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The estimates are given for the radius of the largest disk
about the origin on which all the functions of the form
a/z+¢(z) are p-valent, where ¢(z) is an analytic function
defined in the unit disk and of modulus less than unity there.
Similar results are obtained concerning the starlikeness of
the image of circles about the origin.

Suppose a polynomial of degree 7 assumes p-times a
certain value in the center of a circle and does not take this
value elsewhere in this circle. The author determines the
largest concentric circle in which the polynomial is p-valent.
The same problem is then considered in a more general setting
and similar results are obtained.

1. Introduction. In this paper we shall deal with two questions.
The first part deals with the multivalence of meromorphic functions
of the form

(1) fo) =3,
k=12 — a,,,
where A4,>0 and a,€8,k=1,2, .-+, n; S being the closed unit disk.
Actually most of the results will be deduced for a more general
class of functions, namely those representable in the form

(2) M@=%+¢@w>0,

defined for all z such that 0 < |[z| < 1 and such that the function ¢(z)
is analytic and of modulus less than unity in the unit disk.

The relation between the functions of the form (1) and (2) becomes
clearer if we apply a result due to J. L. Walsh and the author [11]
(see loc. cit. Theorem C), according to which the function f(2) defined
by (1) can also be written as

4
z—a®k) '’

(3) flz) =

where A = >;.,A, and where a(z) is an analytie function defined for
all z such that |z]| > 1 and satisfying |a(z)| < 1 there. Obviously the
functions of the type (2) can now be obtained from (3) by simple
transformations.

R. Distler [5] determined the domain of univalence for functions
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772 ZALMAN RUBINSTEIN

of the form (1), where S is an arbitrary set. He has shown that
this domain is the interior of the director set of the closed convex
hull C of S, that is, the -set of all points such that C subtends an
angle of /2 at each of these points. For example the director set
of the line segment [—1, 1] is the unit circle and the director set of
this circle is the circle |[z| = 2'%. Goodman [7] (p. 1043) mentions
that the problem of the determination of the domain of p-valence
(p = 2), starlikeness and convexity of these functions remains open.

In the first part of this note we shall determine the domain of
univalence of the functions of the form (2) and we shall estimate the
domain of p-valence of functions of the form (1) and (2). The results
abtained are probably not sharp in the case of »p = 2. We also give
an estimate of the domain of starlikeness for functions of type (2).
Often for simplicity we shall assume a = 1.

In the second part, two related problems in the theory of poly-
nomials are considered.

Problem 1. If a polynomial of degree n assumes p times(1 < p<n
and counting multiplicities) a certain value in the center of a circle
and does not take this value elsewhere in this circle, find the largest
concentric circle in which the polynomial is p-valent.

Problem 2. If a polynomial of degree 7 assumes p times in a
circle (1 < »p < m) the values it has at the center, find the largest
concentric circle in which the polynomial is necessarily p-valent. For
simplicity we shall assume that the circle in question is the unit circle.

In this case it is easy to show that there exist numbers depending
only on p and % which solve these problems. For general polynomials
Problem 1 was solved by M. Biernacki [1], Chapter 11, who also gave
an estimate to the solution of Problem 2.

We shall generalize Problems 1 and 2 to lacunary polynomials.
We shall solve Problem 1 and give lower and upper bounds for
Problem 2.

2. Multivalence of certain meromorphic functions. Here we
need the following result due to Minami [8], (see also [2], Chapter 11,
Theorem 44).

THEOREM A. Let ¢(2) be a regular function defined in a convex
domain D in the complex plane and let a be an arbitrary constant.
Furthermore suppose that ‘

(1) For ze D, ¢*(z) € A, where A is a convex domain;

(2) ' There exists a polar set E (a set of the form 6, < arg z < 0,
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0= r £ |2] £, 6, <06, are real numbers) such that the polar region
E, described by the expression @ = (—1)*"'plaz™"" as z€ E is disjoint
Sfrom A.

Then the function

9(z) = % + $(2)

18 completely p-valent (that is, g@) + ¢ + €2 + <+« + ¢, 2" is at
most p-valent for arbitrary constants c¢;1=0,1--+,0— 1) in the
wntersection D N E.

We are now in a position to establish

THEOREM 1. The function g(z) defined by (2) is univalent in the

disk
<)

This estimate is sharp for ¢ = 1 and for all a the best estimate
of the radius of the disk about the origin for which all functions of
type g(2) are univalent does not exceed the number

Min[ (2“)1/2 a;/z]
1+ o )

Proof. Let o be a number such that 0 < o <1 and let o, be a
positive number such that 0! < a(l — 0*). We now apply Theorem A
with D:|z| < p, At|z| < A — o), E:|z| <p, and E;: [2| = ap®. It
follows that |¢'(2)] < (1 — [z])~" for all |z] < 1 and thus by Theorem A
g(2) is univalent in the disk

(4) |2] < Min {p, [al — p)]'?} .

The result now follows by taking the maximum of the righthand side
of inequality (4) as p varies in the interval (0, 1).

To prove the second part of the theorem, consider the function
#(z) defined by

1 1 _ 2
-1 z-—1 2 — a(®)

and

where ¢ = (—1 + %)/2.
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In this case ¢’(z) = 0 if z satisfies the relation
22" +al2 — 1+ 9z=0.
If @ > 0, the solutions of the last equation are of modulus
(20)'*/(1 + a)'®.

If o is a complex number, by choosing an appropriate argument for a
this modulus can be diminished to (2|a|)*?/(1 + |a[?). However, this
does not involve loss of generality, since a rotation of the independent
variable will not affect the domain of univalence in the context of
the theorem. Also, the example /2 + z shows that the radius of
univalence cannot exceed a'/%

COROLLARY. When a = 1, we obtain a result due to Cakalov [4],
namely that f(z) as defined by (1) is univalent in the domain
[z] > 22, and this domain 1s maximal for the class of all such fumnc-
tions. With regard to the question of p-valence (p = 2) of the func-
tions of the form (1) or (2), we have

THEOREM 2. Let g(z) be a function as defined by (2). Then g(z)
is completely p-valent im the disk |2| <r, where r, is the unique
positive root (<1) of the equation

x(?+3)/2 — ap!(l _ lefi):ﬂ .

Proof. The proof of this is similar to that of Theorem 1, once
the inequality |4 (z)| < r—?*=212(1 — ¢*)~7 valid for |z| <r?(0 < r < 1)
is established by induction. We shall omit the details.

We shall now sharpen the results obtained thus far for functions

of the class (1) or (2) by considering the symmetry condition on the
points a,. More precisely, by imposing the condition:

(5) Sai=0,j=12 -1
=1

or the corresponding conditions
(6) la@)| = [2]7 for [z[>1
and

lp@)]| < |z]' for |z| <1

where a(z) and ¢(z) are defined by (8) and (2) respectively. (See loc.
cit., Theorem C, in §3.)
In this case it is known [6], Chap. VIII, Section 1, Theorem 5, that
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’ Lzl g ey < AT
(7) [¢'()] §—i—_——W(1 6@ ") = 1— |z

We shall prove

THEOREM 3. Let f(z) and g(z) be as defined by (3) and (2) respec-
tively and let conditions (6) be satisfied. Then (@) The function f(z)
is univalent in the region |z|r.(l) where r(l) is the largest positive
root of the equation

pRite rz(l)x” —1=0

and where r(l) A <r(l) <r()) is the largest positive root of the
equation

Y-yt —-1=0.

(b) The function g(z) is univalent in the disk |z| < r,(l), where r,()
18 the positive root of the equation

I+ = a(l — 2%,

Proof. (a) Let F(2) = (4/f(2)) = 2z — a(?), where |[a(z)| < |z|7 for
|z] > 1. If F(z) = F(z,) where |2,| > 1, |2,| > 1, then |z, — 2,] < 2r{?
with 7 = min (|2, |z.]). Also ReF'(z) > 1 — |&'(z)| > 0 if |z] > »(1),
where r(l) is as described above. Furthermore, it is clear that if
|z;] = r(l) (# = 1, 2), then the line segment joining z, to z, lies outside
the disk |z| < d where d&* = ! — r7*. Thus the function F(?) is uni-
valent in the region |z| > »/(I) if r.(I) is such that d = »(]).

(b) The proof is analogous to the proof of Theorem 1. We notice
that if a >0

(ZZ 4 4@2)1/2 . l]l/l

o) > [ 2a

Obviously the method discussed here can be applied to obtain estimates
on the radius of the disk about the origin in which all functions in
Theorem 3(b) are completely p-valent.

It seems, however, that these bounds are not sharp for p > 1.
The question of the exact bound remains open even in the apparently
simpler case of polynomials which we shall take up in the next section.

We conclude this section with one estimate on the number R such
that the image of |2| = R by functions of type (1) is starlike with
respact to the origin. For simplicity we shall assume that a = 1.

THEOREM 4. Let f(z) be a function defined by (1). Then if
R > @7/11D)'* then the image of |z| = R is starlike with respect to
the origin.
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Proof. By (1) and (3)
- A 1 1y_1
0@ = =L o) = >+ 50

defined for 0 <|z| <1 with B(2) analytic and |B(2)| <1 in the unit
disk. Let
1
h(z) = =— .
9(2)
h(z) is analytic in the unit disk and %(0) = 0. We investigate the
starlikeness of A(2). To this effect we notice that the number

Re {zz—g}l} = Re {%—%}
will be positive if and only if
(8) Re[l + 28 — 2°8 — z|2’BB] > 0.
Let |2] = 7, [8()| = a. Then |5'(z)| < 1 —a*/L — %) and (8) reduces to

2 o2
.1 a+ar31 a

1
1 — 1—7'2<

ar + r

or
#a) =ar + 12— a’) — a’r* < 1.

Now ¢(a) is positive and increasing for 0 < a < (37)™" so that ¢(a) <
s1)<1lif0<a<1and 0 »<1/8 if, however, r > 1/3 then
1 ) 5
Lol=)=2rr+=<1
$(a) < ¢(3T s <

for 0 < a <1 and 7* < 11/27. The theorem is established.

It is perhaps worthwhile to mention that the function f(z) of the
type (1) possesses the property

Re —-1—]’>0 for (2] >V 2.

1)

It is known (Noshiro-Warschawski-Wolff [2] p. 17) that an analytic
function () in a convex domain is univalent if Re'(z) > 0 there.
However, the geometric properties of the range that characterize
these functions (), even in simple domains as the unit disk, are not
known. (See [9], p. 817.)

3. Maultivalence of lacunary polynomials. There are two
related problems concerning the valence of polynomials in a disk on
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the basis of the knowledge of the distribution of one of its values.

ProBLEM 1. If a polynomial of degree # assumes p times
(1 £ p < m) a certain value (counting multiplicities) in the center of
a circle and does not take this value elsewhere in this circle, find
the largest concentric circle in which the polynomial is p-valent.

PrOBLEM 2. If a polynomial of degree # assumes p times
(1 < p < n) the values it has at the center, find the largest concentric
circle in which the polynomial is necessarily p-valent.

For simplicity we shall assume that the circle in Problems 1 and
2 is the unit circle. In this case it is easy to show that there exist
numbers depending only on p» and » which are solutions to these
problems. For arbitrary polynomials a sharp bound for Problem 1
was given by M. Biernacki [1], p. 627, who also gave estimates for
the solution of Problem 2. (See [1], p. 632, and [3], p. 92.)

We shall here generalize Problems 1 and 2 to lacunary polyno-
mials, for which we solve Problem 1 and give bounds for the solution
of Problem 2.

The following results shall be applied in the proofs.

THEOREM B. [10], Theorem 5. Let
P@) = ap’ + ap 2" + 200+ a,

Q) = bg" + by_ 2"t + «eo + by, a,0,#0,¢ > p,s = 1,t =1, have their
zeros in the disks |2] < R, and |z| £ R, respectively. Let v = Min (s, t).
Then at least p zeros of the polynomial

PG + Q)
lie in the disk
< Max {(2BL+ PRIV p1
©) 2] = Max {(ZELE2EDT, )

REMARK. In [10] the bound (9) was deduced but no discussion
about its sharpness was made. However, following the analysis
M. Biernacki [1], pp. 625-627, made on the location of the polynomial

(10) (X+PP+aX—-Q)r=0

where ¢ > p are integers, P and @ positive real numbers and a is
such that the equation (10) has a double real root, one deduces that
the polynomial:

(X" + R)* + a(X" — R7)?,
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where

o _ p—a
r=38 = t, = ar, = pBr,a = -1 a+ﬁ+1a__(__6__i>
P q=48 (=1) BT I
has exactly p zeros in the disk (9) and » double zeros on its circum-
ference. One sees, therefore, that if s = ¢ then the bound of Theorem
B is sharp.

THEOREM C. [11], Lemma 2(a). If |a,| < randm, >0,k =1,2,
<+, 8, there exists an analytic function a(z) defined for all |z| > r
satisfying
M _ N my,
=12 —a, =12 — a®)
and such that |a(z)| < r for |z| > r. If in addition >;-ma. = 0 for
1=1,2, ---, p, then |a(z)| < r**'/|z|? for [z] > r.

We are now in a position to prove

THEOREM 5. Suppose that the polynomial
fz) = 2°(L + a,2" + <+ + @u_p?"?)

A 70,1 p<m, 1 Zr=n— p, does not vanish in the unit disk except
for a p-fold zero at the origin. Then f(z) is necessarily p-valent in

the disk
[= ()

Furthermore the polynomials.
2P(1 + =")*

Jor n=Fk + p,k=1,2--- satisfy the hypotheses of the theorem and
are not p-valent in any disk about the origin of radius larger than

(p/n)''".

Proof. Write f(z) = z7g(z). The polynomial &(z) = z"*g(1/z) =
Gpp + Aupi® + +++ + @,z 7" + 2" has all its zeros in the disk
|z] < 1.

The equations h(z) + az" and f(2) + a are reciprocal to each other.
Therefore if the polynomial A(z) + az” has at least (n — p) zeroes in
a disk |z| < 1/p for arbitrary a, then f(2) is necessarily p-valent in
the disk 2| < p. By Theorem B with p replaced by (n — p),s =,
Qr)=2",R,=0,t=n,R =1 and ¢ = n, we deduce that i(z) + az"
has at least (» — p) zeros in the disk |z| < (n/p)Y". This proves the
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first part of the theorem.
To establish the second part of the theorem, consider the poly-
nomial

) = g()/" = 2*(1 + 2)*

where g() =21 +2)"?,n=kr+ 9, k=1,2,.+-. It is known [1],
p. 628, that the polynomial g(z) is p-valent in the disk |z| < p/n, but
it takes at least (p + 1) times the value a = (—1)"p°(n — p)*?/n" in
any larger disk about the origin. Therefore the polynomial f(z)" takes
the value @ at least (p + 1)r times in any disk about the origin
whose radius is greater than (p/n)Y". It now follows easily that f(z)
must take at least one of the 7 possible values a'" at least (p + 1)
times in this disk. The proof is complete.
With regard to Problem 2, we have

THEOREM 6. Suppose that the polynomial
f(z) = a’qzq + oeee o+ aR”,

a,# 0, 1 <q<mn, vanishes exactly p times (counting multiplicities)
wm the disk |z] <1 and assume, furthermore, that the (n — p) zeros
of f(z), which lie outside the wnit disk, say 2, --<,%,_, Dossess the
symmetry property

n—-p

(11) Zﬁzi—jzo’j:lazv"'yk—ly

where k= 1,2, +++. When k=1, we shall agree that no conditions
of the form (11) are imposed. Then the polynomial f(2) is p-valent
in the disk

2] < 2pA~ie™,

where

A= Max[(zn ”ff 1)”'1 L p].
D

REMARK. Actually A< A’ =Max {(n—p)V*, (n—p)/k)}ifp=<n-—2
and p%~ 1,2 or if p=*1 and n = 5. The case p = 1 has been solved
in Problem 1 and the case p = % — 1 has been solved by G. Szego
[12], Theorem 12, p. 46.

Proof. Write g(z) = 27%f(z) and 2"%¢(1/z) = P(z)Q(z), where the
polynomials P(z) and Q(z) are of degrees (n — p) and (p — q) respec-
tively, and such that all the zeros of P(z) lie in the unit circle.
Moreover, by hypothesis the first (¢ — 1) moments of these zeros
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vanish. We may assume 0 < k < n — p — 1. The equations P(2)Q(z) +
bz = 0 and f(2) + b = 0 are reciprocal to each other. By an argu-
ment similar to that given in the proof of Theorem 5, the reciprocal
of any number R such that the disk |z| < R contains at least (n — p)
zeros of the polynomial P(z)Q(z) + bz" for arbitrary b will provide an
estimate sought in statement of the theorem.

Now simple calculations show:

R .
]: Rl if |a|] <R
_B i
R + |a]

Max [—?— arg (z — a)
1zi=r L0G la| = R

and
Re [ z —za(z) ] RkRj 1

if [zl = R>1 and |a(z)| < R~%*V,
These estimates combined with Theorem C yield the fundamental
inequality valid for all R > 1:

e[ 200 0] e8]

IA

a0 P(z) Q(2)
(12 | .
<(n — p) - 8 P—q—s _
SR Tl S "

where s (0 < s < p — q) is the exact number of zeros of Q(z) in the
disk |2] £ 7 (r>1) and R is any number (R >#) such that (p—q—3s)
zeros of Q(z) all lie in |z| > R.

Now if R is such as to make the expression on the righthand
side of (12) negative (that such a number exists can be seen by let-
ting R-— o), then as can be easily verified 1/R becomes a good
estimate for the radius of the disk sought in the theorem. Indeed in

this case
A arg (PQ + bz") = | éR arg (PQ)

|z|=R
+ A arg(1+ﬂ)z A arg(PQ)=n—p+s.
lzi=R PQ i21=R

Thus the polynomial PQ + bz* has at least (n — p + s) zeros in
the disk |z] < R for arbitrary complex numbers b. Since moving a
zero lying in the unit disk to the origin does not affect the numbers
r and R and increases ¢ by one, we may assume, in view of (12),
that ¢ = 1. We are then led to the consideration of the inequality
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k _ —_—
R +iR+'r'+p 2n 1<0.

(13) s M 2

First it is immediate that this inequality has a solution with R >»> 1.
Secondly, denoting the left-hand side of (18) by M(R) it is easily seen
that if M(R) =0 for some R(R, >r>1), then M(R) <0 for all
R > R,. Substituting 1 + p (0 > 0) for R in the second summand on
the left-hand side of (13) and substituting 1 + kp for R* in the first
summand on the left-hand side of (13) one obtains the inequality

, s 2(n—p) p+s+17, 2(n—p)(r—1)
13y p p[———k(p_s+1) 1+rp_8+1]+ Wp— s+ 1) >0

Neglecting the positive constant term in (13’') and taking into account
that the first two summands in (13) are montonically decreasing in R
it follows that inequality (13) will be satisfied if

R>a, + rb,;
where

a. = 2(n — p) ’b:p—f—S—f—l.
T+ 1l-9k T p—s+1

We note that a, < (n — p)/k and b, <s+ 1. s=0, we can find
directly that a good estimate is

R:a():(————zn_—p_i—l)llk.
p+1

If the disk {z| < a, does not contain at least (n — p) zeros of the
polynomial PQ -+ bz", then at least one of the zeros of @ lies in the
disk |z| < a,. So assume, then, s =1 and r = a, and let

R, =a, + ab, .

If the disk |2| < R, (which we know contains at least one zero of Q)
contains exactly one zero of @, then the disk |z| £ R, must contain
at least (n — p) zeros of the polynomial PQ + bz*, since in this case
wecansets=1,r = R, — ¢, R = R, with ¢ > 0 sufficiently small. So
assume that the disk |z| < R, contains at least two zeros of Q(z).
We then continue the same argument, assuming s = 2,r = R, and let

R,=a,+ Rb,.

In this way, either [z| < R, already contains at least (n — p) zeros
of PQ + bz" or else the disk |{z| < R, contains at least three zeros of
Q. We finally arrive at

Rp—1 = Opy + Rpwsz-—x
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such that the disk |2| < R,_, must contain at least (n — p) zeros of
the polynomial PQ -+ bz* because the alternative implies that the
polynomial Q(z) must be of degree at least p, which is impossible by
the definition of Q(z). It remains to estimate the number R,_,. First
we have
Rp—-]_ = Opy + ap—sz—1 =+ a’p—3bp—lbp—2 +oeee a/lbp—lbp—-2' * ‘bz
+ by by a0 b, .

If A = Max,;<,, @;, We obtain
R, <Al + b, + by bys+ ooo 4 byybpsee<b]

§A[l+@+@£)—2+@f+ cee - (210)"’“1]<Ae“’.

21 31 41 P =T2p

This completes the proof.

REMARK 1. A slightly simpler calculation could be made, assum-
ing (except for several simple cases mentioned after the statement of
Theorem 6) A = A’ and furthermore starting with the basic inequality

RzA +r(s+1).
Then we can set
R = A’ + 2a, < 3A’
R, = A' 4 3R, < 4R; < 3.44’'
R, = A"+ 4R} < 5R; < 3.4.54'
etc. This leads to the inequality

R < (1’%1)114' .

Thus f(z) is p-valent in the disk

2

=< T 1o

where
A, = Max {(’i’b o p)llky n]; p“} y

valid for at least all » =5 except for the known cases p = 1 and
p=n—1.

M. Biernacki [1], p. 632, obtained the estimate ((n — p + 1)/2)(p + 1)!
for R,_, which is greater considerably than either R,_, or the radius
obtained in Theorem 6, except, in the latter case, for several small
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values of p. It should be noted that M. Biernacki has improved on
his result cited above in a later work [3], improving on his previous
result for p > 1 namely by replacing R, , as given above by

@P+H®+2)---Cp—1@r—2p+1)
(®— D!

It seems, however, that all these estimates are too small. In
view of Theorem 5, the exact estimate cannot be greater than (p/n)'",
which is exact for p =1. For p = n — 1 and k = 1, the exact bounds
as given by G. Szego [12] are 1/2 for odd % and 1/2 cos /2n for even
n. In this connection we mention a generalization of Szego’s theorem
to lacunary polynomials obtained in [11}], p. 417.

THEOREM D. If all the zeros of P() = a, + ap’ + -+ + a,2",
1< q9g£mn, lie in the region |z| = r, then all the zeros of the poly-
nomial Q) = a, + @,z + «++ + a,2""" lie in the region |z| = rx(q),
where x(q) 1s the positive root of the equation x* + ¢ — 1 = 0.

The last result allows us to obtain a lower bound for the exact
radius sought in problem 2 for lacunary polynomials.

THEOREM 7. If the polynomial of degree n
R =az+ @+ oo + a, 2 + a,2"

has (n — 1) zeros in the unit disk, then f(2) is at most (n — 1)-valent
wn the disk |z| < x(q) where x(q) is as defined in Theorem D.

Proof. By hypothesis the polynomial
Q) = 2"f (L) =0+ G @+ e @R
z
has one zero in |z| £1. We have to show that the polynomial

9(®) = a, + ag + o0 + @, 2" + a2

has at most (» — 1) zeros in |2| < %(q) for arbitrary a,. Assume the
countrary. That is, assume that the polynomial g(z) has all its zeros
in the disk |z| < 2(g). Then the polynomial

P(z) = z"Q(%) =Q, + @R + o0+ a" + a2
has all its zeros in |2z]| = 1/x(9). By Theorem D with » = (1/x(q))+e,

it follows that the polynomial Q(z) has all its zeros in [z| > 1 which
is a contradiction. It is shown in [11], p. 417, that the exact bound
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2,(¢) in Theorem D satisfies x(g) < #,(gq) < 27%. The exact value x,(q)
is, to the author’s knowledge, still unknown.
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