ON ITERATED w^*-SEQUENTIAL CLOSURE OF CONES

RALPH DAVID MCWILLIAMS
ON ITERATED \textit{w*-SEQUENTIAL CLOSURE OF CONES}

R. D. McWilliams

In this paper it is proved that for each countable ordinal number \(\alpha \geq 2 \) there exists a separable Banach space \(X \) containing a cone \(P \) such that, if \(J_X \) is the canonical map of \(X \) into its bidual \(X^{**} \), then the \(\alpha \)th iterated \textit{w*-sequential closure} \(K_\alpha(J_X P) \) of \(J_X P \) fails to be norm-closed in \(X^{**} \). From such spaces there is constructed a separable space \(W \) containing a cone \(P \) such that if \(2 \leq \beta < \alpha \), then \(K_\beta(J_w P) \) fails to be norm-closed in \(W^{**} \). Further, there is constructed a (non-separable) space \(Z \) containing a cone \(P \) such that if \(2 \leq \beta < \Omega \), then \(K_\beta(J_z P) \) fails to be norm-closed in \(Z^{**} \).

1. If \(X \) is a real Banach space and \(Y \) a subset of \(X^{**} \), let \(K(Y) \) be the set of elements of \(X^{**} \) which are \textit{w*-limits} of sequences in \(Y \). Let \(K_0(Y) = Y \) and inductively let \(K_\alpha(Y) = K(\bigcup_{\beta < \alpha} K_\beta(Y)) \) for \(0 < \alpha \leq \Omega \), where \(\Omega \) is the first uncountable ordinal. A cone in \(X \) is a subset of \(X \) which is closed under addition and under multiplication by nonnegative scalars. Our main theorem extends the result of [6] that if \(P \) is a cone in \(X \), then \(K_1(J_X P) \) must be norm-closed but \(K_2(J_X P) \) can fail to be norm-closed in \(X^{**} \). By contrast it is noted that if \(S \) is a compact Hausdorff space and \(X = C(S) \) and \(\alpha < \Omega \), then \(K_\alpha(J_X X) \) is norm-closed, even though for example if \(S \) is compact, metric, and uncountable, then \(K_\alpha(J_X X) \) is not \textit{w*-sequentially} closed. It is obvious that for each Banach space \(X \) and each subset \(Y \) of \(X^{**} \), \(K_\Omega(Y) \) is \textit{w*-sequentially} closed and hence norm-closed.

In [7] a Banach space \(X \) was exhibited such that \(K_\alpha(J_X X) \) is not norm-closed. Whether \(K_\alpha(J_X X) \) can fail to be norm-closed for \(2 < \alpha < \Omega \) is not known to the author. However, in the present paper it will be convenient to use constructions involving spaces studied in [7].

Section 2 is devoted to a useful relationship between \textit{w*-sequential convergence} and pointwise convergence of bounded sequences of functions, § 3 to further study of a space constructed in [7], and §§ 4 and 5 to preparation for and proof of the main theorems.

2. Let \(S \) be a compact Hausdorff space, \(B(S) \) the Banach space of bounded real functions on \(S \) with the supremum norm, and \(C(S) \) the closed subspace of \(B(S) \) consisting of the continuous real functions on \(S \). If \(A \) is a subset of \(B(S) \), let \(L(A) \) be the set of all pointwise limits of bounded sequences in \(A \), and let \(L_\alpha(A) \) be defined inductively by \(L_0(A) = A \) and \(L_\alpha(A) = L(\bigcup_{\beta < \alpha} L_\beta(A)) \) for each ordinal \(\alpha \) such that \(0 < \alpha \leq \Omega \).

If \(X \) is a norm-closed subspace of \(C(S) \) and \(z \in L_\alpha(X) \), then \(z \) is
bounded and Borel measurable and hence is integrable with respect to each finite regular Borel signed measure \(\mu \) on \(S \). For each \(f \in X^* \) there exists a finite regular Borel signed measure \(\mu_f \) on \(S \) such that \(f(x) = \int_s x \, d\mu_f \) for each \(x \in X \) [3, p. 265], and by the Hahn-Banach theorem \(\mu_f \) can be chosen so that \(\| \mu_f \| = \| f \| \). If \(\nu_f \) is another finite regular Borel signed measure on \(S \) such that \(f(x) = \int_s x \, d\nu_f \) for each \(x \in X \) then also \(\int_s zd\mu_f = \int_s zd\nu_f \) for each \(z \in L_a(X) \), by virtue of the bounded convergence theorem and transfinite induction. Hence a mapping \(T \) is unambiguously defined from \(L_a(X) \) into the space of real functions on \(X^* \) by

\[
(Tz)(f) = \int_s zd\mu_f \quad (z \in L_a(X), \ f \in X^*).
\]

Theorem 2.1. If \(S \) is a compact Hausdorff space and \(X \) a norm-closed subspace of \(C(S) \), then \(T \) is an isometric isomorphism from \(L_a(X) \) onto \(K_a(J_x X) \), and \(T \) maps \(L_a(A) \) onto \(K_a(J_x A) \) for each subset \(A \) of \(X \) and each \(\alpha \leq \Omega \).

Proof. For each \(z \in L_a(X) \) it is trivial that \(Tz \) is linear on \(X^* \) and that \(|(Tz)(f)| \leq \| z \| \| f \| \) for every \(f \in X^* \), so that \(Tz \in X^{**} \) and \(\| Tz \| \leq \| z \| \). For each \(t \in S \) let \(f_t(x) = x(t) \) for all \(x \in X \); then clearly \(f_t \in X^* \) with \(\| f_t \| \leq 1 \), and it is easily seen that \((Tz)(f_t) = \int_s zd\mu_{f_t} = z(t) \), so that \(|z(t)| \leq \| Tz \| \| f_t \| \leq \| Tz \| \) and hence \(\| z \| \leq \| Tz \| \). Since \(T \) is obviously linear, it follows that \(T \) is an isometric isomorphism from \(L_a(X) \) into \(X^{**} \).

Now let \(A \) be a subset of \(X \). Since the restriction of \(T \) to \(X \) is \(J_x \), it follows that \(T[L_a(A)] = TA = J_x A = K_a(J_x A) \). If \(0 < \alpha \leq \Omega \) and it is assumed that \(T[L_\beta(A)] = K_\beta(J_x A) \) for each \(\beta < \alpha \), then for each \(z \in L_\alpha(A) \) there exists a bounded sequence \(\{ z_n \} \) in \(\bigcup_{\beta < \alpha} L_\beta(A) \) which converges pointwise to \(z \). By the bounded convergence theorem \((Tz)(f) = \lim_n (Tz_n)(f)\) for each \(f \in X^* \). Since by assumption \(\{ Tz_n \} \subset \bigcup_{\beta < \alpha} K_\beta(J_x A) \), it follows that \(Tz \in K_\alpha(J_x A) \). Conversely, if \(F \in K_\alpha(J_x A) \) there exists a sequence \(\{ F_n \} \subset \bigcup_{\beta < \alpha} K_\beta(J_x A) \) such that \(F_n \xrightarrow{w^*} F \); the sequence \(\{ F_n \} \) must be bounded [3, p. 60], and by assumption there exists a sequence \(\{ z_n \} \subset \bigcup_{\beta < \alpha} L_\beta(A) \) such that \(Tz_n = F_n \) for each \(n \). Now \(\{ z_n \} \) is bounded, and if \((z(t)) \) is defined to be \(F(f_t) \) for each \(t \in S \) it follows that \(\{ z_n \} \) converges pointwise to \(z \) so that \(z \in L_\alpha(A) \). For every \(f \in X^* \), \((Tz)(f) = \lim_n (Tz_n)(f)\) by the bounded convergence theorem. Thus \(F = Tz \in T[L_\alpha(A)] \), completing the proof that \(T[L_\alpha(A)] = K_\alpha(J_x A) \). By transfinite induction the theorem follows.

Remark. If \(S \) is a compact Hausdorff space and \(X \) is the Banach
space $C(S)$, then for each $\alpha \leq \Omega$, $L_\alpha(X)$ is the space of bounded Baire functions on S of order $\leq \alpha$ and, just as in the special case of a metric space S [8, p. 132], $L_\alpha(X)$ is norm-closed in $B(S)$ and hence also $K_\alpha(J_X X)$ is norm-closed in X^{**}. If S is a compact metric space with uncountably many elements then S has a nonempty dense-in-itself kernel [1, Ch. 9, p. 34]. Hence for each countable α there is a subset T of S of Borel order exactly α [4, p. 207], but then it follows that $L_\alpha(X) \neq L_{\alpha+1}(X)$ [5, p. 299] and hence that $K_\alpha(J_X X) \neq K_{\alpha+1}(J_X X)$ for each countable α.

3. The reader is now referred to the proof of Theorem 1 of [7] for the construction, for each real $c \geq 1$, of a Banach space $X \subset C([0; 3])$ having the property that there exists an $x^0 \in L_2(X)$ such that $\|x^0\| = 1$ but if $\{y^k\}$ is a bounded sequence in $L_1(X)$ which converges pointwise to x^0, then $\liminf_k \|y^k\| \geq c$. The remainder of the present paper depends heavily on properties of the space X, and the reader will occasionally need to refer to [7]. In particular, note that X is generated by a set $\{x_{pq}: p, q \in \omega\}$ of piecewise linear nonnegative functions of norm c on $[0; 3]$ and that x^0 is the pointwise limit of the sequence $\{x^p\} \subset L_1(X)$, where x^p is the pointwise limit of $\{x_{pq}\}_{q \in \omega}$ and $\|x^p\| = c$ for each p. Each x_{pq} has truncated peaks centered at certain points $s_{ui}, t_{vj}, 2 + s_{ui}$ where $s_{ui} = 2^{-u}i$ and $t_{vj} = 2 - 2^{-v}(1 + 2^{-j})$ for $u, i, v, j \in \omega$ and $i < 2^u$. Specifically, $x_{pq}(s_{ui}) = x_{pq}(2 + s_{ui}) = 1$ if $p \geq u$, and $x_{pq}(s_{ui}) = 0$ if only if $p \geq u$. Further, $x_{pq}(t_{vj}) = c$ if $v \leq p \leq j < p + q$ and 0 otherwise. If $\chi(S)$ denotes the characteristic function of the subset S of $[0; 3]$, it turns out that

$$x^p = \chi(\{s_{pi}: i < 2^p\} \cup \{2 + s_{pi}: i < 2^p\}) + c\chi(\{t_{vj}: v \leq p \leq j\})$$

and that

$$x^0 = \chi(\{s_{pi}: p \in \omega, i < 2^p\} \cup \{2 + s_{pi}: p \in \omega, i < 2^p\}).$$

Lemma 3.1. Let Q be the norm-closed cone in X generated by $\{x_{pq}: p, q \in \omega\}$. Then Q coincides with

$$Q_0 = \{\Sigma_p \Sigma_q a_{pq} x_{pq}: a_{pq} \geq 0, \Sigma_p \Sigma_q a_{pq} < \infty\},$$

where the indicated summations are over the set ω of all positive integers.

Proof. It is clear that Q_0 is a cone containing $\{x_{pq}: p, q \in \omega\}$ and contained in Q. If $\{z_n\}$ is a sequence in Q_0 which converges in norm to some $z \in X$, then each z_n has the form $z_n = \Sigma_p \Sigma_q a_{npq} x_{pq}$ with $a_{npq} \geq 0$ and $\Sigma_p \Sigma_q a_{npq} < \infty$. As noted in [7] the limit $\lim_n a_{npq} = a_{pq}$ exists for all p, q; indeed, in the notation of [7],
\[a_{pq} = c^{-1}(x(t_{pp} - 2^{-2p-q-2}) - x(t_{pp} - 2^{-2p-q-1})). \]

Clearly each \(a_{pq} \geq 0 \), and if \(r, s \in \omega \) then
\[\Sigma_{p \leq r} \Sigma_{q \leq s} a_{pq} = \lim_n \Sigma_{p \leq r} \Sigma_{q \leq s} a_{npq} \leq \lim_n z_n(s_{ii}) = x(s_{ii}); \]

hence \(\Sigma_p \Sigma_q a_{pq} \leq x(s_{ii}) \) and \(z = \Sigma_p \Sigma_q a_{pq} x_{pq} \in Q_0 \).

Let \(\varepsilon > 0 \) be given. It follows from [7, p. 1196] that each \(x_{pq} \) is
continuous and vanishes at 0 and at \(2 - 2^{-1} \) and hence that each element
of \(X \) shares these properties. Since \(s_{pi} \to 0 \), there exists \(p_i \in \omega \)
such that \(z(s') < \varepsilon \) and \(x(s') < \varepsilon \) for \(s' = s_{p_{i+1,1}} \). Since \(\|z_n - x\| \to 0 \), there
exists \(n' \) such that \(z_n(s') < \varepsilon \) for all \(n > n' \). Thus, by [7],
\[\Sigma_{p > p_i} \Sigma_q a_{pq} = z(s') < \varepsilon \] and \(\Sigma_{p > p_i} \Sigma_q a_{npq} = z_n(s') < \varepsilon \) for \(n > n' \). Further,
since \(t_{ij} \to 2 - 2^{-1} \), there exists by continuity \(q_i \geq p_i \) such that \(z(t_{i,q_i}) < \varepsilon \) and \(x(t_{i,q_i}) < \varepsilon \); hence there exists \(n'' \geq n' \) such that \(z_n(t_{i,q_i}) < \varepsilon \) for all \(n > n'' \). It follows from [7] that
\[\Sigma_{p \leq p_i} \Sigma_{q > q_i} a_{pq} \leq \Sigma_{p \leq q_{i-1}} \Sigma_{q > q_i - p} a_{pq} = c^{-1}z(t_{i,q_i}) < \varepsilon \]

and similarly \(\Sigma_{p \leq p_i} \Sigma_{q > q_i} a_{npq} \leq c^{-1}z_n(t_{i,q_i}) < \varepsilon \) for all \(n > n'' \). Moreover,
since \(a_{npq} \to a_{pq} \), there exists \(n_i \geq n'' \) such that \(\Sigma_{p \leq p_i} \Sigma_{q \leq q_i} |a_{pq} - a_{npq}| < \varepsilon \) for all \(n > n_i \). Hence for \(n > n_i \) the triangle inequality implies that
\[\|z - z_n\| \leq \|\Sigma_{p > p_i} \Sigma_q a_{pq} x_{pq}\| + \|\Sigma_{p \leq p_i} \Sigma_{q > q_i} a_{npq} x_{pq}\| \]
\[+ \|\Sigma_{p \leq p_i} \Sigma_{q > q_i} a_{pq} x_{pq}\| + \|\Sigma_{p \leq p_i} \Sigma_{q > q_i} a_{npq} x_{pq}\| \]
\[+ \|\Sigma_{p \leq p_i} \Sigma_{q > q_i} (a_{pq} - a_{npq}) x_{pq}\| \]
\[< 5c\varepsilon, \]

since \(\|x_{pq}\| = c \) for all \(p, q \). Thus \(\|z - z_n\| \to 0 \) and therefore \(x = z \in Q_0 \), proving that \(Q_0 \) is norm-closed.

Lemma 3.2. Let \(Q_1 = \{\Sigma_p b_p x^p : b_p \geq 0, \Sigma_p b_p < \infty\} \). Then \(L_1(Q) = Q + Q_1 \).

Proof. Since \(L_1(Q) \) is a norm-closed cone in \(B([0; 3]) \) by [6, Theorem 1, p. 192] and Theorem 2.1, and since \(\{x^p\}_p \subset L_1(Q) \), it is clear that \(Q + Q_1 \subset L_1(Q) \). If \(\{z_n\} \) is a bounded sequence in \(Q \) which
is pointwise convergent to some \(z \in L_1(Q) \), each \(z_n \) has the form \(z_n = \Sigma_p \Sigma_q a_{npq} x_{pq} \) with \(a_{npq} \geq 0 \) and \(\Sigma_p \Sigma_q a_{npq} < \infty \). As in the proof of Lemma 3.1, for all \(p, q \in \omega \) the limit \(a_{pq} = \lim_n a_{npq} \) exists. For all \(p, q_i \in \omega \),
\[\Sigma_{q \leq q_i} a_{pq} = \lim_n \Sigma_{q \leq q_i} a_{npq} \leq \lim_n c^{-1}z_n(t_{pp}) = c^{-1}z(t_{pp}); \]

hence \(\Sigma_q a_{pq} \leq c^{-1}z(t_{pp}) \) for each \(p \in \omega \). Let \(b_p = c^{-1}z(t_{pp}) - \Sigma_q a_{pq} \) for each \(p \), and note that all the numbers \(a_{pq} \) and \(b_p \) are nonnegative.

For \(n, p \in \omega \) let \(u_{np} = \Sigma_q a_{npq} x_{pq} \) and \(u_p = \Sigma_q a_{pq} x_{pq} + b_p x^p \). For each \(p \), if \(t \in [0; 3] \) and \(t \) is not of the form \(s_{p_i}, 2 + s_{p_i}, \) or \(t_{vj} \) with \(v \leq p \)
\[\leq j, \text{ in the notation of } [7, \text{ p. } 1196], \; x_{pq}(t) = 0 \text{ for all sufficiently large } q \] and hence \(x_{p}(t) = 0 \), so that \(u_{np}(t) \xrightarrow{n} u_{p}(t) \). If \(t = s_{pi} \) or \(t = 2 + s_{pi} \), then

\[u_{np}(t) = \Sigma q a_{npq} = c^{-1}z_{a}(t_{pp}) \longrightarrow c^{-1}z(t_{pp}) = u_{p}(t). \]

Finally, if \(v \leq p \leq j \), then

\[u_{np}(t_{si}) = c\Sigma q_{j-p} a_{npq} \longrightarrow z(t_{pp}) - c\Sigma q_{j-p} a_{pq} = c[b_{p} + \Sigma q_{j-p} a_{pq}] = u_{p}(t_{si}), \]

proving that \(\{u_{np}\} \) converges pointwise to \(u_{p} \) on \([0; 3]\).

For each \(r \in \omega \),

\[\Sigma p \leq r(\Sigma q a_{pq} + b_{p}) = c^{-1}\Sigma p \leq r z(t_{pp}) \]

\[= c^{-1}\lim_{n}\Sigma p \leq r z_{n}(t_{pp}) = \lim_{n}\Sigma p \leq r \Sigma q a_{npq} \]

\[\leq \lim_{n} z_{n}(s_{i1}) = z(s_{i1}), \]

Hence \(\Sigma_{p} u_{p} \in Q + Q_{i} \). Let \(w = z - \Sigma_{p} u_{p} \); then \(w \) is easily seen to be a Baire function of the first class on \([0; 3]\) and hence by \([8, \text{ p. } 143]\) \(w \) must have a point \(t \) of continuity in \([2; 3]\).

At each point of the form \(t = 2 + s_{ri} \) with \(i \) odd, \(u_{p}(t) = u_{p}(s_{i1}) \) for each \(p \geq r \) and hence

\[w(t) = \lim_{n}(\Sigma p < r u_{np}(t) + \Sigma p \geq r \Sigma q a_{npq}) - \Sigma p u_{p}(t) \]

\[= \lim_{n}(z_{n}(s_{i1}) - \Sigma p < r u_{np}(s_{i1}) - \Sigma p \geq r u_{p}(t)) \]

\[= z(s_{i1}) - \Sigma p u_{p}(s_{i1}) = w(s_{i1}). \]

Since the set of such points \(t \) is dense in \([2; 3]\), \(w(t_{i}) = w(s_{i1}) \). On the other hand, it follows from \([7]\) that for each point of the form \(s = 2 + s_{ri} \pm 2c_{ri1} \) with \(i \) odd, \(x_{pq}(s) = 0 \) whenever \(p \geq r \), and hence

\[w(s) = \lim_{n}(\Sigma p < r u_{np}(s) - \Sigma p < r u_{p}(s)) = 0. \]

Since the set of such points \(s \) is also dense in \([2; 3]\), it follows that \(w(t_{i}) = 0 \) and hence that \(w(s_{i1}) = 0 \).

For each \(r \in \omega \) let \(w_{r} = z - \Sigma p < r u_{p} \). Then \(w_{r} \to w \) in the norm topology, and \(w_{r} \) is the pointwise limit of \(\{\Sigma p \geq r u_{np}\} \). Hence

\[||w_{r}|| \leq \lim \sup_{n}||\Sigma p \geq r u_{np}|| \leq c\lim_{n}\Sigma p \geq r u_{np}(s_{i1}) = cw_{r}(s_{i1}) \]

and consequently

\[||w|| = \lim_{r}||w_{r}|| \leq c\lim_{r}w_{r}(s_{i1}) = cw(s_{i1}) = 0. \]

Therefore \(w = 0 \) and \(z = \Sigma_{p} u_{p} \in Q + Q_{i} \), completing the proof of the lemma.

Note. The last paragraph of the previous proof shows that if
\{z_n\} is a bounded pointwise convergent sequence in \(Q\), then in the notation of that proof for each \(\varepsilon > 0\) there exist \(p_1, n_1 \in \omega\) such that \(\Sigma_{p \geq p_1} \Sigma_q a_{npq} < \varepsilon\) for all \(n \geq n_1\). Indeed, given \(\varepsilon > 0\) there exists \(p_1\) such that \(cw_{p_1}(s_{11}) < \varepsilon\). Since \(\limsup_n ||\Sigma_{p \geq p_1} u_{np}|| \leq cw_{p_1}(s_{11})\), there exists \(n_1\) such that for each \(n \geq n_1\)

\[
\Sigma_{p \geq p_1} \Sigma_q a_{npq} = (\Sigma_{p \geq p_1} u_{np})(s_{11}) \leq ||\Sigma_{p \geq p_1} u_{np}|| < \varepsilon.
\]

LEMMA 3.3. Let \(Q_2 = \{c_0 x^0 : c_0 \geq 0\}\). Then \(L_2(Q) = L_\Omega(Q) = Q + Q_1 + Q_2\).

Proof. Clearly \(Q + Q_1 + Q_2\) is a cone containing \(L_i(Q)\) and contained in \(L_2(Q)\). To prove the lemma it suffices to show that \(L(Q + Q_1 + Q_2) \subseteq Q + Q_1 + Q_2\). If \(\{z_n\}\) is a bounded sequence in \(Q + Q_1 + Q_2\) which is pointwise convergent to a function \(z\), then each \(z_n\) has the form

\[
z_n = y_n + \Sigma_{p} b_{np} x^p + c_n x^0
\]

where \(y_n \in Q, b_{np} \geq 0, c_n \geq 0,\) and \(\Sigma_{p} b_{np} < \infty\). Since \(\{z_n\}\) is bounded, the diagonal process yields a subsequence \(\{z_{n_j}\}\) of \(\{z_n\}\) such that \(c_0 = \lim c_{n_j}\) and \(b = \lim b_{n_jp}\) exist and \(b_p = \lim b_{n_jp}\) exists for each \(p \in \omega\). It is easily seen from [7, p. 1196] that these limits are finite and nonnegative, that \(\Sigma_{p} b_{p} \leq b\), and that the sequence \(\{\Sigma_{p} b_{np} x^p + c_n x^0\}\) is pointwise convergent to \(\Sigma_{p} b_{p} x^p + (c_0 + b - \Sigma_{p} b_{p}) x^0\). Hence also \(\{y_{n_j}\}\) is pointwise convergent, and by Lemma 3.2 its pointwise limit is in \(Q + Q_1\). Since \(z\) is the pointwise limit of \(\{z_{n_j}\}\), it follows that \(z \in Q + Q_1 + Q_2\).

REMARK. It is clear from [7] that the representation of each \(z \in L_\Omega(Q)\) in the form \(\Sigma_{p} \Sigma_q a_{pq} x_{pq} + \Sigma_{p} b_{p} x^p + c_0 x^0\) is unique.

4. Given an arbitrary countable ordinal \(\alpha \geq 2\) and a number \(c \geq 1\), we now construct a separable Banach space \(X_\alpha\) containing a cone \(P_\alpha\) for which there exists \(z_\alpha \in L_\alpha(P_\alpha)\) such that \(||z_\alpha|| = 1\) but such that if \(\{w_n\}\) is a bounded sequence in \(\bigcup_{\beta < \alpha} L_\beta(P_\alpha)\) converging pointwise to \(z_\alpha\), then \(\lim_n ||w_n|| \geq c\).

Let \(B_\alpha\) be the countable set \(\{(2, 1)\} \cup \{(\beta, \gamma) : \alpha \geq \beta > \gamma \geq 2\}\). Then there exists a one-to-one mapping \(\nu_\alpha\) from \(D_\alpha\) onto \(B_\alpha\), where \(D_\alpha = \{1, \cdots, 2^{-1}(\alpha^2 - 3\alpha + 4)\}\) if \(\alpha < \omega\) and \(D_\alpha = \omega\) if \(\alpha \geq \omega\), such that \(\nu_\alpha(1) = (2, 1)\). Let \(U = \{0\} \cup \{n^{-1} : n \in D_\alpha\}\) and let \(S_\alpha\) be the compact subset \([0; 6] \times U\) of \(E^2\). For each real function \(z\) defined on \(S_\alpha\) and each \(u \in U\), let

\[
z^1.u(t) = z(t, u), \quad z^2.u(t) = z(t + 3, u)
\]
for \(t \in [0; 3] \). Further, let \(\mathcal{S}_\alpha \) be the set of all type \(- \alpha \) generalized sequences \(s = (s_\beta: 1 \leq \beta \leq \alpha) \) of positive integers.

Letting \(x_{pq} \) be as in § 3 and noting by [7] that \(x_{pq}(0) = x_{pq}(3) = 0 \) for \(p, q \in \omega \), we easily verify that for each \(s \in \mathcal{S}_\alpha \) the function \(x_s \) defined by

\[
x^{1,u}_s = \begin{cases} x_{s_\beta} & \text{if } u > 0, u^{-1} \leq s, \nu_s(u^{-1}) = (\beta, \gamma) \\ 0 & \text{if } u > 0, u^{-1} > s \\ 0 & \text{if } u = 0 \\ \end{cases}
\]

is an element of \(C(S_\alpha) \). Let \(X_\alpha \) be the norm-closed subspace and \(P_\alpha \) the norm-closed cone in \(C(S_\alpha) \) generated by \(\{ x_s: s \in \mathcal{S}_\alpha \} \). Since \(S_\alpha \) is compact metric, \(C(S_\alpha) \) is separable [3, p. 340] and hence also \(X_\alpha \) is separable. Note that \(||x_s|| = c \) for each \(s \in \mathcal{S}_\alpha \).

For \(1 \leq \delta \leq \alpha \) and \(s \in \mathcal{S}_\alpha \) let \(z_{s, \delta} \) be defined on \(S_\alpha \) by

\[
z^{1,\delta}_{s, \delta} = u^{-1} z^{2,\delta}_{s, \delta} = \begin{cases} x_{s_{\beta}} & \text{if } u > 0, \nu_s(u^{-1}) = (\beta, \gamma), \beta > \gamma > \delta \\ x^{\delta} & \text{if } u > 0, \nu_s(u^{-1}) = (\beta, \gamma), \beta > \delta \geq \gamma \\ x^{0} & \text{if } u > 0, \nu_s(u^{-1}) = (\beta, \gamma), \delta \geq \beta > \gamma \\ 0 & \text{if } u = 0 \\ \end{cases}
\]

Thus \(||z_{s, \delta}|| = 1 \) for each \(s \in \mathcal{S}_\alpha \). In fact, \(z_{s, \delta} \) is independent of \(s \in \mathcal{S}_\alpha \) and we simply write \(z_\delta \) instead of \(z_{s, \delta} \).

Lemma 4.1. For each \(s \in \mathcal{S}_\alpha \) and \(1 \leq \delta \leq \alpha \), \(z_{s, \delta} \in L_\delta(P_\alpha) \).

Proof. If \(\delta = 1 \) and \(s \in \mathcal{S}_\alpha \), then for each \(q \in \omega \) let \(s^q \in \mathcal{S}_\alpha \) be defined by

\[
s^q_\beta = \begin{cases} q & \text{if } \beta = 1 \\ s^q_\beta & \text{if } 1 < \beta \leq \alpha \\ \end{cases}
\]

It is easy to verify that \(\{ x_{s^q_\beta} \}_{q=1}^\omega \) is a bounded sequence in \(P_\alpha \) converging pointwise to \(z_{s,1} \), so that \(z_{s,1} \in L_1(P_\alpha) \).

Proceeding by transfinite induction, assume that \(1 < \delta \leq \alpha \) and that \(z_{s, \epsilon} \in L_\epsilon(P_\alpha) \) for each \(s \in \mathcal{S}_\alpha \) and \(1 \leq \epsilon < \delta \). Let \(s \in \mathcal{S}_\alpha \) be given, and let \(t^q \in \mathcal{S}_\alpha \) be defined for each \(q \in \omega \) by

\[
t^q_\beta = \begin{cases} s^q_\beta & \text{if } \delta \neq \beta \leq \alpha \\ q & \text{if } \beta = \delta \end{cases}
\]

If \(\delta \) is not a limiting ordinal, then \(\delta \) has an immediate predecessor \(\delta - 1 \), and it is straightforward to show that the bounded sequence
\(\{z_{t,s-1}\}_{t=1}^{\infty} \) in \(L_{t-1}(P_a) \) converges pointwise to \(z_{s,a} \) on \(S_a \). On the other hand, if the countable ordinal \(\delta \) is limiting, there exists an increasing sequence \(\{r_\alpha\}_{\alpha=1}^{\infty} \) of ordinals whose limit is \(\delta \), and it can be verified that the bounded sequence \(\{z_{t,s-1}\}_{t=1}^{\infty} \) in \(\bigcup_{i<\delta} L_i(P_a) \) is pointwise convergent to \(z_{s,a} \). Thus the lemma is proved inductively. In particular, our proof has shown that \(z_{s,a} \), whose norm is 1, is the pointwise limit of a sequence of elements of norm \(c \) in \(\bigcup_{\beta<\delta} L_\beta(P_a) \).

Note that if \(1 \leq \delta \leq \Omega \), \(z \in L_\delta(P_a), \) \(i \in \{1, 2\} \), and \(u \in U \), then \(z^i,u \in L_\delta(Q) \subseteq L_\alpha(Q) = Q + Q_1 + Q_2 \) by Lemma 3.3, and trivially \(z^i,0 = 0 \).

Lemma 4.2. Let \(1 \leq \delta \leq \Omega \) and \(z \in L_\delta(P_a) \) with
\[
z^1,i = \Sigma_p \Sigma_q \alpha_{pq} x_{pq} + \Sigma_p b_p x^p + c_0 x^0.
\]
Then also \(y \in L_\delta(P_a) \), where
\[
y^1,i = y^2,i = \Sigma_p (b_p + \Sigma_q \alpha_{pq}) x^p + c_0 x^0,
\]
y^1,0 = y^2,0 = 0, and \(uy^1,u = y^2,u = z^2,u \) for each \(u \in U \setminus \{0, 1\} \).

Proof. The proof will be by induction on \(\delta \). If \(\delta = 1 \), then \(z^1,i \in L_1(Q) = Q + Q_1 \) and hence \(c_0 = 0 \). There exists a bounded sequence \(\{w_n\} \) in \(P_a \) which converges pointwise to \(z \) on \(S_a \). Since the finite linear combinations with nonnegative coefficients of elements in \(\{z_s: s \in \mathcal{S}_a\} \) are norm-dense in \(P_a \), each \(w_n \) can be assumed to have the form
\[
w_n = \Sigma_i \omega r_{ni} x_{(s^{ni})},\text{ where each } s^{ni} \in \mathcal{S}_a, \text{ each } r_{ni} \geq 0, \text{ and for each } n \text{ there exist only finitely many } i \text{ such that } r_{ni} > 0.\]
If \(t^{ni} \in \mathcal{S}_a \) is defined for all \(n, i \in \omega \) by \((t^{ni})_\beta = (s^{ni})_\beta \) for \(2 \leq \beta \leq \alpha \) and \((t^{ni})_1 = n \), then the sequence \(\{w'_n\} \), where \(w'_n = \Sigma_i \omega r_{ni} x_{(s^{ni})} \), is clearly a bounded sequence in \(P_a \). It will now be shown that \(\{w'_n\} \) converges pointwise to \(y \).

For each \(u \in U \setminus \{0, 1\}, \nu(u(w^{-1})) = (\beta, \gamma) \) for some \(\beta, \gamma \) such that \(\beta > \gamma \geq 2 \), and hence for each \(n \geq w^{-1}, \)
\[
w'_n,1,u = w^{-1} w'_n,2,u = \Sigma_i \omega r_{ni} x_{(s^{ni})} \beta_1 \gamma = \Sigma_i \omega r_{ni} x_{(s^{ni})} \beta_1 \gamma = w^{-1} w'_n,1,u;
\]
therefore,
\[
w'_n,1,u(t) \longrightarrow n \longrightarrow w^{-1} x^{2,u}(t) = y^{1,u}(t) \text{ and } w'_n,2,u(t) \longrightarrow z^{2,u}(t) = y^{2,u}(t) \text{ for all } t \in [0, 3].
\]

Since the situation for \(u = 0 \) is trivial, it remains only to consider the case in which \(u = 1 \). Given \(n, p, q \in \omega \) let
\[
a_{npq} = \Sigma \{r_{ni}: (s^{ni})_2 = p, (s^{ni})_1 = q\}.
\]
Thus each \(a_{npq} \geq 0 \), and for each \(n \) there are only finitely many pairs \((p, q) \) for which \(a_{npq} > 0 \). Since \(w'^1,n = \Sigma_p \Sigma_q a_{npq} x_{pq} \) for each \(n \), it follows from the proof of Lemma 3.2 and the note following that proof that
\[\lim_n \alpha_n p q = \alpha p q \text{ for each } p, q; \]

\[\lim_n \Sigma \alpha_n p q = e^{-1} \xi^{1,1}(t_{pp}) = \Sigma \alpha p q + b_p \]

for each \(p \); and that \(\lim \sup_n \Sigma p \geq r \Sigma \alpha_n p q \to 0 \) as \(r \to \infty \). Thus given \(\varepsilon > 0 \), there exist \(r \) and \(n_1 \) such that \(\Sigma p \geq r (\Sigma \alpha p q + b_p) < \varepsilon/3c \) and \(\Sigma p \geq r \Sigma \alpha_n p q < \varepsilon/3c \) for all \(n > n_1 \). Now \(w_n^{1,1} = \Sigma_p (\Sigma \alpha_n p q) x_{pn} \), and for each \(t \in [0; 3] \) there exists \(n_2(t) > n_1 \) such that

\[|(\Sigma \alpha_n p q) x_{pn}(t) - (\Sigma \alpha p q + b_p) x^p(t)| < \frac{\varepsilon}{3r} \]

for each \(n > n_2(t) \) and \(p < r \). It follows easily by the triangle inequality that

\[|w_n^{1,1}(t) - \Sigma_p (b_p + \Sigma \alpha p q) x^p(t)| < \varepsilon \]

for each \(n > n_2(t) \). Thus

\[w_n^{1,1}(t) = w_n^{2,1}(t) \to y^{1,1}(t) = y^{2,1}(t) \]

for all \(t \), completing the proof for \(\delta = 1 \).

Now let \(\delta > 1 \) and assume that the statement of the lemma is true for each ordinal \(\varepsilon \) such that \(1 \leq \varepsilon < \delta \). If \(z \in L_\varepsilon(P_\alpha) \), there exists a bounded sequence \(\{w_n\} \subset \bigcup_{\varepsilon < \delta} L_\varepsilon(P_\alpha) \) which converges pointwise to \(z \).

By the induction hypothesis the sequence \(\{y_n\} \) is contained in \(\bigcup_{\varepsilon < \delta} L_\varepsilon(P_\alpha) \), where, if

\[w_n^{1,1} = \Sigma_p, q \alpha_n p q x_{pq} + \Sigma_p b_n p x^p + c_n x^0, \]

then

\[y_n^{1,1} = y_n^{2,1} = \Sigma_p (b_n p + \Sigma \alpha_n p q) x^p + c_n x^0, \]

and \(y_n^{1,0} = y_n^{2,0} = 0 \) and \(uy_n^{1,0} = y_n^{2,0} = w_n^{1,0} \) for \(u \neq 0, 1 \). An easy induction argument shows that \(||f^{2,0}\| \leq ucf^{1,1}(s_{t_1}) \) for each \(u \in U \) and \(f \in L_\varepsilon(P_\alpha) \), and from this result it follows that the sequence \(\{y_n\} \) is bounded. To see that \(\{y_n\} \) converges pointwise to \(y \), note first that \(y_n^{1,0} = y_n^{2,0} = 0 = y^{1,0} = y^{2,0} \) for each \(n \). Next, if \(u \neq 0, 1 \) and \(t \in [0; 3] \), then

\[uy_n^{1,*}(t) = y_n^{2,*}(t) = w_n^{2,*}(t) \to z^{2,*}(t) = uy_n^{1,*}(t) = y^{2,*}(t). \]

For \(u = 1 \), since \(y_n^{1,1} = y_n^{2,1} \) and \(y^{1,1} = y^{2,1} \), it remains only to show that \(y_n^{1,1}(t) \to y^{1,1}(t) \) for each \(t \in [0; 3] \). If \(t \) is not of the form \(s_{pi} \), \(2 + s_{pi} \), or \(t_{pj} \) with \(v \leq j \), then \(y_n^{1,1}(t) = 0 = y^{1,1}(t) \). If \(t = s_{pi} \) or \(2 + s_{pi} \) with \(i \) odd, then

\[y_n^{1,1}(t) = w_n^{1,1}(t) - \Sigma_{p < p_1} \Sigma q \alpha_n p q x_{pq}(t) \]

and
\[y^{i,i}(t) = z^{i,i}(t) - \Sigma_{p < p_1} \Sigma_{q \in \sigma} a_{pq} x_{pq}(t); \]

since \(w_n^{i,i}(t) \to z^{i,i}(t) \) and \(a_{n pq} \to a_{pq} \) (as noted in the proof of Lemma 3.1), and since there exists \(q \) such that \(x_{pq}(t) = 0 \) whenever \(p < p_1, q > q_1 \), it follows that \(y_n^{i,i}(t) \to y^{i,i}(t) \). Finally, if \(t = t_{\nu j} \) with \(1 \leq \nu \leq j \), then

\[
y_n^{i,i}(t) = w_n^{i,i}(t) + c \Sigma_{p = v}^{j} \Sigma_{q = 1}^{j} a_{npq}
\to z^{i,i}(t) + c \Sigma_{p = v}^{j} \Sigma_{q = 1}^{j} a_{npq} = y^{i,i}(t).
\]

This completes the induction step and hence the proof of the lemma.

Lemma 4.3. Let \(0 \leq \delta \leq \Omega \) and \(z \in L_\delta(P_\alpha) \). Then \(z^{i,u} \leq u^{-1} z^{i,u} \) for each \(u \in U \setminus \{0\} \). If

\[
z^{i,i} = \Sigma_{p} \Sigma_{q} a_{pq} x_{pq} + \Sigma_{p} b_{p} x_{p} + c_{o} x_{0}
\]

and if \(q_1 \in \omega \), then

\[
z^{i,u} \leq u^{-1} z^{i,u} - c \Sigma_{p} \Sigma_{q < q_1} a_{pq}
\]

for each \(u \geq q_1^{-1} \).

Proof. The first assertion is immediate by induction on \(\delta \). For the second assertion suppose first that \(z \) has the form \(z = \Sigma_{s \in \sigma} d_{s} x_{s} \) where \(\sigma \) is a finite subset of \(\sigma_a \) and \(d_{s} \geq 0 \) for each \(s \). Then \(z^{i,i} = \Sigma_{p} \Sigma_{q < q_1} a_{pq} x_{pq} \), where

\[
a_{pq} = \Sigma\{d_{s}: s \in \sigma, s_{1} = p, s_{1} = q\}.
\]

Thus \(\Sigma_{p} \Sigma_{q < q_1} a_{pq} = \Sigma\{d_{s}: s \in \sigma, s_{1} < q_{1}\} \) and hence if \(u \geq q_1^{-1} \) and \(\nu_{s}(u^{-1}) = (\beta, \gamma) \), then

\[
z^{i,u} = u \Sigma_{s \in \sigma} d_{s} x_{s_{1},s_{1}} = u z^{i,u} + u \Sigma_{s_{1} < q_{1}} d_{s} x_{s_{1},s_{1}}
\leq u (z^{i,u} + \Sigma_{s_{1} < q_{1}} d_{s} x_{s_{1},s_{1}}) \leq u (z^{i,u} + c \Sigma_{p} \Sigma_{p < q_{1}} a_{pq})
\]

as desired.

Next, suppose \(z \) is the pointwise limit of a bounded sequence \(\{w_{n}\}_{n \in \omega} \) in \(L_\delta(P_\alpha) \) such that each \(w_{n} \) has the desired property; i.e., for each \(u \geq q_1^{-1} \),

\[
w^{i,i}_{n} \geq u^{-1} w^{i,u}_{n} - c \Sigma_{p} \Sigma_{q < q_1} a_{npq}
\]

where

\[
w^{i,i}_{n} = \Sigma_{p} \Sigma_{q} a_{npq} x_{pq} + \Sigma_{p} b_{p} x_{p} + c_{o} x_{0}.
\]

By the proof of Lemma 3.3 there is a subsequence \(\{w_{n_{s}}\} \) of \(\{w_{n}\} \) such that \(\{\Sigma_{p} \Sigma_{q} a_{npq} x_{pq}\} \) is pointwise convergent, and by the note following
Lemma 3.2 for each \(\zeta > 0 \) there exist \(p_i \) and \(i \) such that for each \(i > i_1 \),
\[
\Sigma_{p \geq p_1} \Sigma_q a_{n_i p q} < c \zeta.
\]
Since \(a_{n_i p q} \rightarrow a_{pq} \) for each \(p \) and \(q \), there exists \(i_2 > i_1 \) such that for each \(i > i_2 \),
\[
\Sigma_{p < p_1} \Sigma_{q < q_1} a_{n_i p q} < \Sigma_{p < p_1} \Sigma_{q < q_1} a_{pq} + \zeta.
\]
Hence, for each \(i > i_2 \),
\[
\Sigma_p \Sigma_{q < q_1} a_{n_i p q} < \Sigma_p \Sigma_{q < q_1} a_{pq} + (1 + c) \zeta.
\]
For each \(t \in [0; 3] \) and \(u \geq q_1^{-1} \),
\[
z^{',u}(t) = \lim_i w^{',u}_{n_i}(t) = \lim_{i} (w^{-1}w^{',u}_{n_i}(t) - c \Sigma_p \Sigma_{q < q_1} a_{n_i p q})
\geq u^{-1}z^{',u}(t) - c \Sigma_p \Sigma_{q < q_1} a_{pq} + (1 + c) \zeta.
\]
Since \(\zeta \) can be arbitrarily small,
\[
z^{',u} \geq u^{-1}z^{',u} - c \Sigma_p \Sigma_{q < q_1} a_{pq}
\]
for each \(u \geq q_1^{-1} \), as desired.

The preceding paragraphs provide both the base step and the inductive step for the proof of the second assertion of the lemma.

Lemma 4.4. Let \(G \) be the set of all \(z \in L_\delta(P_{a}) \) such that \(z^{1,1} \in Q_1 + Q_2 \). If \(z \in G \), then \(z^{1,u} = u^{-1}z^{2,u} \) for each \(u \in U \setminus \{0\} \).

Proof. In the notation of Lemma 4.3, \(a_{pq} = 0 \) for all \(p, q \) and hence \(\Sigma_p \Sigma_{q < u^{-1}} a_{pq} = 0 \). The present result now follows immediately from Lemma 4.3.

Lemma 4.5. \(L_\delta(P_{a}) \cap G = \begin{cases} L_{\delta^{-1}}(L_1(P_{a}) \cap G) \text{ if } 1 \leq \delta < \omega \\ L_\delta(L_1(P_{a}) \cap G) \text{ if } \omega \leq \delta \leq \Omega. \end{cases} \)

Proof. The result is trivial for \(\delta = 1 \). Let \(1 < \delta < \omega \) and assume the result is true for all \(\epsilon < \delta \). Then for each \(z \in L_\epsilon(P_{a}) \cap G \) it follows from Lemma 4.4 that \(z^{1,u} = u^{-1}z^{2,u} \) for each \(u \neq 0 \). Since \(z \in G \), it follows that \(z \) is identical with the \(y \) occurring in the statement of Lemma 4.2 and hence is the pointwise limit of the bounded sequence \(\{y_n\} \subset G \cap \bigcup_{\epsilon < \delta} L_{\epsilon}(P_{a}) \) which appears in the inductive step of the proof of Lemma 4.2. By the inductive hypothesis
\[
\{y_n\} \subset \bigcup_{\epsilon < \delta} L_{\epsilon^{-1}}(L_1(P_{a}) \cap G) = L_{\delta^{-1}}(L_1(P_{a}) \cap G)
\]
and hence \(z \in L_{\delta}(L(P_a) \cap G) \). Conversely, if \(z \in L_{\delta}(L(P_a) \cap G) \), then \(z \) is the pointwise limit of a bounded sequence \(\{w_n\} \subset L_{\delta}(L(P_a) \cap G) \). By the inductive hypothesis \(L_{\delta}(L(P_a) \cap G) = L_{\delta}(P_a) \cap G \). Hence clearly \(z \in L_{\delta}(P_a) \), and also \(z \in G \) by the proof of Lemma 3.3. Thus the proof is complete for \(\delta < \omega \).

Now let \(\omega \leq \delta \leq \Omega \) and assume the result is true for all \(\varepsilon < \delta \). As in the previous case each \(z \in L_{\delta}(P_a) \cap G \) is the pointwise limit of a bounded sequence \(\{y_n\} \subset G \cap \bigcup_{\varepsilon<\delta} L_\varepsilon(P_a) \). By the inductive hypothesis \(\{y_n\} \subset \bigcup_{\varepsilon<\delta} L_\varepsilon(L(P_a) \cap G) \), and hence \(z \in L_{\delta}(L(P_a) \cap G) \). Conversely, if \(z \in L_{\delta}(L(P_a) \cap G) \), then \(z \) is the pointwise limit of a bounded sequence \(\{w_n\} \subset \bigcup_{\varepsilon<\delta} L_\varepsilon(P_a) \) and hence \(z \in G \cap L_{\delta}(P_a) \), completing the proof of the lemma.

Lemma 4.6. Let \(\{w_n\} \) be a bounded sequence in \(\bigcup_{\varepsilon<\omega} L_\varepsilon(P_a) \) which converges pointwise on \(S_a \) to the function \(z_a \) defined earlier in the present section. If

\[
 w_n^{t_1} = \Sigma_p \Sigma_q a_{n pq} x_{pq} + \Sigma_p b_{np} x^p + c_n x^0
\]

for each \(n \in \omega \), then \(\lim_n \Sigma_p \Sigma_q a_{n pq} = 0 \).

Proof. If the conclusion is not true, then as in the proof of Lemma 3.3 a subsequence \(\{w_n^t\} \) of \(\{w_n\} \) exists such that \(\inf_t \Sigma_p \Sigma_q a_{n pq} > 0 \) and such that the limits \(c_0 = \lim_n c_n \), \(b = \lim_n \Sigma_p b_{np} \), \(b_p = \lim_n b_{np} \), and \(a_p = \lim_n \Sigma_q a_{n pq} \) all exist (\(p \in \omega \)). Since \(z_a^{t_1} = x^0 \) by definition of \(z_a \), the coefficient of each \(x_{pq} \) in the unique expansion of \(z_a^{t_1} \) must vanish and it is easily verified that \(\{\Sigma_p b_{np} x^p + c_n x^0\} \) and \(\{\Sigma_p \Sigma_q a_{n pq} x_{pq}\} \) converge pointwise to \(\Sigma_p b_{np} x^p + (c_0 + b - \Sigma_p b_p) x^0 \) and \(\Sigma_p \Sigma_q a_{n pq} x_{pq} \) respectively, as in the proofs of Lemmas 3.3 and 3.2 (note that the symbol \(b_p \) is used differently in those two proofs). Hence

\[
 z_a^{t_1} = \Sigma_p (a_p + b_p) x^p + (c_0 + b - \Sigma_p b_p) x^0.
\]

Now the uniqueness of the expansion of \(z_a^{t_1} \) shows that \(a_p + b_p = 0 \) for each \(p \) and \(c_0 + b - \Sigma_p b_p = 1 \). Since \(a_p \) and \(b_p \) are nonnegative, they must both vanish for each \(p \) and hence \(c_0 + b = 1 \). Now

\[
 1 = z_a^{t_1}(s_{t_1}) = \lim_n (\Sigma_p \Sigma_q a_{n pq} + \Sigma_p b_{np} + c_n)
 = \lim_n \Sigma_p \Sigma_q a_{n pq} + b + c_0
\]

and hence \(\lim_n \Sigma_p \Sigma_q a_{n pq} = 0 \), contradicting our assumption and thus proving the lemma.

Theorem 4.1. If \(\{w_n\} \) is a bounded sequence in \(\bigcup_{\varepsilon<\omega} L_\varepsilon(P_a) \) which converges pointwise to \(z_a \), then there exists a sequence
\{y_n\} \subset G \cap \bigcup_{a<\alpha} L_a(P_a) \text{ such that } \|y_n - w_n\| \to 0.

Proof. Each $w_n^{1,1}$ has the form

$$w_n^{1,1} = \Sigma_p \Sigma_q a_{npq} x_{pq} + \Sigma_p b_{np} x_p + c_n x_0.$$

By Lemma 4.2 there exists a sequence $\{y_n\} \subset \bigcup_{a<\alpha} L_a(P_a)$ such that

$$y_n^{1,1} = y_n^{w_n^{1,1}} = \Sigma_p (b_{np} + \Sigma_q a_{npq}) x_p + c_n x_0,$$

and $y_n^{0,0} = y_n^{w_n^{0,0}} = 0$ and $uy_n^{1,u} = y_n^{w_n^{1,u}} = w_n^{1,u}$ for each $u \neq 0, 1$. Since obviously $\{y_n\} \subset G$, if remains only to show that $\lim_{n \to \infty} \|y_n - w_n\| = 0$.

First note that $(y_n - w_n)^{1,0} = 0$ and $(y_n - w_n)^{2,u} = 0$ for all $u \neq 1$.

For each real $r > 0$ there exists by Lemma 4.6 an $n_r \in \omega$ such that $\Sigma_p \Sigma_q a_{npq} < r$ for all $n > n_r$. For each $u \neq 0$ there exists $q_u \in \omega$ such that $u \geq q_u^{-1}$ and hence by Lemma 4.3,

$$u^{-1} w_n^{2,u} - cr < u^{-1} w_n^{1,u} - c\Sigma_p \Sigma_q a_{npq} x_p + c_n x_0 \leq w_n^{1,u} \leq u^{-1} w_n^{2,u}$$

for each $n > n_r$. Since $y_n^{1,u} = w_n^{2,u}$ for each $u \neq 1$,

$$\|y_n - w_n\|^2 = \|u^{-1} w_n^{2,u} - c\Sigma_p \Sigma_q a_{npq} x_p\| < 2cr$$

for each $n > n_r$ and $u \neq 0, 1$.

Finally, since $z^{1,1} = z^{2,1}$ for each $z \in L_a(P_a)$,

$$\|y_n - w_n\|^2 = \|y_n - w_n\|^2 = \||\Sigma_p (\Sigma_q a_{npq} x_p - \Sigma_q a_{npq} x_{pq})\| < 2cr$$

for each $n > n_r$.

We have now shown that $\|y_n - w_n\| < 2cr$ for each $n > n_r$, completing the proof of the theorem.

Lemma 4.7. Let ζ be a countable ordinal, and let $y \in L_\zeta(L_1(P_a) \cap G)$. Let $\zeta' = \zeta + 1$ if $\zeta < \omega$ and $\zeta' = \zeta$ if $\zeta \geq \omega$. If $u \in U\setminus\{0\}$ and $\nu_a(u^{-1}) = (\beta, \gamma)$ with $\beta > \gamma > \zeta'$, then $y^{1,u}$ is continuous and hence has the form $y^{1,u} = \Sigma p \Sigma q a_{prq} x_{pq}$. If also $v \in U\setminus\{0\}$ and $\nu_a(v^{-1}) = (\gamma, \delta)$ with $\beta > \gamma > \delta > \zeta'$, then for each $r \in \omega$, $\Sigma_p a_{pr} = \Sigma q a_{rq}$.

Proof. The proof will be by induction on ζ. If $y \in L_0(L_1(P_a) \cap G) = L_1(P_a) \cap G$, there is a bounded sequence $\{w_n\} \subset P_a$ which converges pointwise to y. The sequence $\{w_n\}$ can be chosen so that each w_n is a finite linear combination of elements of $\{x_s: s \in \mathcal{S}_a\}$, and hence there exists a countable subset σ of \mathcal{S}_a such that each w_n has the form $w_n = \Sigma_{s \in \sigma} b_{ns} x_s$, where each b_{ns} is nonnegative and for each n only a finite number of the b_{ns} are nonzero. If $u \neq 0$ and $\nu_a(u^{-1}) = (\beta, \gamma)$, then
\[w_n^w = u \sum_{s \in \sigma} b_n^s x_{s^w}^r = u \sum_p \sum_q a_{npq}^w x_{pq}, \]

where
\[a_{npq}^w = \sum \{ b_n^s : s^w = p, s^r = q \}. \]

Now \(y^w = u^{-1} y^w \) by Lemma 4.4 since \(y \in G \); hence \(y^w \) is the pointwise limit of the bounded sequence \(\{ \Sigma_p \Sigma_q a_{npq}^w x_{pq} \} \). The function \(y^w \) is in \(L_1(Q) \) and hence has the form
\[y^w = \Sigma_p \Sigma_q a_{npq}^w x_{pq} + \Sigma_p b_p^w x_p; \]
by the proof of Lemma 3.2, \(a_{npq}^w = \lim_n a_{npq}^w \) for all \(p, q \) and
\[b_p^w = c^{-1} y^w(t_p) - \Sigma_q a_{pq}^w = \lim_n \Sigma_q a_{npq}^w - \Sigma_q a_{pq}^w \]
for all \(p \).

Now assume further that \(\nu_a(u^{-1}) = (\beta, \gamma) \) with \(\gamma > 1 \), and let \(\lambda = 2 \) if \(\gamma > 2 \) and \(\lambda = 1 \) if \(\gamma = 2 \). Then \((\gamma, \lambda) \in B_\alpha \) so there exists \(v_1 \in U \setminus \{ 0 \} \) such that \(\nu_a(v_1^{-1}) = (\gamma, \lambda) \). Since \(\{ \Sigma_p \Sigma_q a_{npq}^w x_{pq} \} \) and \(\{ \Sigma_p \Sigma_q a_{npq}^w x_{pq} \} \) are bounded pointwise convergent sequences in \(Q \), it follows from the note following Lemma 3.2 that for each real \(\epsilon > 0 \) there exist integers \(p_i \) and \(n_i \) such that \(\Sigma_{p > p_i} \Sigma_q a_{npq}^w < \epsilon \) and \(\Sigma_{p > p_i} \Sigma_q a_{npq}^w < \epsilon \) for all \(n \geq n_i \).

Since
\[\Sigma_{p > p_i} \Sigma_q a_{npq}^w = \Sigma \{ b_n^s : s^w > p \} = \Sigma_{p > p_i} \Sigma_q a_{npq}^w < \epsilon \]
for each \(n \geq n_i \), it follows that if \(f_n = \Sigma_{p \leq p_i} \Sigma_q a_{npq}^w x_{pq} \),
\[|| u^{-1} w_n^w - f_n || \leq c \Sigma \{ a_{npq}^w : p > p_i \text{ or } q < p_i \} > 2 c \epsilon \]
for each \(n \geq n_i \). Since \(|| f_n || \leq || u^{-1} w_n^w || \leq u^{-1} \sup_n || w_n || \) for each \(n \), it follows that for each \(n \geq n_i \), \(f_n \) belongs to the compact subset
\[\mathcal{C}_{u, p_1} = \{ \Sigma_{p \leq p_1} \Sigma_{q \leq p_1} k_{pq} x_{pq} : k_{pq} \geq 0, \Sigma_{p \leq p_1} \Sigma_{q \leq p_1} k_{pq} \leq u^{-1} \sup_n || w_n || \} \]
of \(C[0; 3] \). By compactness some subsequence \(\{ f_{n_k} \} \) of \(\{ f_n \} \) must converge to an element \(f \) of \(\mathcal{C}_{u, p_1} \), and since \(u^{-1} w_n^w \) converges pointwise to \(y^w \), it follows that \(|| y^w - f || \leq 2 c \epsilon \). Thus, for each \(\epsilon > 0 \) there exists an \(f \in C[0; 3] \), depending on \(\epsilon \), such that \(|| y^w - f || \leq 2 c \epsilon \). Since \(C[0; 3] \) is complete in norm, \(y^w \in C[0; 3] \) and must therefore be equal to \(\Sigma_p \Sigma_q a_{pq}^w x_{pq} \).

Now if \(0 \neq v \in U \) and \(\nu_a(v^{-1}) = (\gamma, \delta) \) with \(\gamma > \delta > 1 \), then for all \(n \) and \(r \),
\[\Sigma_p a_{npq}^w = \Sigma \{ b_n^s : s^w = r \} = \Sigma_q a_{nrq}^w. \]
Since \(y^w = \Sigma_p \Sigma_q a_{pq}^w x_{pq} \), it follows that
\[
\sum_q a_{rq} = c^{-1} y_i^u(t_{rr}) = \lim_n c^{-1} p^{-1} w_n^u(t_{rr}) = \lim_n \sum_q a_{nqr}^u = \lim_n \sum_p a_{npq}^u.
\]

On the other hand the bounded sequence \(\{\sum_p \sum_q a_{npq}^w x_{pq}\}\) converges pointwise to \(y^{1,u} = \sum_p \sum_q a_{npq}^w x_{pq}\). By the note following Lemma 3.2, for each \(\epsilon > 0\) there exist \(p, n_i\) such that \(\sum_{p > p_i} \sum_q a_{npq}^w < \epsilon\) for all \(n \geq n_i\) and also \(\sum_{p > p_i} \sum_q a_{npq}^w < \epsilon\). Hence

\[
\left| \sum_p a_{pr}^w - \lim_n \sum_p a_{npq}^u \right| < 2\epsilon + \left| \sum_{p \leq p_i} a_{pr}^w - \lim_n \sum_{p \leq p_i} a_{npq}^w \right| = 2\epsilon.
\]

Since \(\epsilon\) is an arbitrary positive number,

\[
\sum_p a_{pr}^w = \lim_n \sum_p a_{npq}^u = \sum_q a_{nqr}^w.
\]

This completes the proof of the lemma for \(\zeta = 0\).

For the induction step let \(0 < \zeta < \Omega\), assume the desired result holds for each \(\eta < \zeta\), and let \(y, \zeta', u, \beta, \) and \(7\) be as in the statement of the lemma. Then there exists a bounded sequence \(\{y_n\}\) in \(U_{\eta < \zeta} L_0(L_1(P_\alpha) \cap G)\) which converges pointwise to \(y\). Since \(1 < \zeta' < \gamma \leq \alpha\), there exists \(n_1 \in U \setminus \{0\}\) such that \(\nu_a(v^{-1}) = (\gamma, \zeta')\). For each \(n\) there exists \(y_n \in \zeta_n \in L_{\eta_n}(L_1(P_\alpha) \cap G)\), and it follows that \(\beta > \gamma > \zeta' > \eta_n^\alpha\) for each \(n\), where \(\eta_n^\alpha\) is defined in terms of \(\eta_n\) as \(\zeta'\) was defined in terms of \(\zeta\). By the induction assumption \(y_n^{1,u}\) and \(y_n^{1,\zeta'}\) are continuous and have the form \(y_n^{1,u} = \sum_p \sum_q a_{npq}^w x_{pq}\) and \(y_n^{1,\zeta'} = \sum_p \sum_q a_{npq}^w x_{pq}\), and \(\sum_p a_{npq}^w = \sum_q a_{nqr}^w\) for all \(n\) and \(r\).

As in the proof for \(\zeta = 0\), for each \(\epsilon > 0\) there exist \(n_i\) and \(p_i\) such that \(\sum_{p > p_i} \sum_q a_{npq}^w < \epsilon\) and \(\sum_{p > p_i} \sum_q a_{npq}^w < \epsilon\) for all \(n \geq n_i\). Hence, since \(\sum_p a_{npq}^w = \sum_q a_{nqr}^w\) for all \(n\) and \(r\), it follows that for \(n \geq n_i\), the distance between \(y_n^{1,u}\) and the compact subset

\[
D_{p_i} = \{\sum_{p \leq p_i} \sum_{q \leq q_i} k_{pq} x_{pq}: k_{pq} \geq 0, \sum_{p \leq p_i} \sum_{q \leq q_i} k_{pq} \leq \sup_n \|y_n^{1,u}\|\}
\]

of \(C[0; 3]\) is less than \(2\epsilon\). Since \(\{y_n^{1,w}\}\) converges pointwise to \(y^{1,u}\), the compactness of \(\mathcal{D}_{p_i}\) implies that \(\|y^{1,u} - w\| \leq 2\epsilon\) for some continuous \(w\) depending on \(\epsilon\). Then the completeness of \(C[0; 3]\) implies that \(y^{1,u} \in C[0; 3]\) and therefore, since also \(y^{1,u} \in L_i(Q)\), that \(y^{1,u}\) has the form \(\sum_p \sum_q a_{npq}^w x_{pq}\).

If also \(0 = v \in U\) and \(\nu_a(v^{-1}) = (\gamma, \delta)\) with \(\beta > \gamma > \delta > \zeta'\), then \(y^{1,v}\) and each \(y_n^{1,w}\) are continuous and have form corresponding to \(y^{1,u}\) and \(y_n^{1,u}\) respectively. Further, by the induction assumption, \(\sum_p a_{npq}^w = \sum_q a_{nqr}^w\) for all \(n\) and \(r\). Hence

\[
\sum_q a_{rq}^w = c^{-1} y_i^w(t_{rr}) = \lim_n c^{-1} y_n^{1,u}(t_{rr}) = \lim_n \sum_q y_n^{1,u}_{nqr} = \lim_n \sum_q a_{npq}^w.
\]

Exactly as in the last part of the proof for \(\zeta = 0\) it is seen that
\[\sum_p a_{pr}^n = \lim_n \sum_p a_{pr}^n. \] This completes the proof of the induction step and hence of the lemma.

Lemma 4.8. If \(y \in L_\zeta(L(\varepsilon_\eta) \cap G) \) for some countable \(\zeta \) and if \(u, v \in U \setminus \{0\} \) with \(\nu_\eta(u^{-1}) = (\beta, \gamma) \) and \(\nu_\eta(v^{-1}) = (\beta, \delta) \) for certain ordinals \(\beta, \gamma, \delta \) then in the expression

\[y^{1,u} = \sum_p \sum_q a_{pq}^n x_{pq} + \sum_p b_p^u x_p + c^u x^0 \]

and the corresponding expression for \(y^{1,v} \) it must be true that \(y^{1,u}(2^{-1}) = y^{1,v}(2^{-1}), c^u = c^v, \) and \(b_p^u + \sum_q a_{pq}^u = b_p^v + \sum_q a_{pq}^v \) for each \(p. \)

Proof. By Lemma 4.5, \(y \in G. \) Hence, by Lemma 4.4, \(y^{1,u} = u^{-1} y^{2,u} \) and \(y^{1,v} = v^{-1} y^{2,v}. \)

If \(\zeta = 0, \) then \(y \) is the pointwise limit of a bounded sequence \(\{y_n\} \) of functions of the form \(y_n = \sum_{s \in \sigma_n} b_{ns} x_s, \) where \(\sigma_n \) is a finite subset of \(S^n \) and each \(b_{ns} \) is nonnegative. For each \(p \) and \(n, \)

\[u^{-1} y_n^{2,u}(t_{pp}) = c \sum b_{ns} : s_{\beta} = p \]

Since \(\{y_n^{2,u}\} \) converges pointwise to \(y^{2,u}, \)

\[y^{1,u}(t_{pp}) = u^{-1} y^{2,u}(t_{pp}) = v^{-1} y^{2,v}(t_{pp}) = y^{1,v}(t_{pp}) \]

for each \(p, \) and hence it follows immediately that

\[b_p^u + \sum_q a_{pq}^u = c^{-1} y^{1,u}(t_{pp}) = c^{-1} y^{1,v}(t_{pp}) \]

\[= b_p^v + \sum_q a_{pq}^v \]

for each \(p. \) Since \(y^{1,u} \) and \(y^{1,v} \) are Baire functions of the first class, \(c^u = 0 = c^v. \) Hence

\[y^{1,u}(2^{-1}) = \sum_p (b_p^u + \sum_q a_{pq}^u) = y^{1,v}(2^{-1}). \]

For the induction step let \(\zeta > 0 \) and assume the statement of the lemma holds for each \(\gamma < \zeta. \) By hypothesis there exists a bounded sequence \(\{y_\eta\} \) in \(\bigcup_{\gamma < \zeta} L_\eta(L(\varepsilon_\eta) \cap G) \) which converges pointwise to \(y. \) Under the usual notation the relations

\[b_{np}^u + \sum_q a_{npq}^u = b_{np}^v + \sum_q a_{npq}^v, \]

\(c_n^u = c_n^v, \) and \(y_n^{1,u}(2^{-1}) = y_n^{1,v}(2^{-1}) \) must hold for all \(n \) and \(p. \) It is seen immediately that \(y^{1,u}(2^{-1}) = y^{1,v}(2^{-1}) \) and \(y^{1,u}(t_{pp}) = y^{1,v}(t_{pp}) \) for all \(p, \) from which the remaining desired relations for \(y^{1,u} \) and \(y^{1,v} \) follow. The proof is thus complete.

Theorem 4.2. Let \(\zeta \) be a countable ordinal, and let \(\zeta' \) be defined as in Lemma 4.7. If \(y \in L_\zeta(L(\varepsilon_\eta) \cap G) \) and \(0 \neq u \in U \) with \(\nu_\eta(u^{-1}) = (\beta, \gamma) \)
and $\beta > \zeta'$, then $y^{i,n} \in Q + Q_i$.

Proof. If $\zeta = 0$, then $y \in L_1(P_\alpha)$ and hence trivially $y^{i,n} \in L_1(Q)$, which is equal to $Q + Q_i$ by Lemma 3.2.

If $\zeta > 0$ and the desired result is true for each $\eta < \zeta$, then $2 \leq \zeta' < \beta \leq \alpha$ and hence there exists $v \in U\setminus\{0\}$ such that $\nu_\alpha(v^{-1}) = (\beta, \zeta')$. There exists a bounded sequence $\{y_n\}$ in $\bigcup_{\eta < \zeta} L_\beta(L_1(P_\alpha) \cap G)$ which converges pointwise to y. Since $\beta > \zeta' > \eta'$ for each $\eta < \zeta$ it follows from Lemma 4.7 that each $y^{i,n}_\alpha$ is continuous and hence belongs to Q. Hence $y^{i,n} \in L_1(Q) = Q + Q_i$. Thus in the usual notation for $y^{i,n}$ and $y^{i,n}$ it follows that $c^* = 0$, but then also $c^* = 0$ by Lemma 4.8, hence $y^{i,n} \in Q + Q_i$, and the proof is complete.

The following theorem justifies the claim made at the beginning of the present section.

Theorem 4.3. The element $z_\alpha \in L_\alpha(P_\alpha)$ has the property that $||z_\alpha|| = 1$ but that if $\{w_n\}$ is a bounded sequence in $\bigcup_{\beta < \alpha} L_\beta(P_\alpha)$ converging pointwise to z_α, then $\lim_n ||w_n|| \geq c$.

Proof. By Lemma 4.1 and the remarks preceding it we know that $z_\alpha \in L_\alpha(P_\alpha)$ and $||z_\alpha|| = 1$. If $\{w_n\}$ is a bounded sequence in $\bigcup_{\beta < \alpha} L_\beta(P_\alpha)$ converging pointwise to z_α, then by Theorem 4.1 there exists a sequence $\{y_n\}$ in $G \cap \bigcup_{\beta < \alpha} L_\beta(P_\alpha)$ such that $||y_n - w_n|| \to 0$. Clearly $\lim_n ||w_n|| = \lim_n ||y_n||$. Now by Lemma 4.5,

$$\{y_n\} \subset \begin{cases} \{L_{\alpha-n}(L_1(P_\alpha) \cap G) & \text{if } 2 \leq \alpha < \omega \\ \bigcup_{\beta < \alpha} L_\beta(L_1(P_\alpha) \cap G) & \text{if } \omega \leq \alpha < \Omega. \end{cases}$$

Defining ζ' as in Lemma 4.7, one sees easily that each $y_{\alpha,n} \in L_{\zeta_n}(L_1(P_\alpha) \cap G)$ for some ζ_n such that $\alpha > \zeta_n$. Now there exists $v_1 \in U\setminus\{0\}$ such that $\nu_\alpha(v_1^{-1}) = (\alpha, \gamma)$ for some $\gamma < \alpha$; for example, take $\gamma = 1$ if $\alpha = 2$ and $\gamma = 2$ if $\alpha > 2$. Then by Theorem 4.2, $y_{\alpha,n+1}^{i,n} \in Q + Q_i = L_1(Q)$ for each n. Now $z_{\alpha,n}^{i,n} = x^0$ by definition, and hence $\lim_n ||y_{\alpha,n}^{i,n}|| \geq c$ by Theorem 1 of [7]. It follows that

$$\lim_n ||w_n|| = \lim_n ||y_n|| \geq \lim_n ||y_{\alpha,n}^{i,n}|| \geq c.$$

Corollary 4.1. Let T be the mapping of Theorem 2.1 for the space X_α, and let $G_\alpha = Tz_\alpha$. Then $G_\alpha \in K_\alpha(J_{X_\alpha}P_\alpha)$ and $||G_\alpha|| = 1$, but if $\{F_n\}$ is a sequence in $\bigcup_{\beta < \alpha} K_\beta(J_{X_\alpha}P_\alpha)$ such that $F_n \rightharpoonup^* G_\alpha$, then $\lim_n ||F_n|| \geq c$.

Proof. It is immediate from Theorem 2.1 that $G_\alpha \in K_\alpha(J_{X_\alpha}P_\alpha)$ and $||G_\alpha|| = 1$. If $\{F_n\} \subset \bigcup_{\beta < \alpha} K_\beta(J_{X_\alpha}P_\alpha)$ and $F_n \rightharpoonup^* G_\alpha$, then by Theorem 2.1 the sequence $\{T^{-1}F_n\}$ is in $\bigcup_{\beta < \alpha} L_\beta(P_\alpha)$ and $||T^{-1}F_n|| = ||F_n||$ for each
n. Now \(\sup_n \| T^{-1} F_n \| = \sup_n \| F_n \| < \infty \) since \(\{F_n\} \) is \(w^* \)-convergent. For each \(t \in S_\alpha \) let \(f_t \in X^*_\alpha \) be defined as in the proof of Theorem 2.1. Then

\[
(T^{-1} F_n)(t) = F_n(f_t) \longrightarrow G_\alpha(f_t) = z_\alpha(t)
\]

for each \(t \), and hence

\[
\lim_n \| F_n \| = \lim_n \| T^{-1} F_n \| \geq c.
\]

5. Our main theorems will now be proved through consideration of product spaces, as defined in [2, p. 31], of spaces of the type \(X_\alpha \). Since \(X_\alpha, P_\alpha, \) and \(G_\alpha \) depend on the given number \(c \geq 1 \) as well as on \(\alpha \), the objects mentioned will henceforth be indicated with double subscripts as \(X_{c,\alpha}, P_{c,\alpha}, \) and \(G_{c,\alpha} \) respectively. Recall that if \(I \) is a set and \(X_s \) is a Banach space for each \(s \in I \), then the product spaces \(\Pi_{s \in I} X_s^* \) and \(\Pi_{s \in I} X_s^{**} \) are respectively the dual and bidual of the Banach space \(\Pi_{s \in I} X_s \) under the natural identifications.

Theorem 5.1. For each countable ordinal \(\alpha \geq 2 \) let \(Y_\alpha \) be the Banach space \(\Pi_{\omega \in \omega} X_{n_{\omega},\alpha} \) and let

\[
Q_\alpha = \bigcap_{n_{\omega} \in \omega} \{ y \in Y_\alpha : y(n) \in P_{n_{\omega},\alpha} \}.
\]

Then \(Y_\alpha \) is separable, and \(Q_\alpha \) is a norm-closed cone in \(Y_\alpha \) such that \(K_\alpha(J_{Y_\alpha} Q_\alpha) \) is not norm-closed in \(Y^{**}_\alpha \).

Proof. It is evident that \(Y_\alpha \) is separable and \(Q_\alpha \) is a closed cone in \(Y_\alpha \). An easy transfinite induction argument shows that for each \(n \) the functional \(F_n \) belongs to \(K_\alpha(J_{Y_\alpha} Q_\alpha) \), where \(F_n(n) = G_{n_{\omega},\alpha} \) and \(F_n(i) = 0 \) for all \(i \neq n \). Hence \(\sum_{n_{\omega} = 1}^{m,n_{\omega}} F_n \in K_\alpha(J_{Y_\alpha} Q_\alpha) \) for each positive integer \(m \), and therefore \(\sum_{n_{\omega} = 1}^{m,n_{\omega}} F_n \in K_\alpha(J_{Y_\alpha} Q_\alpha) \). If \(\{H_k\} \) were a sequence in \(\bigcup_{\beta < \alpha} K_\beta(J_{Y_\alpha} Q_\alpha) \) such that \(H_k \xrightarrow{w^*} \sum_n n^{-1} F_n \), then for each \(i \in \omega \) it would follow that

\[
[H_k(i)]_k \subset \bigcup_{\beta < \alpha} K_\beta(J_{X_{n_{\omega},\alpha}} P_{n_{\omega},\alpha})
\]

and

\[
H_k(i) \xrightarrow{w^*} \sum_n n^{-1} F_n(i) = i^{-1} G_{i^{\omega},\alpha}.
\]

It would then result by Corollary 4.1 that

\[
\lim_k \| H_k \| \geq \lim_k \| H_k(i) \| \geq i,
\]

but then since \(i \) is arbitrary the sequence \(\{H_k\} \) would be unbounded in norm, contradicting the fact that a \(w^* \)-convergent sequence in \(Y^{**}_\alpha \) must be bounded [3, p. 60]. Hence \(\sum_n n^{-1} F_n \in K_\alpha(J_{Y_\alpha} Q_\alpha) \), and the proof
is complete.

THEOREM 5.2. For each countable ordinal $\alpha \geq 2$ there exists a separable Banach space W_α containing a norm-closed cone R_α such that if $2 \leq \beta \leq \alpha$, then $K_\beta(J_{W_\alpha}R_\alpha)$ is not norm-closed in W_α^{**}.

Proof. Let $A_\alpha = \{\beta: 2 \leq \beta \leq \alpha\}$ and for each $\beta \in A_\alpha$ let Y_β and Q_β be as defined in Theorem 5.1. Let $W_\alpha = \Pi_{\beta \in A_\alpha} Y_\beta$ and $R_\alpha = \bigcap_{\beta \in A_\alpha} \{w \in W_\alpha: w(\beta) \in Q_\beta\}$. Then the Banach space W_α is separable since A_α is countable, and R_α is clearly a norm-closed cone in W_α. For each $\beta \in A_\alpha$ there exists by Theorem 5.1 a sequence $\{\psi_{\beta,n}\}$ in $K_\beta(J_{Y_\beta}Q_\beta)$ which converges in norm to an element $\psi_{\beta,0} \in Y_\beta^{**}$ not in $K_\beta(J_{Y_\beta}Q_\beta)$. If $\psi_{\beta,n}$ is defined for each integer $n \geq 0$ by $\psi_{\beta,n}(\gamma) = 0$ for $\gamma \neq \beta$ and $\psi_{\beta,n}(\beta) = \phi_{\beta,n}$, it is easily shown that $\{\psi_{\beta,n}\}_{n \geq 0} \subset K_\beta(J_{W_\alpha}R_\alpha)$ and $\{\psi_{\beta,n}\}$ converges in norm to $\psi_{\beta,0}$, but that $\psi_{\beta,0} \notin K_\beta(J_{W_\alpha}R_\alpha)$. Hence for each $\beta \in A_\alpha$, $K_\beta(J_{W_\alpha}R_\alpha)$ fails to be norm-closed in W_α^{**}.

THEOREM 5.3. There exists a Banach space Z containing a norm-closed cone P such that if β is a countable ordinal ≥ 2, then $K_\beta(J_ZP)$ fails to be norm-closed in Z^{**}.

Proof. The proof is almost identical with that of Theorem 5.2. Let $A = \{\beta: 2 \leq \beta < \Omega\}$, $Z = \Pi_{\beta \in A} Y_\beta$, and $P = \bigcap_{\beta \in A} \{z \in Z: z(\beta) \in Q_\beta\}$. Since A is uncountable, the Banach space Z is nonseparable. It is clear that P is a closed cone in Z. The proof that $K_\beta(J_ZP)$ fails to be norm-closed in Z^{**} for each $\beta \in A$ is identical with the corresponding part of the proof of Theorem 5.2, in which it was shown that $K_\beta(J_{W_\alpha}R_\alpha)$ fails to be norm-closed in W_α^{**} for each $\beta \in A_\alpha$.

REFERENCES

Received June 22, 1970. Supported in part by National Science Foundation Grants GP-7243 and GP-9632.

FLORIDA STATE UNIVERSITY
Pacific Journal of Mathematics
Vol. 38, No. 3 May, 1971

J. T. Borrego, Haskell Cohen and Esmond Ernest Devun, *Uniquely representable semigroups on the two-cell* ... 565
Glen Eugene Bredon, *Some examples for the fixed point property* 571
William Lee Bynum, *Characterizations of uniform convexity* 577
Douglas Derry, *The convex hulls of the vertices of a polygon of order n* 583
Edwin Duda and Jack Warren Smith, *Reflexive open mappings* 597
Y. K. Feng and M. V. Subba Rao, *On the density of (k, r) integers* 613
Irving Leonard Glicksberg and Ingemar Wik, *Multipliers of quotients of L1* ... 619
John William Green, *Separating certain plane-like spaces by Peano continua* ... 625
Lawrence Albert Harris, *A continuous form of Schwarz’s lemma in normed linear spaces* ... 635
Richard Earl Hodel, *Moore spaces and w Δ-spaces* 641
Lawrence Stanislaus Husch, Jr., *Homotopy groups of PL-embedding spaces. II* .. 653
Yoshinori Isomichi, *New concepts in the theory of topological space—supercondensed set, subcondensed set, and condensed set* 657
J. E. Kerlin, *On algebra actions on a group algebra* 669
Keizō Kikuchi, *Canonical domains and their geometry in Cⁿ* 681
Ralph David McWilliams, *On iterated w*-sequential closure of cones* 697
C. Robert Miers, *Lie homomorphisms of operator algebras* 717
Louise Elizabeth Moser, *Elementary surgery along a torus knot* 737
Hiroshi Onose, *Oscillatory properties of solutions of even order differential equations* ... 747
Wellington Ham Ow, *Wiener’s compactification andΦ-bounded harmonic functions in the classification of harmonic spaces* 759
Zalman Rubinstein, *On the multivalence of a class of meromorphic functions* ... 771
Hans H. Storrer, *Rational extensions of modules* 785
Albert Robert Stralka, *The congruence extension property for compact topological lattices* ... 795
Robert Evert Stong, *On the cobordism of pairs* 803
Albert Leon Whiteman, *An infinite family of skew Hadamard matrices* 817
Lynn Roy Williams, *Generalized Hausdorff-Young inequalities and mixed norm spaces* ... 823