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The class H® of @-bounded harmonic functions on Riemann
surfaces first investigated by Parreau for the special case
where @ is increasing and convex, was later characterized by
Nakai in its complete generality by assuming only that & was
a nonnegative real-valued function on [0, ), In this paper we
show that Nakai’s theory can be presented in the axiomatic
setting of Brelot, The theory of Wiener compactifications
which is indispensable in the study of potential theory on
Riemann surfaces is extended to harmonic spaces and shown
to be equally useful in the potential theory there,

In particular we obtain a classification scheme for the theory of
harmonic spaces for the class O, of spaces for which H® consists
only of constants. In this scheme it is shown that boundedness
properties such as positiveness, boundedness in absolute value, quasi-
boundedness, and essential positiveness can all be considered as special
cases of @-boundedness. A similar classification is briefly given for
subdomains.

2, Let %X be a locally compact Hausdorff space which is connected
and locally connected. Suppose that to each open set 2 in X there
corresponds a linear space H(2) of finitely-continuous real-valued
functions defined on 2. This in turn defines a family H = {H(Q)}, of
functions with domains in ¥. If Q is an open subset of X¥ then by
02 we will always mean the boundary of 2 relative to X. A relatively
compact open set 2 is said to be regular for H if for every continuous
real-valued function f defined on 02 there is a unique continuous
function h, defined on 2 such that k02 = f, ke H(?) and h; =0
if f=0.

By a harmonic space we mean a pair (X,H) where ¥ and H are
as above and in addition H satisfies the following axioms:

Axiom I. A function g with open domain 2 — ¥ is a member of
Ij if fgr each X e Q2 there is a function e H and an open set 2 3g¢|
Q = hjQ.

Axiom II. The regular regions in X for H form a basis for the
topology of X%.
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760 WELLINGTON H. OW

Axiom III. If .7~ is a subset of H(R), 2 < ¥ a subregion, and
7 is an upper-directed family, then the upper envelope of 7 is
either < or a function in H(Q).

Axiom IV. 1e H(X).

When H is well understood we will simply refer to ¥ itself as the
harmonic space. Axioms I-III were introduced by Brelot [1], while
Axiom IV is similar to Axiom IV of Loeb [10].

3. If 2 is regular and x€ 2 then h;(x) as a function of f, is a
bounded positive linear functional on the set C(02) of continuous
functions on 02. Hence there exists a finite positive Radon measure

u(.,2,2) on 02 such that i.(z) = gag Sfydu(y,z,2).

A lower semicontinuous function s with open domain 2 C X is said
to be in the class H if

(i) s(x) <  for some x in each component of .

(i) for each x,€ 2 such that s(x,) < o and for every neighborhood
2, C 2 of x, there is a regular region 2, with 2, € 2, such that s is

integrable on 02, and s(x,) gg s(y) dpe (y, #,, 2,). An upper semi-
a9,

continuous function ¢ will belong to the class H if -t belongs to H.
We call H the class of harmonic functions and H (resp. H) the class
of superharmonic (resp. subharmonic) functions associated with H.
We denote by H(2) (resp. H (2)) the functions in H (resp. H) with
domain £. The harmonic space X is said to be parabolic (denoted X

€ O;) provided there does not exist any nonconstant positive super-
harmonic functions on ¥%.

Let 2 be an open set in X¢ O, and f a bounded real-valued func-
tion on 02. Consider the family & (2,f) of superharmonic functions
se H(?) with lim inf,. 0,03, S(®) = f(x,) for all ¥,€02 and liminf,.,.,
s(x) = 0 (8 = ideal boundary of X). Then C(2,f) is a Perron family
and by Perron’s Theorem (see e.g. Brelot [1]), k(f,2) (x) =
inf {s()|se Z(2,f)} and A(f,2) (¥) = —h(—f,2) (x) are harmonic
on 2 with A = h. If h = h we denote the common function by &(f, %)
and call f resolutive on 0R2. A point x,€02 is said to be regular
(for the Dirichlet problem) if lim,.,,.., A(f,2) = f(x;) for every
resolutive function f on 02 which is continuous at x,. In particular
every boundary point of a regular open set is regular. By a result
of Loeb [10] a point @, on the relative boundary 02 of an open set
is regular if there exists a barrier for 2 at x,; that is, if there exists
a positive harmonic function s defined in the intersection of 2 and
an open neighborhood of x, and such that lim,.,,,..,s(x) = 0. An open
subset 2 C % is said to be normal if each x,€ 02 is regular.

Let K be a compact subset of ¥ and & the family of all regular
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regions 2 containing K. Then by a theorem of Loeb [10] & is an ex-
haustion of X. We will always assume that X is countable at the ideal
boundary and it is therefore possible to obtain a countable exhaustion
of X by regular regions {2,} such that 2, C 2,,, and = U3, 2,.

4, Let G¢ O, be a normal subregion of ¥ and f a real-valued
function on X. Denote by A(G,f) (resp.2(G,f)) the class of super-
harmonic (resp. subharmonic) functions s on G for which there exists
a compact set K; C G with s = f (resp. s < f) on G-Ks. If neither
A(G, f) nor AG,f) is empty, then being Perron families, we have

Wi(p) = inf s(p) and Wé(p) = sup s(p)
seu(G,f) seU(G,[)
are harmonic on G with Wé¢= W4 If W%= W% we denote their
common value by W¢%. A function f is harmonizable on X if W§
exists for every subregion G ¢ O, which is regular for the Dirichlet
problem. If Ge O, we define W% = 0. The idea of harmonizability
is due to Constantinescu-Cornea (2).

5. Consider the family T8(X) of real-valued, bounded, continuous
functions f on X which are harmonizable on X. Then T(X) forms an
algebra with respect to addition, multiplication, and scalar multi-
plication of functions and is called the Wiener algebra of %. The
subclass W,(X) = {f|f c W(X), Wi = 0} is an ideal of W(X) called the
potential subalgebra of TW(X). Both W(X) and TW,(X) are closed under
the lattice operations N and U, i.e., fUg = max(g,f) and fNg=
min(f,g). In addition LX) is a Banach algebra with norm ||f]l.:=
sup,.: | f(p)| and BW,(X) is a closed subset. For a complete account
see the monograph of Sario-Nakai (18).

The Wiener compactification X* of % is the unique compact Haus-
dorff space such that % is dense in X*, every fe Z8(X) has a continuous
extension to %*, and TW(X) separates points in X*. See Loeb (9) for
the existence of such compactifications. The compact set I" = X* — X
is called the Wiener boundary of X. Since the subset T8,(X) of T(X)
consisting of functions with compact supports in X is a subset of
B(X) the set 4 = {peX*|f(p) = 0 for all fe W,(%X)}, called the Wiener
harmonic boundary of X, is a compact subset of I'. The set Ty,(X)
can be characterized in terms of 4 as follows: W,(X) = {f € BX) | f(4)
= 0}. From this we see that X¥c0, if and only if 4= ¢. Here-
after we will use topological notions with respect to X* only. For
example if 2 C X* then 2 means the closure of 2 in ¥*. However
we will still retain the symbol 02 for the boundary of 2 relative to
X. Wiener’s algebra was first introduced by S. Mori (14), Hayashi
(4), Kusunoki (6), and Constantinescu-Cornea (2). Different treatments
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of the theory of the Wiener harmonic boundary, also presented in
Brelot’s axiomatic setting, can be found in the works of Constanti-
nescu-Cornea [3], Loeb-Walsh [12], and Lumer-Naim [13].

6. We shall denote by HP(X), HB(X) the classes of functions on
% which are nonnegative harmonic, and bounded harmonic, respec-
tively; and by Oy, (resp. Oy;) the class of harmoniec spaces X for
which the class HP{¥) (resp. HB(%X)) consists only of constants. Note
that O, C Opp € Oyp. A harmonic function « on X is called essentially
positive if u can be represented as a difference of two HP functions
on X, or equivalently, if |#]| has a harmonic majorant on X. The
space HP'(X) of essentially positive harmonic functions on ¥ forms a
vector lattice with lattice operations v and A, where for two func-
tions % and v in HP'(X) we denote by u VV v (resp. « A v) the least
harmonic majorant (resp.the greatest harmonic minorant) of w and w.
Clearly HP(X) ¢ HP'(¥). If Xc O, we define HP'(X) = {O}.

For any we HP(¥) we define the function Bu by Bu(p) = sup
{v(p) |lve HB(¥), v <u on ¥X}. Next for uwe HP'(X) we define Bu =
Bu, — Bu, where 4 = %, — u,, with u,, u,€ HP(¥X). This last definition
is independent of the particular decomposition of u since B is additive
on HP. One can verify that B is order preserving, linear, and
satisfies B*w = Bu on HP’. Moreover B(u, \/ u,) = Bu, \V Bu, and
B(u, N\ u;) = Bu, A\ Bu,. An HP’ function % is called quasi-bounded
(resp. singular) if Bu = u (resp. Bu = 0). We denote the class of
quasi-bounded (resp. singular) functions on ¥ by HB'(¥) (resp. HP"
(%)). Since B*= B and I= B+ (I— B), where I is the identity operator
on HP’' we have the direct sum decomposition of Parreau (17):

HP'(X) = HB'(X) -+ HP"(%).
7. We now state the maximum principle for HB' functions with

respect to the Wiener harmonic boundary (S. Mori (14), Hayashi (5),
Kusunoki (6)).

THZORIM 1. Let G be a subregion of a harmonic space X and
u e HB'(G) such that

m=< lim inf u@®) < lim sup u(z) =M

zeGrzop zeG,2-p

for each pcdG U (4 U G). Then m =u < M on G.

A compact set K of X* will be called distinguished is (i) K N =
K, (ii) d(K N X) consists of regular points, and (iii) each component
of (K N %) has nonempty interior.

If X¢ O, we denote by 2S7°(X) the vector lattice of continuous
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harmonizable functions f on ¥ such that there exists a continuous
superharmonic function s, for which the set {p€ X |s(p) = oo} is discrete
and s, = |f] on X. Note that (X) c 52~ (¥) and that if fe 2Z(X)
and G is a subregion of £ then f|Ge 5#(G). The following decom-
position theorem is valid for harmonic spaces:

THEOREM 2. Let fe 27(X) and K be a distinguished compact set.
Then f can be uniquely expressed im the form f = u + v where ue
HB'(X — K) N &2 ®X) and ve 27 (X) with v =0 on K U 4. Moreover
%o,z = S o uae

Both Theorem 1 and Theorem 2 may be proved by methods simi-
lar to that in Sario-Nakai (18).

8. As a consequence of Theorem 2 we may define a projection
function 7,/ ¢ 52 (%) for an fe 27 (%X) and K a distinguished compact
subset of X*: 7. f|¥ — K=ue HB'(X — K)and n.f | KUd = f| K U 4.
The following theorem illustrates the function-theoretic smallness of
r — 4.

THEOREM 3. Suppose X¢ 0, and F is any compact subset of
I — 4. Then there exists a finitely continuous positive superharmonic
Sunction s, on X which is continuous on X* such that sy |4 =0 and
Sp| F = oo,

Proof. Let V O F be an open neighborhood of ¥* such that V
is a distinguished compact set of %* satisfying VN 4= @. For a
regular exhaustion {2,}¢ of ¥ choose an fe W,(¥) such that f| V = 1.
Let u, = 7y, f where K, = V — Q,. By Theorem 1 {u,}” is a decreas-
ing sequence and v = lim, u,€ HB'(X¥). Since0<u =u,and u,|4 =0
we conclude u=0 by Theorem 1. For a z,€ 2, we may choose a subse-
quence again denoted {u,} such that u,(z) < 2™ (n = 1,2,--.). Then
Sp = >, %, is a finitely continuous positive superharmonic function
on X with sp| F = oo.

We note that if s is any continuous superharmonic function on
¥ bounded from below and if m = min, s then s = m on %. For let
m>c¢>— o and K = {pel'|s(p) <c}. Then for s, defined just as
sy above we have for any e >0 lim,.,,., (s(z) + €sx(z)) = ¢ for all
pel’. It follows that s+ eSy = ¢ on ¥ and consequently s = m.
Hence if ve HB'(¥X) and s, = v then 0 = » on X since u, |4 =0, (n =
1,2,.-.). Now if sz|4 %= 0 then consider v = 7 (s, N 1) € HB'(X) where
v > 0. Observing (s; — v) |4 = 0 we have s; = v > 0 on X contradict-
ing the fact that s, = v implies v < 0.
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9, We have the following maximum principle for superharmonic
functions:

THEOREM 4. Let s be a superharmonic function on a subregion
G of a harmonic space X ¢ O, such that s 18 bounded from below and
lim inf,.;,., s(z) = m for every pc(d N G) U 0G. Then s = m on G.

Proof. Define a lower semicontinuous function § on v =G — G
by 8§(p) = lim,.4,,.., inf s(z). For any real number ¢ such that ¢ < m
A = {pev|8(p) > c} is an open set in v containing (G N 4) U 0G.
Thus F=v—-UcCTI — 4 is compact and we may apply Theorem 3
to obtain a function s,. For each n set W, = s 4 sp/n. Then W, is
a superharmonic function on G, bounded from below, satisfying lim
inf,.s.., W.(®) > ¢ for all pcv. Hence W,(z) > ¢ on G for each .
In the limit as n—< we obtain s = m on G.

10. A function % > 0 in HB(X) will be called HB-minimal on %
if the following is true: whenever ve HB(X) and u = v = 0 then
v = ¢,u for some constant ¢,. We denote by Uy, the class of har-
monic spaces X on which there exists at least one HB-minimal func-
tion. Note that Uyy N O; = @ since HB(X) = {0} for Xc 0, Also
Oy — Oz C Uyzp. The following HB-minimal criterion for Riemann
surfaces is due to S. Mori (14) and Hayashi (5).

THEOREM 5. A function ue HB(X) is HB-mintmal if and only
if there exists an isolated point pe 4 for which u(p) > 0 and u|(4—

p) = 0.

Proof. Assume that pe 4 is isolated and there exists a u € HB(X)
such that #(p) >0 and =0 on 4 — p. Since HB C HB’ we have
# > 0 by Theorem 1. By the Stone-Weierstrass theorem 8(¥) coin-
cides with the class B(X*) of bounded continuous functions on %*.
Hence by Urysohn’s lemma there exists an fe (%) such that f(p) =
land f=0o0on 4— p. Now @& = 7,f e HB'(X) with %(p) = 1and @ =
Qon 4 — p. For ce (0,u(p)) the function u — ¢ii € HB'(X) is nonnega-
tive on 4. Hence by Theorem 1 w = ¢#i on X. For z,¢€X we have
¢ < u(2)/4(z,) and hence 0 < u(p) <. If ve HBX) and u=v=0
on X then v =0o0n 4 — p and 0 < v(p) <. Setting ¢, = v(p)/u(p)
it follows that e¢,u — v vanishes identically on 4. Consequently v =
¢, and % is an HB-minimal function.

Conversely let # be HB-minimal on X¥. Now there exists a pe 4
with u(p) > 0. If there is a q¢ € 4, ¢ # p and u(g) > 0 then pick a
feB(X) such that f(p) =1, flg) =0, and 0 <f <1 on X*. Then
v = 7,(fu) satisfies the relation 0 < v < % on 4 and hence on ¥. Thus
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there exists a ¢, = 0 such that v = ¢,u. But then we have a contra-
diction 0 = v(q) = ¢,u(q) > 0. Hence v =0 on 4 — p, u(p) >0 and
moreover p is isolated due to the continuity of % on 4.

COROLLARY 1. X€ Oy, — O; if and only if 4 consists of a single
point.

Proof. Assume X e Oyz — Os. Then since any we HB(X) is con-
tinuous at 4 and Xe Uy, we conclude by Theorem 5 that 4 consists
of a single point.

Conversely if 4 consists of a single point then the continuity of
any ue€ HB(X) at 4 together with Theorem 1 implies that X€ Oy, —
Og.

11. Let G C ¥ be a subregion such that each point of 0G # @
is regular. We say that G ¢ SOy, if every HB-function on G which
vanishes continuously on 0G is identically zero on G. More generally
suppose G = U ;G; is a union of subregions G; < X such that 0G; = @
is regular for the Dirichlet problem (we will refer to G simply as a
regular open set). Then Ge SO,; if each subregion G;¢ SOy, where
the G; U 0G; are assumed to be disjoint. We have the following
theorem for harmonic spaces whose counterpart for Riemann surfaces
is due to Kusunoki-Mori (7,8), Hayashi (5), and S. Mori (14).

THEOREM 6. Let G < X be a subregion such that each point of
0G # & is regular. Then G e SOy, if and only if (G —0G) N 4= Q.

Proof. Assume first that (G —dG) N 4= @. Suppose ue
HB(GUG) and %|0G = 0. Define 4(p) = lim inf, 4., u(z) for pe G — G.
Let F={pel' NG|la(p) cm<0}. If F=@ thenuz=m. fF=Q
then there exists a function s, as in Theorem 3. Now %4 > m — es;
on G — G for each ¢ > 0. Hence u >m — ¢s, on G. Letting ¢ —0
it follows that u = m, and consequently % = 0. Applying a similar
argument to —u we get v < 0 and # = 0 on G.

Conversely assume G € SOy, If (G —09G) N 4% @ then choose
feW(X) such that f=0on X — G and f#£ 0 on 4. Then 7z f isan
HB-function which vanishes continuously on 0G but is not identically
zero on G. From this contradiction we conclude (G — 8G) N 4 = @.

12. In this section we shall define a new class of functions
called @-bounded harmonic functions and show their relation to the
classes HB and HP. Denote by @(tf) a nonnegative real-valued func-
tion defined on [0,oc). A harmonic function 4 on a harmonic space
X is called @-bounded if the composite function @(|u|) possesses a
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harmonic majorant on X. The family of all @®-bounded harmonic fune-
tions on X will be denoted H®(X) and Oy, the totality of harmonic
spaces on which every @-bounded harmonic function reduces to a
constant. We define

d(®) = lin} suqu—it) and d(@) = lintrl inf-g?— .

We note first that if @ is bounded on [0, =) then any nonconstant
harmonic function on %X is a nonconstant H®@-function. Hence O,
must consist only of trivial harmonic spaces. On the other hand if
@(t) is completely unbounded on [0, ), that is, if @(f) is not bounded
in any neighborhood of any point of [0, ) then for any nonconstant
harmonic function # on %, @(|u|) is completely unbounded on ZX.
Hence Oy, consists of all harmonic spaces. Having dispensed with
these simpler cases we have the following theorem first established
on Riemann surfaces by Nakai (14).

THEOREM 7. If @ s not bounded nor completely unbounded on
[0, c0) then Ogy = Oyp (resp. Oy, = Ogy) of d(®) is finite (resp. infinite).

Proof. First assume d(®) < . Then there exists a ¢ > 0 such
that @(¢t) < ¢t for ¢ = ¢,. If w is a nonconstant HP function on %X so
is v=u+1t. Since v =t =0 we have @(|v|) <cv. Hence v is a
nonconstant H®-function and so Oyp C Opp.

Conversely suppose % is a nonconstant H®-function on X. We
must show there exists a nonconstant HP-function X. Now there
exists an HP-function » on ¥ such that @(|u|) <v on %. If » is
nonconstant or % is bounded we are done. So we may exclude these
cases. The set A = {|u(p)]; pc ¥} is an open connected subset of
[0, =) not containing 0. For if 0 A then A = [0, ) and this would
contradict the fact that @(|u|) < v = const. on X. Thus 0¢ A and
so either % or —wu is a nonconstant HP-function on ¥. This proves
Oupr C Oy, and consequently Oy, = Oyp.

Now consider the case where d(®) = . Suppose % is a noncon-
stant HB-function on X. By hypothesis @ is bounded in some interval
(a, b) < [0, ) within which @(t) < ¢ = const. So the range of v =
¢, % + ¢, is contained in (a, b) if ¢, ¢, are suitably chosen constants.
It follows that » is a nonconstant H®-function on X¥ and so Oy, C
Ogs.

Conversely assume that % is a nonconstant H®-function on X.
Suppose to the contrary that e Oyz. Now @(|u|) < v on ¥ for some
HP-function ». This implies ¥¢ O,, since otherwise from the fact
that @(|u|) < v = const. and d(@) = - we would get that u is
bounded, contrary to our assumption X Oy, Thus X¢ Oy, and hence
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X ¢ Oy4. Since Xe€ Oy — O, by Corollary 1 4 consists of a single point.
From the fact that d(®) = « there is a strictly increasing sequence
{t.}> of positive numbers for which lim,.. @(t,)/t, = «~ and lim,..
t, = . Now each set G, = {peX||u(p)| < t,} is a regular open set.
For if p,cdG, and w(p,) = t, (resp. — t,) then t, — u (resp. ¢, + u) is
a barrier function at p, with respect to G,. Also since # is unbounded
G 1 X. Now G, ¢ SOy for some n, and hence for all sufficiently large
n. For if not consider the function a,v — |u| where a, = £,/@(t,).
Then a,v — |%| is superharmonic, bounded from below on G,, conti-
nuous on G, U 0G, and nonnegative on 0G,. Hence a,v — |u| =0 on
G,. Since a,—0 and G, T ¥ we have v =0 on %, a contradiction.
Hence G, ¢ SO, for n = n, say, and so we may as well assume G, ¢
S0, for n =1,2, .-+ . Now by Theorem 6 4c @G, — 3G, and so

lim sup)u(p)i = lim sup Alu(p)l < 7.

peEX— PeGy—
The function a,v + #, — |u| is superharmonic, bounded from below on
G,, continuous on G, U 0G,, and nonnegative on 0G,. Hence by
Theorem 4, a,» + », — 4| =0 on G,. Since a,—0 we get |[u| < r

on ¥ which contradicts our assumption Xe O, ;. Hence we conclude
%¢ Oyp and 80 Ogy C Opy.

13. We now give relations between the classes H®, HB’ and
HP’. The following theorems due to Nakai (16) for Riemann surfaces
are also valid for harmonic spaces.

THEOREM 8. If d(®) > 0 then HO(X) c HP' (%).

Proof. Set d{®) = 2¢ > 0 and choose ¢,€ (0, =) so that @(t) > ct
for t > t,. If we HO(X) then @O(|u|) has a harmonic majorant » on
X, It follows, that v + ¢t, = @(|u]) + ct, = ¢|u| on X and |u| posses-

ses a harmonic majorant on X. Thus we HP'(X).
THEOREM 9. If d(®) =  then H®(X) N HP'(X) < HB'(¥X).

Proof. For ue HO(X) N HP'(X) there exists an HP-function » on
% with @(|u|) <v. Define Mu =u Vv 0+ (—u) vV 0. Since B com-
mutes with the operations M, Vv, and A we need only show BMu =
Mu. Since d(®@) = o there is an increasing sequence {t.}> of positive
numbers with &(¢,) > 0 and a, = t,/@(t,) — 0. Setting G, = {pc¥||u
(p)| <t} wehave G, T X. Let {2,} be an exhaustion of X. Observe
that the boundary points of 2, N G, are regular. Let w, be har-
monic on 2, N G, with w, [(02,) N G, = min(Mu — BMu, t,) and w,
[(0G,) N 2,, = 0. Furthermore if we define w, | (2,, — G,) = 0 then w,,
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is subharmonic on 2,, and w, = w,, on 2,. Also let w) be har-
monic on 2, with boundary values w,, [(02,) N G, = min(Mu — BMu,
t,) and w,| (02, — G, = 0. Then {w]} is a bounded sequence and
0w, < Mu— BMu, m=1,2, ---. It follows from a theorem of
Loeb-Walsh [11] that if 2 c X is a regular region and the family « =
{he H2)|0 < h} is bounded then ¥ is equicontinous on 2. Consequ-
ently by the Arzeli-Ascoli theorem ¥ is a normal family. Hence
{w,} has a convergent subsequence with limit function w’. We obtain
0 < Bw' < B(Mw — BMu) = 0. Since w’ is bounded and nonnegative,
w' = Bw' = 0on X. Inaddition w), = w, = 0 implies lim,,_... w,, = 0 on
X. Now on (02,) N G, we have |u| < t, and || < Mu = BMu + (Mu —
BMu). Hence on (62,) N G,, |w| — BMu < min(Mu — BMu, t,) = w,.
On 0G,, |lu|l=t,=a, O(|u|) < aw, and so |u#| =< a,v + BMu + w,
on (2, N G, and hence on 2, N G,. Upon letting m — « and then
n — co we obtain || < BMu on %X. Since Mu is the least harmonic
majorant of |u| on ¥ we must have Mu < BMw and hence BMu = Mu
as desired.
Combining Theorem 8 and Theorem 9 we have the following

COROLLARY 2. If d(®) = o and d(®) > 0 then H®(X) c HB'(X).

14. Finally we briefly mention something about relative classes.
Let FFC X be a regular open subset. We denote by H@(X, F') the
class of harmonic functions 4 on F' vanishing continuously on 0F and
such that @(|«|) has a harmonic majorant on F. The corresponding
null class SOy, will consist of subregions F' for which H@(X, F) =
{0}. Note that SO, consists of all relatively compact regular open
subsets of harmonic spaces if @(¢) is bounded on [0, ). If on the
other hand @(t) is not bounded at ¢ =0 then SO, consists of all
regular open subsets of harmonic spaces. The remaining case is
treated in the following theorem of Nakai (15).

'ILHEOREM 10. If @(t) is bounded at t = 0 but unbounded in [0, o)
and d(®) = o then SOy = SOyp.

The proof follows by an argument similar to that in Theorem 7.
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