Vol. 39, No. 1, 1971

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Vol. 317: 1  2
Vol. 316: 1  2
Vol. 315: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Semi-orthogonality in Rickart rings

Louis Melvin Herman

Vol. 39 (1971), No. 1, 179–186
Abstract

This note initiates a study of the semi-orthogonality relation on the lattice of principal left ideals generated by idempotents of a Rickart ring. It will be seen that two left ideals in a von Neumann algebra are semi-orthogonal if and only if their unique generating projections are non-asymptotic. Connections between semi-orthogonality, dual modularity, von Neumann regularity, and algebraic equivalence will be established; those Rickart rings with a superabundance of semiorthogonal left ideals will be characterized.

Mathematical Subject Classification
Primary: 16A30
Milestones
Received: 23 October 1970
Published: 1 October 1971
Authors
Louis Melvin Herman