meromorphic functions* ... 771
Hans H. Storrer, *Rational extensions of modules* 785
Albert Robert Stralka, *The congruence extension property for compact topological lattices* .. 795
Robert Evert Stong, *On the cobordism of pairs* 803
Albert Leon Whiteman, *An infinite family of skew Hadamard matrices* 817
Lynn Roy Williams, *Generalized Hausdorff-Young inequalities and mixed norm spaces* ... 823