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A GELFAND REPRESENTATION THEORY FOR
C*-ALGEBRAS

CHARLES A. AKEMANN

Recent work by the author which was independently
duplicated in part by Giles and Eummer has made it possible
to generalize the Gelfand representation theorem for abelian
C-*algebras to the non-abelian case. Let A be a C-algebra
with unit. If A is abelian, it can be identified with the
algebra of all continuous complex-valued functions on its
maximal ideal space (with the hull-kernel topology). A less
precise way of looking at this result would be to say that
an abelian A is completely recoverable from the set of
maximal ideals and a certain structure thereon (in this case,
a topology). If we use the latter description as the basis for
a theory applicable to non-abelian A, we find immediately
that two changes are necessary. The set of maximal ideals
is replaced by the set of maximal left ideals, and secondly,
the structure defined thereon will not be a topology, though
it will have many similar properties when viewed correctly.
This paper shows how the C*-algebra is recovered from
the maximal left ideals (with structure).

I* Preliminaries. Consider the W*-algebra A**, the second
Banach space dual of A [9, p. 236]. There exists a central projection
zeA** which is the supremum of all the minimal projections in A**
[3, p. 278]. Set M^zA**. The minimal projections of M are in
one to one correspondence with the maximal left ideals of A [3, p. 280
and 9, p. 48], so that we can define a structure on this set of minimal
projections instead of directly on the maximal left ideals. Naturally
the first thing we "build" is the algebra M. We then single out a
class L of projections in M as the g-open projections as follows.
First note that we can consider AczM since AczA** and A—*zA is
a ^-isomorphism [9, p. 39]. (Also we can view M as the direct sum
of irreducible representations of A, one from each equivalence class.)
A projection p in M is g-open if there exists a closed left ideal I of
A such that the weak* closure I of I in M is of the form Mp. The
g-open projections are analogous to the open sets of a topology.

If A were abelian, M would be the algebra of all bounded com-
plex function on its maximal ideal space K. The g-open projections
would be characteristic functions of open sets of K for the hull-
kernel topology. A self-adjoint operator b in M actually lies in
4 ( c l ) if and only if the spectral projections of b corresponding to
open sets of real numbers are g-open projections in the above sense.
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This is a restatement of Gelfand's theorem since a function is con-
tinuous if and only if its inverse images of open sets are open.

We may now state an identical theorem for the non-abelian case.
The proof follows immediately from the addendum to [4] and
Theorem 11.17 of [3].

THEOREM L I . A self-adjoint operator beM lies in 4 ( c l ) if
and only if each spectral projection of b which corresponds to an
open subset of the real numbers is also a q-open projection.

This theorem says that we may reconstruct A from its set of
maximal left ideals together with the above defined structure. As a
corollary we note that if two algebras Aι and A2 have "isomorphic
structures" then they are isomorphic.

COROLLARY 1.2. Let A, and A2 be C""-algebras with Mi =
and Li the q-open projections in Mi (i = 1, 2). If there exists a *-iso-
morphism φ: M1—>M2 which maps Lγ onto L2y then φ\A1 is an iso-
morphism of Aγ onto A2

This paper extends these results to C*-algebras without unit
with appropriate modifications suggested by the abelian case. A
number of other " topological" results are proved, and counter-exam-
ples are given to close off several tempting avenues of approach.

To complete our terminology, we shall assume from now on that
A is a C*-algebra which may not have a unit. The above discussion
still applies to get zeA** and we set ikf=2A**. Identify A and
zAczM and call M the pure state g-space of A. (The terminology
is lifted from [11].) We have already defined g-open projections in
M, and their complements (in M) are called g-closed. A will denote
the algebra A with unit adjoined as in [9, p. 7]. Note that A is a
closed two-sided ideal in A of co-dimension one. Thus A* = A*0{λ/co},
where /«, is the unique pure state of A which vanishes on A. Also
the pure state g-space M of A is: M = j | f 0 {λloo}, with /oo(l~) =
1. In view of Theorem 11.17 of [3] all the properties of open or closed
projections in A** (as considered in [3 and 4]) carry over immediately
to corresponding properties of g-open or g-closed projections in M.

II* The problem of compactness• Although the notion of com-
pactness is vaguely introduced in [3], it is clear that a theory which
claims to generalize locally compact Hausdorff spaces should general-
ize the notion of a compact set.

DEFINITION Π.l. A projection p e M is q-compact if p is g-closed
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and there exists be A+ (= {a e A: a ^ 0}) with bp = p.

There are a number of conditions equivalent to compactness for
a set in a locally compact Hausdorff space. It would be desirable to
show that many of them can be extended to equivalent conditions
for g-compactness. The most desirable such condition would be:

Conjecture Π.2. A regular [10, p. 408] projection peM is com-
pact if for every family {pa} of g-closed projections such that the
family {paΛp} has the finite intersection property, then p f\ AaPa^O.

We shall prove this for certain p in Theorem II.6. The con-
jecture is false without the assumption of regularity (see Example
IV.5).

LEMMA Π.3. Suppose B is a C*-algebra, beB+, peB** a pro-
jection and {aa} c B an increasing net of positive elements with
|| &i/2 _ bll2aa\\-^0. Ifb^ p (considering BczB**),then\\p - aap\\^0.

Proof. S i n c e || δ 1 ' 2 - b1J2aa || r 0, c l e a r l y \\ (1 - aa) b(l- aa) || -- 0 .
S i n c e (1 - aa) b (1 - aa) ^ (1 - aa) p (1 - α α ) , w e g e t

||(1 - aa)p(l - O H = ||(1 - aa)pψ = \\p~ aap\\* >0.

LEMMA IL4. // p is q-closed for A and we consider A and M
us above with Ma M (hence pe M) and there exists be A+ with b^>p,
then p is q-closed in M.

Proof. Let K = (p A* p)+. Then K is σ(A*,A) closed by [3,
II.2]. If K is not σ(Ά*, A) closed, then there is a net {fa}cK with
\\fa\\aK with H/JI = 1 and fa-?f, σ(Ά*,Ά), for some /eA* with
11/11 = /(I) = 1. Since 1* = A* © {λ/J, we get / = /0 + λ/eo where
/o G A*+ and λ :> 0. For any c e A with c ^ p,

fo(c) - f(c) = lim/α(c) ^ ϊmί/β(p) - 1
a a

since each /α e K.
Now if l e i , then A* is σ(A*, A) closed in A*, so the conclusion

of this lemma is immediate. If 1 & A, let {ar} c A+ be an increasing
approximate unit. Then, by Lemma II.3, {ar} is an approximate unit
for p also. Thus given ε > 0 there exists c e A with c ^ p and
|| c || ^ 1 + e by Theorem 1.2 of [2] Hence /0(c) ^ 1 by the above.
Since ε > 0 was arbitrary, | |/ 0 | | = 1, so λ = 0, since

11/11 = ||/0|| + | λ | = i .
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Thus fe A*. Since {fa} c iΓ, K is α (A*, A) closed, and fa-?f in the
σ(Ά*,Ά) topology, we see that feK, so K is σ(A*, A) closed.

THEOREM II.5. If p is q-dosed and there exists be A with b^p,
then p is q-compact.

Proof. Since p is g-closed for A by Lemma II.4, there exist
{ba} c i , ba = aa + λαl with α f f G i , 1 Ξ> δα ̂  p and ba\ p in M [5,
proof of Prop. 1]. Thus each ba (and hence aa) commutes with p.
Since /«,(&«) -^ 0, there exists tf0 with U{ba) < 1/2. Thus λαo < 1/2
since foo(aaQ) = 0. Let #(£) be a continuous function which has g(t) = 1
for ί ^ 1/2, 0(0) = 0, 0 ^ flr(ί) ^ 1 for all t. Then <?(ααo) ̂  p. (Since
ααo, δαo and p all commute, we may view them as functions on a
common locally compact space; this makes the assertion clear.) Since
g{aa) e A, the theorem follows.

The construction in the proof of last theorem will not work for
all projections p in M having only the property that p ^ b e A, even
though it easily works whenever p is central.

THEOREM II.6. Suppose 1 e A and A is separable. Then Con-
jecture II. 2 holds for central projections pe M.

Proof. Suppose p satisfies the intersection condition of Con-
jecture Π.2. We need only show p is g-closed since l e i . If it is
not g-closed, let p be its closure [3, II. 11] and let q ^ p — p be a
minimal projection. As in [1] there exists a strictly positive element
α0 in {a e A: aq = qa = 0} = I, so we let pn be the spectral projection
of a0 corresponding to the interval [0, 1/n]. Since AnPnAp = 0,
there is some n0 with pnQ p = 0 by hypothesis. Since p is central, the
spectral projection x of aQ corresponding to [l/n0, &o) is g-closed and
x £> p. This contradicts xq = 0 and q <£ p.

THEOREM II.7. // p is q-compact, then p satisfies the intersection
condition of Conjecture Π.2.

Proof. Since p is also g-closed in M by Lemma II.4, the theorem
follows from [3, 11.10] for if {pa} are g-closed in M, then their q-
closures {pa} in M have no larger M component. (Recall that M =
I ® {λloo} with looM = {0}.) Thus if p f\ AaeJp Φ 0 for all finite sets

J, P Λ AaPa =£ 0, SO £ Λ AαPα ^ 0, SinCβ ^ Λ Pa = P A Pa-

Next we move in a different direction for a characterization of
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M. If A were an abelian C*-algebra of functions containing the
constants and separating the points of the topological space Ω, then
A consists of all continuous functions on Ω if and only if Ω is com-
pact. Following [11] we define a g-space to be an atomic TF*-algebra.
If M1 is a g-space and AaMίf is a weak* dense C*-subalgebra with
1 e A, we can define a g-open projection in Mι as a sup of range pro-
jections of elements of A. Naturally g-closed projections are com-
plements of g-open projections. If M1 = M, the two definitions coin-
cide.

THEOREM Π.8. // A is separable and Ad M1 as above, then there
is an A-preserving ^-isomorphism between M1 and M if and only if
the q-closed projections of Mt satisfy the intersection condition of
Conjecture IL2.

Proof. If Mx is *-isomorphic to M under an ^.-preserving map
the verification is routine. Now suppose the g-closed projections of
M1 satisfy the intersection condition. If every pure state of A ex-
tends to a normal state of M19 there is a nutural isomorphism be-
tween M1 and M which preserves A because of the definition of M as
a subset of A**. Thus let / be a pure state of A with no normal
extension to Afx. Let {a,j} c A be an increasing positive abelian [1]
approximate unit for {aeA: f(a*a + αα*) = 0}. Then let pjn be the
spectral projection of aa corresponding to the interval (1/n, °o).
Cleary V3 ,nPjn = 1 in M19 for if not, then (1 — Vi,ΛJ would be
one-dimensional, hence / could be extended to a normal functional on
M1 with support (1 — Vί\*Pi*) But {(1 — pjn}} is a decreasing net of
closed projections in Mι with Ai,n(l — V Pjn) = 0. Thus (1 — pjn) = 0
for some j and n* Hence a$ is invertible, so / = 0, a contradiction.

Ill* The Gelfand representation*

LEMMA III . l . If p is q-closed, pλ is q -compact, and pγp = 0,
then there exists ae A+ with \\a\\ = 1, ap = 0, and apγ = px.

Proof. Set At = {aeA: ap = pa = 0}. Consider A1dΆ. By
Lemma IL4, pγ is g-closed for Ά. Thus the unit ball of p1A^p1 = pxA?pL

•=• piΆ*p1 is compact for the σ(Ά*, Ά) topology, hence also for the weaker
0 (A1*,A1). Thus PιΆ*pι is σ(Άf,Ά) closed, so px is g-closed for Ά1

[3, II.2]. Now by [4, I.I] there exists aeΆt with | | α | | = l , ap.^p^
and ap2 = 0, where p2 is the one dimensional projection in Mι which
supports the pure state /«, which vanishes on AL. Since ap, = 0, a e A19

so ap — 0.
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This last Lemma generalizes Urysohn's Lemma. We now define
an analog for a continuous function.

DEFINITION III.2. A self-adjoint operator be M is q-contίnuous
if each spectral projection of b corresponding to an open subset of
the spectrum of b is also g-open.

Now we can state our best Gelfand representation theorem.

THEOREM III.3. The self-adjoint elements of A are exactly those
q-continuous elements b of M such that the spectral projections of b
corresponding to closed subsets of the spectrum of b which don't con-
tain 0 are q-compact (i.e., b "vanishes at °o ").

Proof. Consider A c A, Mc M. If be A, then be A, since be M.
But if p is the spectral projection of b corresponding to an open
subset U of the spectrum of 6, we consider two cases. First if
0 $ Uj then pe M, hence p is g-open since it is g-open for A by
hypothesis. Secondly if 0 e U, then the complement of U is closed
and doesn't contain 0, thus the spectral projection corresponding to
it is g-compact for A, hence g-closed for A by Lemma Π.4. Thus b is
g-continuous for A and Theorem I.I applies.

For the abelian case it is well-known that if B is a C*-algebra
of continuous bounded functiohs on a locally compact Hausdorff space
Ω such that the smallest topology on Ω making all be B continuous
agrees with the given topology, then B contains all continuous func-
tions vanishing at cχ> on Ω. A similar result is true in general.

THEOREM IIL4. Let Aλ be a C*-sv,balgebra of M such that the
q-open projections for Aγ in M are the same as the q-open projections
for A. Then Aγ Z) A and Aγ = A if 1 e A.

Proof. Let A2 = A Π Aγ. If p is g-open for A, then p = VaPa
where pa is g-open with g-compact closure. For each a, pa is also
Ax open, so there exists a net {ar

a} c Ax with 0 ̂  ar

a ] pa. By hypo-
1

thesis each ae Aλ is g-continuous, and since pa has compact closure,
Theorem III.3 applies to give {ar

a} a A, hence in A2. Thus p is A2

open. We now apply Theorem III.3 of [3] and get A2 = A. (Theorem
III.3 of [3] is stated for algebras with unit, but considering A2 and
A we get the result.)

Now if 1 G A, Theorem I.I gives that Ax c A, so A1 = A.
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Recall that one way of constructing the double centralizer ikf (A)
of A is to let M(A) be the idealizer of A in A**, i.e.,

ikf(A) = {be A**: bA+ Aba A} .

We first prove a lemma bringing M(A) into ikf.

LEMMA III.5. The mapping b-+bz is a ^-isomorphism of M(A)
into ikf.

Proof. Suppose b ̂  0 in ikf (A) and zb = 0. Then let a e A with
0 < a ̂  b. Then za = 0 since zα <̂  zδ = 0. This means a = 0, a
contradiction.

From now on consider M(A) as a subalgebra of ikf. A tempting
conjecture would be;

Conjecture III.6. The self-adjoint elements of M(A) are exactly
the g-continuous elements of ikf.

Our next result is one half of the conjecture.

THEOREM III.7. Every self-adjoint element of M{A) is q-
continuous.

Proof. Let {aa} c A be a positive increasing approximate unit
for A. Let b e ikf (A) be self-adjoint and let U be an open subset of
the spectrum of b with p the spectral projection of b corresponding to
U. Let {bn} be a sequence of continuous functions of b with 0 ̂  bn j p.
Then {bψajbi2) is a net in A which is ^ #> and converges to p. Thus
2> is g-open for A.

In [7] Dixmier introduces the ideal center of a C*-algebra which
is a C *-subalgebra of ikf (A) containing A. Dixmier constructs it in
A** but Lemma III.5 assures us the idea carries over to M as well.
We can characterize it in the obvious way.

COROLLARY III.8. The ideal center of A consists of exactly those
central elements of ikf which are q-continuous.

Proof. We need to show that if d is central in ikf and p-con-
tinuous and a e A, then da e A. Clearly we need only consider
d, a ̂  0 and \\d\\ — \\a\\ = 1. For λ > 0, the spectral projection p of
(da) corresponding to the interval [λ, oo) is less than or equal to the
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spectral projection of a corresponding to [λ, oo) which is g-compact
since ae A. By III.3 we need only show ad is g-continuous.

To show that (ad) is g-continuous, let (a, 0) be an open interval
and consider a and d as real functions on σ(ad) (the spectrum of ad).
Then let toe K = {t: a(t)d(t) e (a, β)}. For sufficiently small ε and d
we have U f] VaK, where U = {t: a(to) — ε < t < a(to) + s} and V =
{t; d(to) — δ < t < d(£0) + <5}. Since i£* is a union of open sets of the
form U f] Vy the spectral projection p of ad in Λf corresponding to
K is a union of projections corresponding to sets of the form U Π V.
But for any U and V as above, the spectral projections of (ad) cor-
responding to U and V are both g-open and they commute. Hence
their intersection corresponds to U Π V and it is g-open [3, II.7]. Thus
p is a union of g-open projections, hence it is g-open [3, II.5].

IV* Assorted results and examples* One interesting question
is: What are all the different C*-algebras which have a factor for
their pure state p-space? If M is countably decomposable, then the
question was answered in [13] where it was shown that the C*-
algebra must consist of exactly the compact operators in M (i.e.,
the C*-algebra generated by the minimal projections). We can slightly
extend this result.

THEOREM I V.I. Suppose M is a factor. Then A consists of
exactly the compact operators in M if any q-open projection p is
countably decomposable.

Proof. Let Ao = {a e A: ap = pa =a}. Then the pure state g-space
Mo of Ao is pMp. By [13] AQ consists of the compact operators in
pMp. Thus A contains all the compact operators in M by [9, p.85].
But if A is strictly larger than the compact operators, then they
form an ideal in A, so A has at least two inequivalent irreducible
representations. This contradicts the assumption that M is a factor.

Next is a theorem of the Stone-Weierstrass type.

THEOREM IV.2. Let BczA be a C*-suhalgebra which separates
the pure states of A and 0. // pBp is norm closed in M for each g-
closed projection p for A, then B = A.

Proof. By [3, III.2] M is also the pure state g-space for B. Let
pγ be the 5-closure of p in M (i.e., the smallest projection ^ p which
is g-closed for B). If pγ > p, then there is a minimal projection p2

in M with p2 ^ px - p. Let {ba} c B with 1 :> ba [ p2 in M. Then



A GELFAND REPRESENTATION THEORY FOR C*-ALGEBRAS 9

IIPAPIH = 1 for all a, but \\pbap\\-^0 since p is g-closed. By [3,
11.12] the map B-^pίBp1 has closed range, and by hypothesis the
map pJ5pγ ^ pBp has closed range also. But since p1 is the g-closure
of p for B, the map φ is 1 — 1. Thus φ~ι is continuous by the
closed graph theorem, and this contradicts UPAPIH = 1, \\pbap\\-^0.

The most difficult aspect of the g-theory is the existence of non-
regular projections, even in the best of circumstances [4, 1.2]. The
next result shows that some interesting projections are regular.

PROPOSITION IV.3. If pf is finite-dimensional, then p is regular.

Proof. Let p1 be the g-closure of p. Then p[ is finite dimen-
sional, so p[ is g-closed [3, II.8]. Hence p1 is g-open and g-closed, so
p[e A by [3,11.18]. By considering PiApίf we can assume pt = 1.
Let be A with | | 6 | | = 1 and suppose \\bp\\ < 1. This would be the
case if p were not regular. Since | | δ * δ | | = 1 and | | δ * δ p | | < l , we
can assume b > 0. Let p2 be the spectral projection of b correspond-
ing to the open interval (5, ©o), where || bp || < δ < 1. Then p2 is g-
open and p2 Φ 0, so p2 A p Φ 0 as follows. If p2 Λ p = 0, then
p[ V p' = 1. Since p' is finite dimensional, this implies that p2 is
finite dimensional. But then p2 e A, so we can get a minimal projec-
tion p3e A with p3 ^ p \ This contradicts p = 1. Now if # is a
pure state of A with #(p2 Λp) = 1, then

= g(p2bp2) ^

This contradicts the definition of δ.

The next proposition and example show how badly behaved non-
regular projections can be and how reasonable regular projections
are.

PROPOSITION IV.4. If pe M is regular, f a pure state of A,
be A with 6 Ξ> p and f(b) = 0, then f(p) = 0 (p — closure of p).

Proof. Let {aa} be an increasing positive approximate unit for
{aeA: /(α*α + aa*) — 0}. By Lemma II.3 and by [2, L2] we can
get {6J c A with bn ^ p, \\ bn\\ rg 1 + 1/n, f{bn) = 0. Let p, be the
support projection of /. If f(p) Φ 0, then there exists a pure state
g of A with g(p) = 1 and ^(^) ^ 0. By regularity and [10, 6.1]
there exists a net {gr} of states of A with gr—>g, σ(A*,A), and
0r(p) = 1 for all 7. Let 60 be a limit point of {δj for the weak*
topology of M, clearly | | 6 0 | | ^ 1. Since gr(bn) ^ gr(p) = 1 for all 7
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and all n, then g(bn) ^ 1 for all n. Hence g(b0) ^ 1. But ||δ0 + Pill = 1
since bnpι = 0 for all n implies 60£>i = 0 (and similarly pJ>0 = 0).
Hence g(bQ + pj >̂ 1 + g(pj > 1, contradicting the asssumption that

EXAMPLE IV.5. Let us work in the direct sum ΣϊU ®B(Hn) of
matrix algebras where dimension Hn = 2 for all w. Set

./l/nfl\ - / I 0\ - / 1 - 7 . (7,-τy1 '*

where {Ύn}n-i is an enumeration of the rationale between 0 and 1
which contains each rational an infinite number of times. Set
b = p + q and let A be the C*-algebra generated by a and b. Let
p1 be the range projection of a in M.

Conclusions from the example. (1) b Ξ> pι but there is no d e A+

with dp1 = pγ (c./., [12] page 11, line 11). (2) If / is the pure
state at oo for A, then f(b) = 0 but / ( P O ̂  0, so ^ is nonregular
by Proposition IV.4. (3) Let p2 be the support projection of / .
Then px + p2 satisfies the intersection condition of Conjecture II.2,
but p1 + p2 is not ^-closed.

If φ: Aγ —> A2 is a *-homomorphism of Ax onto ^42, we may easily
extend it to a normal *-homomorphism of M1 onto M2. However if
φ is not onto, this extension may not be possible. The natural re-
presentation of the continuous function on the interval [0,1] into the
algebra of all bounded operators on U [0,1] by φ{f)h — fh has no
such extension (the proof was communicated to me by R. Giles). In
order to place g-theory into a category theory setting, one must
restrict the class of allowable "morphisms" between two C*-algebras.
The following restriction is empty in the abelian case.

PROPOSITION IV.6. A *-homomorphism φ taking the C*-algebra
A1 into the C*-algebra A2 has a normal extension φ: M1—>M2 (neces-
sarily unique) if and only if φ is continuous for the topologies genera-
ted by the seminorms \\a\\f — f{a*a) for all pure states f of A1 (or
A2 for the topology on A2).

Proof. It ψ exists, the continuity is automatic for φ, hence for
φ. The converse follows immediately from [14, p. 3 of appendix].
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SPECTRAL THEORY FOR A FIRST-ORDER
SYMMETRIC SYSTEM OF ORDINARY

DIFFERENTIAL OPERATORS

SORRELL BERMAN

For a symmetric differential expression associated with a
first order system

Ao(t)x' + A(t)x, a<t<b

where Ao and A are n x n matrices and x is an n X 1 vector,
a spectral decomposition will be developed. That is, if S is a
closed symmetric differential operator determined by the dif-
ferential system, the explicit nature of the generalized resolu-
tions of the identity for all the self-adjoint extensions of S
in any Hubert space will be determined in terms of a funda-
mental matrix and spectral matrices associated with these
extensions. An important aspect is that these self-adjoint ex-
tensions may be defined in Hubert spaces larger than the
natural one Sίf in which the operator $ is defined.

The development proceeds as in Coddington [5]; however, the con-
sideration of systems of differential equations introduces matrix tech-
niques and notation. It is hoped that this formulation will have appli-
cation to such problems as open end (infinite time) control theory
problems, and facilitate the canonical formulation of the associated
spectral analysis.

Preliminary definitions* Let §ίf be a Hubert space with an

inner product (,).

(1) Generalized Resolution of the Identity. Let F = {F(X)} be a
family of bounded self-adjoint operators in <%?y depending on real λ,
such that:

( i) F(X) ^ F(β), X > μ,
(ii) F(X + 0) = F(X),
(iii) F(X) -»I, as λ -> + oo,

F(X) —> 0, as λ -> - oo,
then F is a generalized resolution of the identity.

The family F is said to be associated with a symmetric operator
Z (or F is a ''spectral function" for Z, Naimark [7]) if

(Zu, v) = \xd(F(X)u, v),

and

13
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\\Zu\\2= [\*d(F(X)u,u),

for all u e 3f(Z) and v e
(2) Generalized Resolvent. Let Z be a symmetric operator and

F = {F(X)} be an associated generalized resolution of the identity. For
Im I Φ 0, let & = {&(l)} be a family of operators such that

J λ; — 0

Then ^? is a generalized resolvent of ^ associated with F. The
development for symmetric operators will include the case for self-
adjoint operators.

1* Basic vector and matrix definitions* In addition to the usual
definitions and notation for the absolute magnitude of a vector, the
inner product of two vectors, the norm of a vector and the absolute
magnitude of a matrix, the norm of a matrix is defined as

II A|| = (gg j l^ i ί ί ) ! 1 ^) 1 ' 1 = (jtrace (A*(i)A(t))di)1/f;

and a matrix ' 'inner product" is introduced,

{A, B) = [B*(t)A(t)dt,

which is a matrix whose (ί, j)th element is

±\Bli{t)Alj{t)dt.

This "inner product" makes sense for any two matrices for which
B*(t)A(t) exists and is integrable.

An inner product of a matrix and a vector can be defined in some
situations; it is a special case of the matrix "inner product." For
example, if / is an n x 1 vector and G an n x n matrix,

(/, G) = J(?*(t)/(ί)dί.

2Φ The "basic operators" Γo and T. Let (α, b) be an open in-
terval on the real line (α may be — °o and/or b may be + °°). A
differential operator L is defined by

Lx = A,{t)x' + A(t)x.,

where: x is an n x 1 vector, Ao and A are n by n suitably regular
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matrix-valued functions (Brauer [2]) and ' denotes d/dt. The Lagrange
adjoint, L+, associated with L is defined by

L+y = - (A*(t)y)' + (A*(t)y)

= - A*(t)y' + (- A$'(t) + A*(t)y).

The operator L is formally self-ad joint if L = L+, that is when

A = - Af and A = - A*' + A* = 4J + -4*.

Throughout the remainder of this paper L will be assumed to be formally
self-adjoint.

Using the definitions for the inner product of two vectors, and
for the norm, a Hubert space, £έf, can be defined,

a, b) = {u:\\u\\ <

Defining a domain ^r in £$f by 3ί — {u e έ%f\ ( i ) u is absolutely
continuous on every compact subinterval of (α, δ), (ii) Lu^έ%f\, an
operator Γ, having domain ^ , can be defined by

T^ = Lu, u e 3ϊ.

Let, for u,ve 2$,

(uv) = (Lu, v) — (u, L+v) = (Lu, v) — (u, Lv).

Then, similarly for a domain &0,

&o = {ue Sf\ ζuvy = 0 for all v e ^ } ,

an operator To can be defined by

Tou — Lu, u e £%τ0.

The development of the operators To and T is motivated by the
fact that To is the smallest closed symmetric operator in Jg^ (associated
with the differential operator L) having a domain which contains all
vectors which are infinitely differentiable on (a, b) and vanish outside
closed bounded subintervals of (α, 6). Further, if JF\ is any generalized
resolution of the identity for a closed symmetric operator T19 where
To c 2\ c T, then F1 is a generalized resolution of the identity for To,
also. Thus, by considering TO, a maximal set of generalized resolutions
of the identity, which are naturally associated with L, can be obtained.

The following theorem provides an important relation between TQ

and T.

THEOREM 2.1. The operator To is closed, symmetric, and To* =
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T, T* = T«.

Proof. Let

T) =
j
lo, ί < r ,

where Φ is a fundamental matrix, that is, a matrix whose columns
are independent solutions of Lx = 0. Thus, Φ is a nonsingular w x w
matrix such that LΦ = 0. As a function of £, LK(t, τ) = 0, and

, ί) - JBΓ(ί - , ί) = Φ(t +)Φ"1(ί)Ar°(ί) - 0 - ^ ( ί ) .

The representation for ^ can be simplified

(Φ*ΛΦ)' = 0, or ΦMo0 = D-1,

where D is a skew-Hermitian constant matrix, and hence

φ-'Av1 = DΦ*.

The matrix K can now be written as

\Φ(t)DΦ*(τ), t^τ,
Kit, τ) = \

V ' } lO, ί < r.

Let J be a closed bounded subinterval [α, 6] of (α, 6). The Hubert
space ^2(A) is defined by

^ ^ 2 ( J ) = {u: \\u\\j< oo}.

For te A, the vector # defined by

x(t) = [[Kit, τ)y{τ)dτ

= \[κ(t, τ)y{τ)dτ,

where ye^f2(A), is such that
(0) xe^\Δ),
1i) x is absolutely continuous on Δ,
(ii) Lxe^\A).
Having verified that for t e A and y e ̂ f2(A) the vector x satisfies

conditions (0), ( i ) , and (ii|), the proof follows exactly as in Theorem
1 of reference 3.

3* The Green's function GΔ. In § 5. the generalized resolvents
associated with To will be constructed. The generalized resolvent
will be developed starting from the Green's function GΔ associated
with certain self-adjoint boundary-value problems on finite subintervals
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A. The purpose of this section is to derive such Green's functions GΔ.
Once again, let Δ be a closed bounded subinterval of (α, 6), denoted

by [#, b\. Analogous to previous definitions, a domain £&ά is defined
and the associated operator TΔ, having domain ϋ ^ ,

= Lu,

Similarly, for £gr0A, an operator T0Δ, having domain <%r0A, is defined by

T0Δu = Lu, u e &QΔ.

[NOTE: The conditions and relations of Theorem 2.1 hold for T0Δ and
TΔ.\

It will now be shown that abstract self-adjoint boundary conditions
can be constructed by considering the self-ad joint extensions of T0J.
Let

g^(± i) = {v e &Δ: Tjv = ± iv};

It is clear that dim &Δ{ϊ) = dim g^(— i) = n. The domain ^ can be
written as a direct sum

From the theory of the Cay ley transform (see Riesz-Nagy [8], for
example) every self-adjoint extension, TAUy of T0J has a domain

&JU = ^o, + (/-[/) g^(- i),

where U is a unitary mapping from S7/— i) onto &Δ(i); and

Let {φΔi} ί = 1, , π, be an orthonormal basis for g?j(ί); also let
{ψΔi\ i = 1, •• *, w> be an orthonormal basis for g?/— ΐ); finally let

and

v^ * = ΨΛS - U*φΔj, j = 1, ., w.

The following theorem describes the abstract self-adjoint boundary
conditions induced by the domain &ΔU*

THEOREM 3.1. The domain &ΔU of TΔU has the following repre-
sentation:

= 0, j = 1, , n)

where {ζuvΔj*y = 0, j = 1, , n} form a self-adjoint set of boundary
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conditions.

Proof. This follows by direct analogy from the proof of Theorem
3 in Coddington [3].

The set {ζuvdj*y = 0, j = 1, , n) forms a self-adjoint set of bound-
ary conditions since the vJ3 * are linearly independent and ζvJS*vJk*y
= 0 for all j , k.

The set of self-adjoint boundary conditions {(uvJd*y = 0, j = 1, ,
n) can be represented in matrix form by

V%(b)AQ(b)u(b) - VUa)A(a)u(a) = 0,

where VΔ* is the matrix whose ith column is the vector vΔi*. Letting

MΔ = - V%(a)A,(a),

and

NΔ = VUb)A0(b),

the self-adjoint boundary conditions can be written in standard form

UΔu = MΔu{a) + NΔu(b) = 0.

The self-adjoint boundary-value problem (on A)

Lu = lu, UΔu = 0 (bv)

will now be considered. The Green's function GΔ associated with the
problem (bv) is a unique function GΔ(t, τ, I) (I not an eigenvalue of
(bv)) satisfying the following conditions:

( i ) GΔ(t, τ, I) and d/dtGA(t, τ, I) are continuous on a <.t^τ <^b
and a <; τ <; t <̂  b, and for each fixed (t, τ) are analytic in Z,

(ii) GΔ(t + , τ, ί) - G,(ί - , ί, i) = A^(t), a<t<b,
(in) GΔ satisfies LGΔ = IGΔ (as a function of t),
(iv) GΔ satisfies UΔGΔ = 0 (as a function of £),
(v) G,(t, *, I) = Gίfr, ί, ϊ),
(vi) if / G J^2(J) and Lu = lu + f,

then,

^(ί) = ( G4(ί, r, l)f(τ)dτ, UΔu = 0

and if

then
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(L - l)^S)f(t) = f(t),

•and

\\S?M\U£ 11ml \~K

The Green's function will now be constructed starting from the
kernel

Φ{t,ΐ)DΦ*(τ,l), t^τ,

θ, ί < r,

for t , r e J ; where Φ is a fundamental matrix for (L — l)u = 0, having
the property that for some c,a < c < S, Φ(c, I) = I. The matrix D( =
-Aί"1 )̂) is a constant, skew-Hermitian matrix. Prom Theorem 8 4
Coddington and Levinson [6], Φ is continuous as a function of (t, I),
and for fixed t is an analytic function of Z(Im I Φ 0). Let

GUί, τ, ί) - Kά(t, τ, I) + Φ(ί, l)J(τ, I).

Introducing the notation

UΔΦ{ΐ) - M,Φ(α, i) + NΔΦ(b, I),

<GΔ can be written as

fΦ(ί, l){UΔΦ{l)TιMΔΦ{a, l)DΦ*(τ, I), ί ^ τ,
,(ί, r, Z) , φ ( ^ i)(Uφ(i))^NΦ(b, l)DΦ*{τ, I), t < τ.

It now follows by direct verification that GΔ as constructed satisfies
the remaining five conditions.

4. The limit function G. In this section it will be shown that
a type of limit function G exists for the set {GΔ}, as Δ approaches
(α, b).

Let Λ> Λ> and 4 be closed bounded subintervals of (α, 6) such that
Δo is properly contained in Δ19 and Jx is properly contained in Δ; these
will be denoted by

Δo = [α0, 60]̂  Λ = [a>i, &J> ̂  = [#, &]•

Let ^ be a function, having a continuous first derivative, such that
for some open interval Δ^ Δo c zί2 c Δx

J l , ίGz/2

(0, ί outside Δλ.

Let
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Wj(t, τ, I) = GΔ(t, τ, I) - μφGjfi, τ, I).

Then for t,τ e ΛQ, WΔ(t, τ, I) is continuous; as a function of ί, WΔ

satisfies

UΔWΔ = MΔWΔ{a) + ΛΓ,TF(6) = 0;

and also

(Lt - l)WΔ(t, τ,l) = - Mt)μf{t)GΔl(t, τ, I), tΦτ.

Since μ'(t) = 0 for ί outside of 4, TFj can be written as

WΔ{t, τ, I) = - ί (?,,(*, s, l)Ms)μf(B)GΛl{8, τ, l)ds;

(Note: The integral over Δγ actually represents the sum of integrals
over [α, t — ], [t +, τ —], [τ +, 6] for τ > ί), or

GΔ(t, r, ί) = μ(t)GΔl(t, τ,l)-\ GΔ(t, s, ^ Λ ^ ^ ^ G . ^ s , τ

It can be shown that the set {WΔ} is uniformly bounded and equi-
continuous on any compact (t, τ, I) — region, Im I Φ 0, t Φ τ. Thus,
by Ascolis' theorem a uniform limit W exists and from this a limit
function G, where

G = μGΔι + W,

and G is a limit function for the set {GΔ}.

THEOREM 4.1. The function G satisfies the following conditions:
( i ) G(t, τ, I) and d/dtG(t, τ, I) are continuous on a < t ^ T <6 and

a < τ ίg t < b, and for Im ί^O G is analytic in I,
(ii) G(ί +, ί, ϊ) - G(t-,t, I) = Aϊι{t),a < t < 6,
(iii) LtG = lG,tΦτ,
(iv) G(ί, τ, i) = G*(r, ί, 0,
(v) G(t,,l)e^2(a,b),a<t<b,
(vi) 1/ f ej^2(a, b), then the vector v defined by

v(t) = \bG(t, τ, l)f(τ)dτ, Im IΦ 0,
Ja

is such that v e & and

Lv(t) = lv(t) + f(t).

Proof. Again, this follows by direct verification.

It is thus seen that G satisfies pall the conditions of a Green's
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function except for satisfying boundary conditions. Further, from pro-
perty (vi), if

( « , Γ, ϊ)f(τ)dτ,

then,

(L - i)S?(ί)/(ί) - /(ί)

and 5̂ (T) is a right inverse for L — Z.

5* The generalized resolvent* Having constructed the closed
symmetric operator TQ, all its self-ad joint extensions will now be con-
sidered. In § 3. the self-ad joint extensions for an operator in 3ίf
having equal deficiency indices were considered and these self-adjoint
extensions were also in the space Sίf. A spectral analysis of those
self-adjoint extensions occurring in 3$f was carried out, by quite dif-
ferent methods, by Brauer in [2]. The problem to be considered next
is for unequal deficiency indices or equivalently, singular problems with
equal deficiency indices such that the self-adjoint extensions are out-
side the original space.

Naimark [7] and others have defined extensions of TQ for this case
in larger Hubert spaces. Theorem 7. in Straus [12] provides a means
for an explicit construction in £ίf itself. Let A{1) map g*( — i) into
£?(i), where A(l) is analytic and ||A(Z)|| ^ 1 for Im£>0. Analogously
to the case of equal deficiency indices, a domain &{l) c ^ is defined
by

^ o + (I-

and an operator TMl), having domain &(l) is defined by

TMl)u - Tu,

Then, Γo c TA{1) c T, and the generalized resolvent & can be repre-
sented as

&(l) = (TMl) - II)-1, £P(Ϊ) = ^ * ( i ) , Im I > 0.

Further, from Straus [12] every generalized resolvent is generated by
such A(l).

Again, analogously to the case for equal deficiency indices, the
domain £&{l) can be characterized in an alternate manner which leads
to an explicit formulation for the generalized resolvent &{l). The
domain £gr can be represented as a direct sum
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let ω+ be the dimension of i?(ΐ), and ω~ be the dimension of i?(— i)r

where 0 ̂  ω+, α>" ̂  n; let {^(i)}, i = 1, , ω+, be an orthonormal
basis for £?(i), and let {̂ *(— i)}, k = 1, •••, α>~, be an orthonormal
basis for i?(— i); finally, let

and

vMl) = 9,0) =

THEOREM 5.1. For Im I > 0, £/̂  domain &{l) of TA{1) can be rep-
resented as

= {ue ̂ r: ζuv

and the domain of TJα) is

= 0, k = 1, , ω~}.

Proof. The proof is the same as the proof of Theorem 3.1 with
the operator A(l) in place of U.

It will now be shown, again analogous to § 3, that the domain
&{l) induces limiting abstract boundary conditions. For ue £gr and
any closed bounded subinterval [c, d] of (α, b)

[uvjtlid) - [uv^](c) = v^{d)A,{d)u{d) - vf*(c)AQ(c)u(c).

Since u, vs*, Lu, and Lvi% are each in £f 2(a, b), then limd_>bvf*(d)A0(d)u(d)
exists, and lime^avf*(c)Ao(c)iι(c) exists; these limits will be denoted by
v**(b)Ao(b)u(b) a n d vf*(a)A0(a)u(a). T h e c o n d i t i o n s { ( u v ^ y = 0,j =
1, « ,α)+} can then be represented in matrix form as

0 = <>F*> - Vϊ(b, l)A0(b)u(b) - V%(a, l)A0(a)u(a)(LB),

where V* is the matrix with v^ in the ith column; these are limiting
abstract boundary conditions.

Having obtained the limiting abstract boundary conditions, the
following theorem describes a method for the construction of the gen-
eralized resolvent &(l) starting from the integral operator &(l) de-
veloped in §4.

THEOREM 5.2. Each generalized resolvent &(ΐ) of TQ is an integral
operator of Carleman type, having a kernel R(t, τ, I), which is con-
tinuous in (t, T, I) and analytic in I in any region for which Im IΦ 0»
and t Φ T.

Proof. The integral operator 5f(l) obtained in §4. is of Carleman
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type; further &(l) satisfies the conditions of the theorem except that
^(l) is only a right inverse of (Γ — I). It will now be shown that
a matrix Gx can be constructed such that the kernel of &(l) is

R(t, T, I) = G(t, τ, I) + Gx(ί, τ, I).

For fixed Z, Im I > 0, let {#*(£)}, i = 1, , co+, be an orthonormal
basis for i?(Z), let Θ+(ΐ) be the n x ω+ matrix having Θό(l) in the ith
column, similarly, let {χk(ϊ)}9 k = 1, « ,ω", be an orthonormal basis
for i?(I), and χ~(I) be the nx ω~ matrix having χk(ϊ) in the kth column.
From the orthonormal property of the ΘS) and the χk(ϊ),

ί(ί, l)θ+(t, l)dt

where Iω+X0)+ is the identity matrix of rank ω+; similarly,

F o r a n y v e c t o r / i n S f \ a , b), (T - l ) ( έ ? ( l ) - S?(l))f) = f - f =
0, and thus (&(l) - &(l))f is in ST(ί). Thus for some ω+ x 1 vector

- gf (ί))/ = θ+(ί)α(/, Z).

Also

and, for each column ί4(ί) of Φ+(l), (T - T)(£g(ϊ) - %?(ΐ))θk(l) = θk{l)
— θh(ΐ) = 0. Thus, for some ω+ x ω~ matrix B(l)

- S?(Ϊ))Φ+(Ϊ) = X-(ϊ)B*(l).

Combining the preceding calculations yields

(^(l) - S?(ΐ))f(t) = Φ+(t, l)B(l)(f, χ_(Γ)) = (/, χ(ϊ)B*(l)Φ*+(t, I));

thus,

R(t, τ, I) - G(t, τ, I) = Φ+(t, l)B(l)χl(τ, T).

Similarly, for some co+ x ω~ matrix H(ΐ),

R(t, τ, T) - G(t, τ, T) = χ_(ί, Ί)H*(ΐ)Φl(t, τ)

and

R*(τ, t, Ί) - G*{τ, t, ϊ) = Φ+(t, l)H(l)χl{τ, Ί).

Further,
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so that

i2*(τ, t, I) - G*(τ, t, I) = JB(t, τ, I) - G(t, τ, I).

Since θό{l) e ^ f f l c ^ , for i = 1,_ , ω+, and χk(l) e if (ί) c ^ , for ft
= 1, , or, then θ+(l)B(l)χϊ(τ, I) e .Sf 2(α, 6) for a<τ <b,lmlΦθ.
Thus ^?(Z) is an integral operator of Carleman type.

The operator &(l) will completely satisfy the condition of the
theorem when it is shown that R(t, τ, I) is analytic in I, Im I Φ 0, and
tΦτ. To facilitate the proof of the analyticity of R(t,τ,ΐ), analytic
bases for g?(ί) and 8" (I) will be introduced, as in Coddington [5],
related to an arbitrary l0, Im l0 > 0.

Matrices f_(I)and Φ+(l) are defined by this process such that the
columns of Φ+(l) form a basis for if (Z) and the columns of ΨJj) form
a basis for ί?(7); thus for some nonsingular matrix T(T),

Ψ-(T) = X-(Ί)T(Ϊ),

and for some nonsingular matrix S(l)

Thus,

= Φ+(t, l)C{l)Ψ-{τ, I),

where C(ί) - S~HZ)i3(Z)(T*(Z))-1. The matrix Φ+(ί) is analytic in ί and
F*(I) is analytic in Z for any compact subset of I m Z ^ 0. Thus it
remains to show that C(l) satisfies the same conditions of analyticity.

Let Z be an n x r matrix each of whose columns zk is in =5f 2(α, 6),
ft = 1, , r. Then ^(Z)^fc is in ϋ (̂Z) and thus satisfies the boundary
condition (LB),

the set {0 = <(^(Z)3*)V*(Z)>, ft = 1, « ,r} can be written in matrix
form as

0 =

Expanding ^(Z), yields
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0 = T

also

Thus,

The matrix C(Z) will be analytic if <(5^(Z)^)F*(Z)> is analytic, and
ζΦ+(ΐ)V*(l)y and (Z,WjJ)) are each nonsingular and analytic.

First it can be shown that <Φ+(Z) F*(Z)> is nonsingular and analytic.
Next, for (Z, Ψ~(ϊ)) to be nonsingular Z must be an n x ω" matrix,
it can be verified that for Z — Ψ_{—%), {Z,ΨSΪ)) is nonsingular and
analytic. Finally, <(gf (Z)?Γ_(- i)F*(Z)> is analytic in Z for |Z - Zo| <
Im lo/2. Thus

is analytic and

Φ+(ί, l)C(l)Φ±{τ, ϊ) = θ+(ί, l)B(l)χl(τ, ϊ)

is analytic in ί in a compact subset of Im ϊ =£ 0, | ϊ — l0 \ < Im ϊo/2.
Theorem 5.2 is now proved, the generalized resolvent ^(Z) with kernel
&(t, T, I) has been constructed.

6* The spectral matrix*

DEFINITION. A matrix p, (associated with an eigenvalue problem)
is a spectral matrix if it satisfies:

( i ) p is Hermitian,
(ii) p(A) = p(X) - p(μ) ^ 0 if λ > μ, (where Δ = [μ, λ]),
(iii) p is of bounded variation on every finite λ interval.

To develop the spectral matrix associated with the problem (L — l)u
— 0 with the boundary conditions (LB), and thus associated with the
generalized resolvent & and the generalized resolution of the identity
F, the kernel of &{l) will be split into two parts,

R(t, τ, I) = R0(t, τ, I) + ̂ ( ί , τ, I)

where RQ(t, τ, I) is a certain fundamental matrix for (L — l)u = 0.
Once again, let Φ be a fundamental matrix for (L — l)u — 0, satisfying
φ(c, I) = I, for some c, a < c < b. Then, as shown in § 3,

[Φ(ί, ϊ)Φ(ί, I)] = Φ*(ί, ϊ)Λ(ί)Φ(ί, I) = JD-1,

where Z) is a nonsingular, constant, skew-Hermitian matrix. Defining
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R0(t, τ, I) by

ίjΦ(t, l)DΦ*(τ, I), t^τ,

R0(t, τ, I) = J
(-Φ(t,l)D*φ*{tJ), t]<τ,

then,

R*(τ, t, T) = R0(t, τ, I).

Also,

RS +,t,l)- Ro(t-, t, I) = A?(t),

which is the same jump that R(t, τ, I) has at t = τ.
Now, let

Λx(ί, τ, I) = R(t, τ, I) - R0(t, τ, I).

Then as a function of t, B,, has a continuous first derivative, and
(Lt - fyRάt, τ, I) = 0.

From the symmetry property R*(T> t, I) = Rι(t, r, I) it follows that
for some matrix Ψ{1)

Rtf, τ, I) = Φ(t, l)Ψ(l)Φ*(τ, J).

THEOREM 6.1. The matrix Ψ is analytic /or Im i > 0, W*(l) = Ψ(ϊ),
and Im¥(l)/lml > 0, where ΊmΨ = (Ψ - Ψ*)/2i.

Proof. The analyticity of Ψ follows from the choice of Φ(c, I) =
I.

Next,

R.it, T, I) = R*(τ, t, J),

implying

Φ(t, l)Ψ(l)Φ*{τ, J) = φ(t, l)ψ*(ϊ)Φ*(τ, T),

and, since φ-1 exists, Ψ(l) - Ψ*(ϊ), or Ψ*(l) = V(ΐ).
Let

, τ, I) _

direct computation yields

H{e,c,l) = l
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The proof for Im Ψ{l)jlm I ̂  0 now follows as in the proof of
Theorem 3 of Coddington [5].

THEOREM 6.2. The matrix p defined by

p(X) = lim—Γlm?p (i; + iε)dv
ε-»+0 71 JO

exists, is nondecreasing and is of bounded variation on any finite in-
terval.

Proof. This follows directly from Theorem 4 of Coddington [5].
The matrix p is the spectral matrix associated with the generalized
resolvent & and the generalized resolution of the identity F.

7* The generalized resolution of the identity* Let p be the
spectral matrix derived in § 6, let Δ = (μ, X] be a finite interval, and
let F{A) = F(X) - F{μ).

THEOREM 7.1. Let f e £ίf and vanish outside a closed bounded
subinterval [c, d] of (α, b). If μ and X are continuity points of F, then

F{Δ)f{t) = Φ(t, v)dp(v)(f,

Proof. It follows from the relationship

that

(F{Δ)f, f) = lim ! ί (Im <&(v + ie)f, f)dv

at continuity points μ, X of F. The generalized resolvent &(l) can
be written as &(l) = &0(l) + ^,(1), where &0(ΐ) has kernel RQ{t, τ, I),
and &$) has kernel R^t, τ, I). Then

[dR0(t, r,

However, (Im^ 0 (v + ίe)/, /) tends to zero ε —> + 0, uniformly in
Δ. Consequently, it follows that

(F(Δ)f, f) = lim M (Im ̂ ,(v + ie)/f
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where

, Φ(v))

hφ{v + is), f)Ψ{v + iε)(f, {Ψ{v - is) -

((Φ(v + is) - Φ{v)), f)Ψ(v + is)(f, Ψ(v))}

h - ie)(f, (Φ(v) - Φ(v + is)))

- Φ(v - is)), f)Ψ{v - is)(f, Φ(v + is))}

= ϊ\ + Γ2 + Γ l t

where T{ = Γ<(y, e, / ) .
In Lemma 3 of Straus [13], it is shown that

Km—( T2(v)dv = lim — ί T3(v)dv = 0.

Finally, for 7\,

ί ( (Φ(v), f) Im Ψ(v + iε)(f, Φ{v))dv
JΔ

= \{Φ{v),f)dp(v)(f,Φ(v))
JΔ

and therefore,

(F(Δ)f, f) = \/*(t)[\φ(t, v)dp{v)(f,

Since this representation must hold for all / e <§ίf which vanish out-
side closed finite subintervals of (a, δ),

F{A)f{t) = ^Φ(t, v)dp(ι>)f, Φ(v))

for all such / .
Thus the generalized resolutions of the identity associated with

the first order system of differential operators Lx(t) = A0(t)x'(t) +
A(t)x(t) can be represented explicitly in terms of a certain funda-
mental matrix Φ and an associated spectral matrix p.

8* The expansion and completeness relations• Expansion and
completeness relations can be defined in terms of the spectral matrix
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p and the fundamental matrix Φ. For two vectors ά,β, an inner pro-

duct is defined in terms of p by

(α, β)p = ί~ p{v)dp{v)a{v).
J—CO

Thus a norm can be defined by

Π/ΎM — (fa ΓVY^

The Hubert space ^\p) is defined by

Sf\p) = {a:\\a\\p<oo).

Defining a mapping- from <£f2(a, b) into £f2(ρ) by

/(v) - (/, Φ{v)) =

the expansion and completeness relations have the following form:

f(t) = (/, <ρ*(ί)), - j ^ Φ ( ί , v)dp(i>)f(i>) (expansion)

and

I I / H = II/HP (completeness),
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ON SPLITTING IN HEREDITARY TORSION THEORIES

ROBERT L. BERNHARDT

Let (J^~, J?~) denote a hereditary torsion theory for the
category of modules over a ring R. In this paper the splitting
of projective modules is studied, and it is shown that this is
not equivalent to the splitting of quasi-projective modules.
In addition, situations arising from the class of torsion modules
^~ (or the class of torsionf ree modules J^~) being contained in
the injective or in the projective modules are considered, and
several conditions sufficient for an especially strong form of
splitting are given. Finally when J7~ is closed under injective
envelopes the following is shown: every module splits if R is
an artinian generalized uniserial ring, and projective modules
split if R is a QF-2 ring.

The term "ring" will mean an associative ring with unity 1, and
all modules are assumed to be unitary left modules. We denote the
category of all modules over a ring R by R^£\ Dickson [6] defined a
torsion theory for Rί^f to be a pair (^", J^) of classes of modules
satisfying the following:

(a) jT" n &~ = 0;
(b) ^" is closed under homomorphic images and &~ is closed under

submodules;

(c) For each module M there exists a (unique) submodule Mt e
^ such that M/Mt e ^~.

A torsion theory (^", ^") is said to be hereditary if ^~ is closed
under submodules, and stable if ^ is closed under injective envelopes.
We remark that from (b) above it is clear that Horn (T, F) = 0 for
all T e y and all F G ^ ; also Dickson has shown that ^ is closed
under submodules if and onlf if J?~ is closed under injective enve-
lopes. In this paper we shall always be concerned with hereditary
torsion theories.

If J7~ is a hereditary torsion class, then Gabriel [8] has shown
that ^~ is uniquely associated with an (topologizing and) idempotent
filter

F{^) = {L s R\L is a left ideal of R and R/L e ^}. Moreover,
is a torsionfree class for some torsion class ^ if and only if

contains a unique minimal left ideal (see [9]); in this case Jans
has called J7~ a torsion-torsionfree (TTF) class, and we shall call
(^", &~) and (^ , _̂ ~) the torsion theories associated with _^"\ If R
is a right perfect ring, Alin [1] has shown that every hereditary torsion
class for R^ί€ is a TTF class.

31



32 ROBERT L. BERNHARDT

If (^", J?~) is a hereditary torsion theory for B ^ and if Me
, we say that M splits provided M = Mt\ φ Mf; we shall call

splitting if every module in B^f splits. We say that
is centrally splitting provided ^~ is a TTF class with asso-

ciated torsion theories (^", ^ " ) and ( ^ , JΓ), and M = If* 0 Mc (i.e.,
jlf is the direct sum of its two torsion submodules) for every Me B^#.
Centrally splitting is clearly a strong form of splitting; the interested
reader may see [5] for more information on this topic.

1* Splitting in projective modules* In this section we shall
study the dual for projective modules to the following result of
Armendariz [3] on the splitting of injective modules. We denote the
injective envelope of a module M by E(M).

THEOREM A (Armendariz). If (J7~, ̂ ) is a hereditary torsion
theory, then the following are equivalent:

(1) j^Γ is stable;
(2) Every injective module splits;
(3) Every quasi-injective module splits;
(4) E{Mt) = E(M)t for every

If N is a submodule of the module M, we call N invariant in M
provided that f(N) £ N for every endomorphism / of M. We call
N small in M provided that if K is a submodule of M and if K + JV
= Mj then K — M. We shall say that a class ^ of modules is closed
under protective covers provided that whenever Me^ has a projec-
tive cover P(M), then P(M) e <£f.

THEOREM 1.1. Let (^, J?~) be a hereditary torsion theory for
such that every torsionfree module has a protective cover. Then

the following are equivalent:

(1) j ^ ~ is closed under protective covers;
(2) Every protective module splits.

Proof. (1) —> (2): Let Q be a projective module, and let π: P(Q/Qt)
—»Q/Qt be the projective cover of Q/Qt. Let n be the natural epimor-
phism of Q onto Q/Qt. By [4, Lemma 2.3] there exists a monomor-
phism h: P(Q/Qt) —> Q such that nh = π and such that Q = Imh + Q',
where Qf s Ker n — Qt. But Imh is torsionfree; so that Imh f]Qt = 0
and Q = Imh 0 Q,

(2) -> (1): Choose J l ί e , / " , and let π: P(M) - > M be the projective
cover of M. Then P ( M ) f s K e r π , so that P ( I ) { is small in P(M).
But P(M) splits by hypothesis; thus
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EXAMPLE 1.2. The splitting of protective modules does not imply
the splitting of quasi-projective modules in left artinian generalized
uniserial rings.

Let K be a field, and let R be the ring of 4 x 4 upper triangular
matrices over K. Let

1= i

α u

0

0

0

0

0

0

« 1 3

« 2 3

« 33

0

« 2 4

« 3 4

0

ai3 e K

then / is an idempotent, two-sided ideal of R. Thus by a result of
Jans [ 9 ] , / = ( I e R^\IM = 0} is a TTF class. Further R e J ^ , so
that every free module is torsionfree. Hence every protective module
is torsionfree, and thus splits. Now let ei3 denote the matrix with 1
in the ith row and j t h column and 0 elsewhere, and let J — Reu. Then
/ is a two-sided ideal of iϋ, and hence M = ReJJeu = ReJJ is quasi-
projective and indecomposable. But M.QJ^~, and Reu/J^ Mt. Thus
ilίi is a nontrivial submodule of M.

We next turn our attention to the quasi-projective cover; this was
introduced in [12], and there it was shown that a sufficient (but not
necessary) condition for the quasi-projective cover of a module M to
exist is that the projective cover of M exist.

PROPOSITION 1.3. Let M be a quasi-projective module which has a
projective cover. If N is an invariant submodule of M, then the module
M/N is quasi-projective.

Proof. Let π: P(M) —* M be the projective cover of Jlf, and choose
an endomorphism / of P(M). By [12, Proposition 2.2], / induces an
endomorphism g of M such that gπ = τr/ Let ϋΓ = π~1(N)) then
7Γ/(JE) - gπ{K) = 0(iNO s iSΓ, and hence / ( # ) c TΓ̂ iNΓ) = K. We have
shown that K is invariant in P(M); thus by [12, Proposition 2.1] we
have P(M)/K=M/N is quasi-projective.

THEOREM 1.4. Let M be a module with a projective cover, let
π'\ QP(M) —> M denote the quasi-projective cover of M, and let {J7
be a hereditary torsion theory for R^£'. If Me J?~, then QP(M) e

Proof. Let π: P(M) —> M denote the projective cover of M; by
[12, Propositions 2.6, 2.1 and 2.2] we have that QP(M) ~ P(M)/X,
where X is the unique maximal invariant submodule of P{M) con-
tained in Ker π. Let n denote the natural epimorphism of P(M) onto
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QP(M). Since Kerw <Ξ Kerπ, we have that Kern is small in P{M),
and thus n: P(M) —> QP(M) is the protective cover of QP(M). Further
QP(M)t s Ker πf since i l ί e ^ " , and also QP(M)t is invariant in QP(M).
Hence QP(M)/QP(M)t is quasi-projective by Proposition 1.3; thus QP{M)t

= 0 by condition (3) of the definition of the quasi-projective cover in
[12].

2Φ Classes of projective and injective modules* Let
be a hereditary torsion theory for R^€. In this section we investigate
the following condition:

J7~ is stable and all torsionfree modules are injective. This has
been studied previously in [3] (also see [2] for the special case that

is the Goldie torsion class), where it was shown to imply that
, J?~) is splitting. In Theorem 2.2 we shall give a statement

equivalent to this condition, and, in addition, we shall show that it
implies the much stronger result: (J7~, ̂ ~) is centrally splitting.
Finally we shall obtain a dual to Theorem 2.2.

LEMMA 2.1. Let (^~, J^~) be a hereditary torsion theory for R^f,
let R = i?i 0 K, and let J^~ be closed under homomorphic images.
Then R = Rt + K{ring direct sum), ^ is a TTF class, and (Jf~, ^~)
is centrally splitting.

Proof. Since right multiplication by an element of R is a left
i£-homomorphism on K, and since j ^ ~ is closed under homomorphic
images, if is a two-sided ideal of R and R = Rt + K.

By [5, Theorem 1] it now suffices to see that J7~ is a TTF class.
Choose L e F(^~); then K Π L e F{^~), and hence R/K f)Le^~. Thus
K/K f]Le JΓ. But K-+K/K Π L -> 0 is exact and KeJ?~; thus K/K
Π L e ^ Π ̂  — 0 and K = K Π L g L. We have shown that K is
the unique minimal ideal in F(j7~); thus ^~ is a TTF class.

THEOREM 2.2. If {J7~, ^~) is a hereditary torsion theory for R^f',
then the following are equivalent:

(1) ^~ is stable, and all torsionfree modules are injective;
(2) J^ is closed under homomorphic images, and all torsionfree

modules are projective;
(3) ^ is dossed under homomorphic images, R — Rt + K (ring

direct sum), and K is a semi-simple ring with minimum condition.
In addition, whenever (1), (2), and (3) are true, then j^Γ is a TTF

class and (^7~, J^) is centrally spilitting.

Proof. (l)-»(3) follows from [3, Theorem 3.2].
(3) —• (2): If M is a torsionfree module, then RtM = 0 and hence
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M is a projective ϋΓ-module. But now M is a direct summand of a
free Z-module, and hence M is a direct summand of a free lϋ-module.
Thus M is protective as an i2-module.

(2)—>(1): Choose M e / " , and let n be the natural epimorphism
of E(M) onto E(M)/E(M)t. Since this torsionfree module is projective,
there exists a monomorphism / from E(M)/E(M)t into E(M) such that
E(M) = Ker w φ l m / . But Λf s Ker n and Λf is large in E(M); hence
Im / = 0 and E(M) = 2?(Λf)t e J^~. Thus J ^ is stable. Now choose
Me^; then E(M)e^~ and so the module E(M)/M is torsionfree,
and hence projective. Thus E(M) ^ J i ίφ E(M)/M. This proves that
ilί is injective.

The final statement follows from Lemma 2.1.

THEOREM 2.3. Le£ (J7~, ά?") he a hereditary torsion theory for R^//
for which cyclic torsionfree modules have projective covers) the following
are equivalent:

(1) _^ r is closed under projective covers, and every torsion module
is projective;

(2) j^~ is closed under homomorphic images, and every torsion
module is injective)

(3) j^~ is closed under homomorphic images, R = Rt + K (ring
direct sum), and Rt is a semi-simple ring with minimum condition.

In addition, whenever (1), (2), and (3) are true, then ^~ is a
TTF class and (J7~, ^) is centrally splitting.

Proof. (l)—»(3): Choose NeJ^, and let L be a homomorphic
image of N. Since Lt is projective, there exists a monomorphism /
from Lt to N. But Rom(Lt, N) = 0; thus Lt = 0 and L e ^ . Thus
j^~ is closed under homomorphic images.

Since R/Rt is a cyclic module, it has a projective cover π: P(R/Rt)
—> R/Rt, and P(R/Rt) e ^ by hypothesis. If n denotes the natural
epimorphism from R onto R/Rt, then there exists a homomorphism
/ : P{RjRt) -> R such that R = Im / + Ker n = Im / + ie t. But Im /
G ̂ ^ , so that J2t Π Im / = 0 and i? = Rt φ Im / . Thus R = Rt± K

— and we also get the final statement of the theorem — by Lemma
2.1.

Finally, it is easy to see that Rt is a completely reducible ring
since every torsion module is projective; this is equivalent to saying
that Rt is a semi-simple ring with minimum condition.

(3)—>(2): If Me^, then KM = 0 since ^ is closed under
homomorphic images. Hence M is an injective J2rmodule, and, by
Baer's Lemma, it is easy to see that M is an injective iϋ-module.

(2) —> (1): Let Me &~ have a projective cover π: P(M) —> M; then
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P(M)t is injective and P(M) = P(M)t 0 P \ Further, Kom(P(M)t, M)
= 0 and thus P(M)t S Ker TΓ. Hence P(Af)t is small in P(ilf), and
P(M) — Pf e ^ . Thus ^~ is closed under projective covers.

Since Rt is injective, we have R = i ^ 0 iΓ. Thus, by Lemma 2.1,
we have that R = Rt + K. Since ^ is closed under homomorphic
images, one can easily see that Me^~ if and only if KM = 0. But
if every iϋ rmodule is injective, then every iϋ rmodule is projective.
Thus every torsion i?-module is projective.

3. Stable torsion theories* In [5] the following result is given;
its proof depends strongly upon the dualities present in quasi-Frobenius
rings.

THEOREM B. Let R be a quasi-Frobenius ring and let (^
be a hereditary torsion theory for R,y/. The following are equivalents

(1) jjΓ is stable;
(2) (^", _^~) is splitting;
(3) (^~, ^") is centrally splitting.
It is easily seen that the implications (3) —> (2) —• (1) are always

true, regardless of the type of ring involved. We are motivated to
examine the remaining implications in types of left artinian rings
more general that the quasi-Frobenius ones, especially since Fuller [7]
has shown that QF-3 rings possess dualities somewhat similar to those
in quasi-Frobenius rings.

THEOREM 3.1. Let R be a left artinian generalized uniserial ring,
and let {^', j^~) be a hereditary torsion theory for R^/ί. Then J^Γ
is stable if and only if (J7~, J^) is splitting.

Proof. We need only consider the case where J^Γ is stable. Now
every module M is a direct sum of indecomposable cyclic submodules,
and each of these submodules is a homomorphic image of a left ideal
Re where e is a primitive idempotent of R [10]. But each such Re
has a lattice of submodules which is a finite chain, and thus every
homomorphic image of an Re has a lattice of submodules which is a
finite chain.

If L is an indecomposable cyclic submodule of ikf, then by the
preceding its socle, denoted soc(L), is simple. Thus either soc(L) e
J7~ or SOC(JL) G ̂ . But soc(L) is large in L, so that L is contained
in the injective envelope of soc(L). By hypothesis either £r(soc(L)) e
J7~ or £'(soc(L)) G ̂  thus either L G J7~ or L e ^ Hence M splits.

EXAMPLE 3.2. Splitting does not imply centrally splitting in left
artinian generalized uniserial rings.
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Let K be a field, and let R be the ring of two by two upper tri-
angular matrices over K. Let

T
a b

o 0

then / is an idempotent, two-sided ideal of R. Thus by Jans [9],

= 0}

is a TTF class with associated torsion theories (j^~, ̂ Q and
where

, iNΓ) = 0 for all Γe J Π and
, Γ) = 0 for all Te^}

= {LeB^C\IL = L).
Clearly (^, J7~) does not split, since Rc — I is not a direct summand
of R. Hence ^~ is not centrally splitting.

Note that F(^) = {/, R}; thus for MeR^, Mt = {xeM\(0: x) e
F{^r)} = {x e MI / s (0: a?)}, where (0: a?) = {r e i21 rx = 0}. Since I is
the only large proper left ideal of Ry we see that Mt is the singular
submodule Z(M) of M. Also Z(R) = 0, so that ^ is the Goldie —
and 2£(JR) — torsion class (see [1] and [9] for an explanation of these).
It is well-known that the Goldie torsion class is stable; thus (^", ^~)
splits by Theorem 3.1.

As an aside, we note that the class ^ above is hereditary but is
not stable. Also we remark that Teply [11, Propositions 4.5 and 4.7]
gives several necessary and sufficient conditions for splitting to imply
centrally splitting.

PROPOSITION 3.3. Let R be a QF-2 ring, and let (^~, ^) be a
hereditary torsion theory for R^£. If ^ is stable, then every pro-
tective module splits.

Proof If e is a primitive idempotent in R, then soc(ϋJe) is both a
simple module and is large in Re. Hence Re is contained in the in-
jective envelope of soc(J?β), and thus either ReeJ7~ or ReeJ?~. But
any protective module P over a left artinian ring R is isomorphic to
a direct sum of modules Rea, where each ea is a primitive idempotent
of R. Thus every protective module splits.

If ^~ is a stable hereditary torsion class for a QF-2 ring, then,
by Theorem A and Proposition 3.3, every quasi-injective and every
protective module splits. It seems reasonable to conjecture that every
module will split, and in fact we have been unable to find examples
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to the contrary.

REFERENCES

1. J. S. Alin and E. P. Armendariz, TTF-classes and E(R)-torsion modules, preprint.
2. J. S. Alin and S. E. Dickson, Goldie's torsion theory and its derived functor, Paci-
fic J. Math., 24 (1968), 195-203.
3. E. P. Armendariz, Quasi-ίnjective modules and stable torsion classes, Pacific J.
Math., 31 (1969), 277-280.
4. H. Bass, Finitistic dimension and a homological generalization of semi-primary
rings, Trans. Amer. Math. Soc, 95 (1960), 466-488.
5. R. L. Bernhardt, Splitting hereditary torsion theories over semiperfect rings, Proc.
Amer. Math. Soc, 22 (1969), 681-687.
6. S. E. Dickson, A torsion theory for dbelian categories, Trans. Amer. Math. Soc,
121 (1966), 223-235.
7. K. R. Fuller, The structure of QF-3 rings, Trans. Amer. Math. Soc, 134 (1968),
343-354.
8. P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France, 90 (1962), 323-449.
9. J. P. Jans, Some aspects of torsion, Pacific J. Math., 15 (1965), 1249-1259.
10. T. Nakayama, On Frobeniusean algebras II, Ann. of Math., 42 (1941), 1-22.
11. M. L. Teply, Homological dimension and splitting torsion theories, Pacific J. Math.,
34 (1970), 193-206.
12. L. E. T. Wu and J. P. Jans, On quasi-projectiυes, 111. J. Math., 11 (1967), 439-448.

Received October 13, 1970 and in revised form April 29, 1971.

THE UNIVERSITY OF NORTH CAROLINA AT GREENSBORO



PACIFIC JOURNAL OF MATHEMATICS
Vol. 39, No. 1, 1971

GERSGORIN THEOREMS, REGULARITY THEOREMS,
AND BOUNDS FOR DETERMINANTS

OF PARTITIONED MATRICES
II

SOME DETERMINANTAL IDENTITIES

J. L. BRENNER

A square matrix A = [α^]f has dominant diagonal if
Vΐίl an \ > Ri = Σj^i I ttΐj |}. A more complicated type of dom-
inance is the following. Suppose for each i, there is as-
signed a set I(ϊ) (subset of {1, , n}), i e I(i): Define Ba as
the I(i) x I(i) submatrix of A that uses columns I(i)9 and
rows {I(i)\i, j}, i.e., the set obtained from I(i) by replacing
the ith row by the jth row. Set ba — det Bij. Then [6^]f is
a matrix, the elements of which are determinants of minor
matrices of A. In an earlier paper, bounds for det A were
derived in case [bij] has dominant diagonal in the special
case that {I(i)}% represents a partitioning of the indices into
disjoint subsets.

In this article the general case is treated; I(i) can be
any subset of {1, •••,?&} that contains i. An identity is
derived connecting det [6^]f with det A.

To establish the identity, a general multinomial identity is first
derived, connecting determinants of certain submatrices of an r x 2r
matrix of indeterminates. This result, reminiscent of Sylvester's de-
terminantal identity, is used to bound det A.

!• Application of a characterization of the determinant
function*

LEMMA 1.01. Let A = [α^ jΓ be a matrix of complex numbers [or
indeterminates]; let a function φ: A-+ C[or φ: A —» C[anJ , ann]] have
the following properties for all n x n matrices A.

(1.02) [1.03] If any row [column] of A is replaced by the sum
of that row [column] and a multiple of another row [column], φ(A) is
unaltered.

(1.04) If any row of A is multiplied (throughout) by a constant
a, φ(A) is multiplied ar.

Then φ(A) is a constant c0 (independent of a{j) multiplied by the
rth power of det A.

39



40 J. L. BRENNER

Proof. The hypotheses (1.02, 1.03) guarantee that φ(A) is the
same as φ(B), where B is any matrix obtainable from A by means of
elementary transformations. It is known that B = diag [det A,l, ,1]
can be so obtained; see for example [1]. Thus φ{A) is some function
of det A; the conclusion of lemma 1.01 follows on applying hypothesis
1.04 to the matrix B: If φ(ax) = arφ(x), then φ(x) = cox

r, since φ(x)/xr

is constant.
An application of this result was made in [2], to which the

reader should refer. In slightly changed notation, this application
is as follows.

LEMMA 1.05. Let A = [αii]ί=iff=i be an r x 2r matrix of inde-

terminates, let 6 fί = d e t A ( 1 " " ^ -i „• , i „•) be the determi-
\ 1 % — L , I -f- i-» ' ' * > v , J J

nant of the r x r submatrix of A that uses columns {1, •• ,r}\ ΐ , j .

This is the almost-principal submatrix of A in which the ith column
is replaced by the jth column. (For j — i, this is Ay* """ j . For

1 ^ j Φ i ^ r, this submatrix has determinant 0.)
Then

(1.06) X = det [Mί=i,i=rr

+i = GΓ1 det [α^]^!^j;+1 ,

where

G, = det [α4y]ΊI

Note t h a t in 1.06, t h e column indices are r + 1, « , 2 r .

To prove this Lemma, it is only necessary to observe t h a t it is

a multinomial identity, and t h a t t h e hypotheses of Lemma 1.01 con-

cerning t h e function X are satisfied.

1° if X is regarded as a function of {aijy 1 ^ ifj <̂  r};

2° if X is regarded as a function of {α^ , l ^ ί ^ r , r < j <^ 2r}.

COROLLARY 1.07. With the same hypothesis, the conclusion

(1.08) Y = det [b^ίujes - GΓ1 det [ α ^ : , , ^

is valid, where S is any set of r distinct positive integers not ex-
ceeding 2r.

Proof. Since 1.06 is a multinomial identity, the r2 indeterminates
α<i (i > r ) o n the right can simply be replaced by the r2 indetemi-
nates a^iJeS). But this replacement changes not only the range
of j in the set variables {αo }, but also the range of j in the set
{bij}> as the definition of biβ shows.
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LEMMA 1.09. Suppose

1(1) = {1}, 1(2) = {1, 2}, , I(r) = {1, 2, . . . , r} .

Lei B == {6ϋ]i=i,/=i δ e defined as in 1.05. Tλew

***Uϊ: :::;£•)
(1.10) = αu det A(J |) !det A ( J | ) det A(J2 J = J)

x detA^ 1 > 2 > " * ' rx αetA^
> 2 r ;

REMARK. This is again a multinomial identity in the 2r2 indeter-
minates a^. Therefore 1.09 has the Corollary

(LID det B(1 r ) = «u d βt ^ g ) det A ( J | ) ... det A^? r )

in view of the definition of δ^ .

Proof of Lemma 1.09. To show that αn is a factor in (1.10), as
shown, α21 times the first row is added to the second row. The second
row becomes

(1.13) αuα2,r+1, αnα2,r+2, , ana2}r+j,

which obviously has an as a factor.

It is a little more complicated to show det ( α n α i 2 ) is also a factor,

as is asserted in relation (1.10). The trick is to add to the third

row - d e t ( α 2 1 M times the first row as well as αΰ1 det (a^aA times

the second row (1.13). The new third row is

(1.14) d e t ( J j 2

2

2 ) [ α 3 ' r + 1 > a*>r+2' "' a*>r+j> # ' # ] '

i.e., every element of that row has the common prefactor indicated.
The formal proof of (1.10) is inductive, as follows. As an in-

duction hypothesis, assume that the left member of (1.10) can be
written in the form

(1.15) αu det A ( J | ) det A(*% ] [ [ \ ~_ J) det Ck ,

where Ck is the r x r matrix, the jth. column of which is
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det

il * * aihaί,r+j

*1 akkak>r+3

This has already been established for k = 1, 2. The inductive as-
sertion is: the factor det M-to *•'•*• k) SP^*S °^ ^ r o m det C* To prove
this, subtract from the k + 1st row of the matrix Ck appropriate
multiples of the preceding rows. The multiple of aiyr+j needed is
precisely the cofactor of aifT+j in Ck itself.

This completes inductive proof. To establish (1.10) in its entirety,
a final visual check is needed of the circumstance that for k = r, the

matrix Cr is indeded the matrix A , -,
^ j. See (1.05).

2* Some special factorizations*

THEOREM 2.01. Let A = [α^ ] be a matrix with r rows: i = l(l)r, and
2r columns: j = l(l)r <j\ < < j r . Suppose, for i = 1, 2, , r — 1,
I{i) = {1,2, . . . , r - l } ; / ( r ) - {1,2, « . . , r }

Denote det B^ by δ{J ; β = [6^]. Then

(2.02) det B = ± C'-1 det ; C = det

Proof. Consider the last row of B. The element brj in column
"j" of this row is the determinant of the r x r matrix Brj. If this
determinant is expanded by minors of the elements arj, αr l, αr2, ar>r^
of the last row of Brjy the result is

(2.03) brj = ±arjC ± arlbu ± &r<ϊ>z5 ± ±

Relation (2.03) shows that deti? is not altered if every element
brj of the last row of B is replaced by ±arjC. (This replacement
would merely omit from the last row of B a linear combination of
the preceding rows.)

At this point it is clear that C is a factor of det B, and that
the other factor has the same first r — 1 rows does i?, and has last
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row arj. The conclusion of the theorem now follows by expanding
deti? by its last row and applying Corollary 1.07. See Lemmas 4.3,
4.4 of [2].

COROLLARY 2.04. Suppose

I(i) = {1,2, . . . , r - & } for i = 1,2, . - . , r - k;

and I(i) = {1, 2, , r - k, i) for i = r - k + 1, , r. Then (2.02)

(1 o f\1 o . . . γ fc
1 ' O '

2.05. Another special case is the case 1(1) = {1,2}, J(2) = {2, 3},
1(3) = {3,1}. The formula

(2.06) det B = G det A, G = det

α n - α 1 2 0

0 α22 — α2;

_—α31 0 α2ί

can be verified by appropriate devices. A generalization of (2.06) is
the formula

(2.07)

valid for any 3 x 6 matrix A, with I(i) defined as above. Among
several valid proofs of this formula, the following is presented. It
proves (2.07) as a special case of a still more general result.

THEOREM 2.08. Let A = [ai:}] be an r x 2r matrix, i = l( l)r, j =
l(l)2r. Let B be the r x r matrix with (i, j) element bi3 = det Bi3, where

Bi3 = A{\ J J J), i = l(l)r - 1, Brj = A(^J) ; j = r + l(l)2r. Then the
relation

r α u — α12

(2.09) det 5 = G det A.β ̂ '^ Γ.. 2r)J G = d e t

arr

holds; G is a bidiagonal matrix with 2r nonzero elements.

R E M A R K . This is the case 1(1) = {1, 2}, 1(2) = {2, 3}, , I(r) =

{r, 1}.

Proof. Subtract a multiple of t h e first row of B from the second,
then a multiple of t h e second from the third, « , a multiple of t h e
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r — 1st from the last. The resulting matrix has the same determi-
nant as B, and the multiples mentioned can be chosen so that this re-
sulting matrix is, row by row,

α22[αu ] — α12[α2i] 1

(α22α33/α12)[α l i] - a2,[a3j] 2

(a22a33aja12a23)[ald] — a34[a4j] 3

(ana22 arr/a12 α r _ l r — α r l )[α u ] r .

Now subtract a multiple of the new last row from each of the
preceding rows; the first r — 1 rows of the new matrix are — a12[a2j],
— α23[α3i], ••• This matrix obviously has determinant (2.09). ||

3. General factorization of det B. The function i \-> I(i) induces
a (weak) separation of the indices {1, , n) into agglomerated mutually
exclusive sets S(k), as follows.

DEFINITION 3.01. Let i H^ I(i) be a function from the integers
{1, " yn} to sets of these same integers, with the further property
i e I(i) for all i. In the usual way, the sets I(i) are now agglomerated
into the smallest possible (minimal) mutually exclusive sets S(k) so that:

Every I(i) is in one or another of the sets S(k). Then S(k) are
the mutually separated sets defined by the function I. For example,
the function

11 > {1}, 2 i >{1, 2}, 3 i > {1, 2, 3}, 4 i >{4, 5}, 5 i > {5, 6},

6 i >{6,7}, 7 i >{Ί)

defines a separation of the indices {1, 2, 3, 4, 5, 6, 7} into the mutually
exclusive sets S(l) = {1, 2, 3}, S(2) = {4, 5, 6, 7}.

Parallel to the separation of Definition 3.01, there is a factorization
of det B into a product of factors, one for each set S(k). The kth factor
is the determinant of a matrix; in general the elements of this matrix
are again determinants of matrices: the elements of these matrices
are elements ai3- of the matrix A, where ί,jeS(k). The point is
that the polynomial function det B of the elements of A factors into
the product of multinomial factors; the A th factor is a polynomial
in the indeterminates ai3 , where i, j belong only to the kth set S(k)
of indices. Besides these factors, det A also appears as a factor.

It there are two or more sets S(k) in the separation, then det A,
but not (det A)2, is thus a factor of deti?. Even when the entire
set {1,2, « ,w} of indices are connected through the sets / (there is
but a single set S), the factor det A appears only to first power "in
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general." The exact meaning of "in general" is explained below.
The above remarks are summarized in the following theorem. Its

proof, together with a more detailed atatement, unfold in § 4.

THEOREM 3.02. Let A = [ai3] be an n x n matrix of indetermi-

nates; for i = 1(1)% let I(i) be a subset of the first n integers with i e I(i).

Denote by Bi3 the minor Al γΓL . A on rows I(i); and on columns I(i),

but with index i replaced by j . Set bi3 = det Bi3; B — [bi3]. Thus B
is an n x n matrix. Let the function I(i) induce a separation of the
indices {1, •••,%} into s ^ 1 mutually exclusive sets S19 S2J •> S8.
Then det B, which is obviously a polynomial function of the n2 inde-
terminates ai3 with integer coefficients, can be factored in the form

det B = G det A ,

where G = MtM2 M8, and where each Mk is a multinomial in those
indeterminates ai3 for which both indices i, j belong to the set Sk. In
particular, det A is always a factor of det B.

The details of the proof depend on the following lemma.

LEMMA 3.03. Let A = [ai3] be an r x 2r matrix of indeterminates,
i = l(l)r, j — l(l)2r. For each i, let I(i) be a subset of the first r
integers. Let Bi3, bi3 be defined formally as in Theorem 3.02. J5i is
the r x r matrix [bi3], l^i^r<Cj^ 2r. A1 is the r x r matrix
[a>ij]i£i£r<dZ2r' (Note the range for j.)

Then the polynomial identity

(3.04) det B, = F άetA,

holds, where F is a multinomial with integer coefficients in the inde-
terminates {ai3,1 ^ i, j ^ r}.

REMARK 3.05. This lemma is more general than any of previous
ones, since the sets I(i) are more general.

COROLLARY 3.06. Det A, is, but ( d e t ^ ) 2 is not a factor of det BΣ.

Proof. The variables that figure in F are disjoint from those
in B,.

REMARK 3.07. This is the meaning of the phrase "in general"
above.

COROLLARY 3.08. Let A19 Bι redefined conformally. That is,
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without changing the sets I(i), let the range for j in the definitions of
Al9 JSi be replaced by any range of r distinct integers, including
some or all of the first r integers. Then (3.04) still holds.

Proof. If some of the indices j in the polynomial detAx are
changed, the definition of bid shows that a conformal change is con-
currently made in the polynomial det B^ In other words, the change
amounts solely to a change of the names of the variables in (3.04).
But (3.04) is a polynomial identity.

Under the change α<fJ —>α{)i_r, δifJ —> δ ί f ί _r in (3.04), the factor
det A1 could appear as a factor in F for suitable choice of I{i). For
example, if I(i) = {1,2, * ,r}, and if j runs through the range 1 ^
j ^ r, then (3.04) becomes det Bx = (det A,)r.

Proof of Lemma 3.03. To avoid difficulties with an algebraic

sign, the columns of Bi3 = A\(yA\ •) are to be thought of as written

in a definite order: the jth. column ai3 first, followed by the other
columns in natural order. For example, if 1(1) — {1,2,3} then B13 is
the matrix

a2j

α 1 2

a

a22

22

Without this convention, the formula to be obtained for F would be
determined only up to sign.

It will be instructive to carry through the proof in a special case,
since a rather simple special case already embodies all the points of
difficulty and interest. The case 1(1) - {1,2}, 1(2) = {1,2,3}, 7(3) =
{1,2,3} will serve as an illustration. The matrix Bt has as jth
column Bl3, where

(3.09)

det

det

det

al3 α 1 2

a2j

au an

a2j- a21

a3j α 3 1

~aιά an

a23 a21

__a3j α 3 1

α 1 2

α 2 2

i - 4 , 5 , 6 .

The first step in the proof is to border the 3 x 3 m a t r i x Bx with

3 rows and columns as shown below. The enlarged matr ix B2 clearly

has the same determinant as Blf except for the factor (— l ) r . Only
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the subscripts are printed; thus lj is an abbreviation for aίS. The
reader must also supply the symbol det throughout: [ ] is an abbre-
viation for det [ ].

14,

24,

34,

"14 12

24 22

"14

24

.34

"14

24

34

11

21

31

11

21

31

1J'
12"

23

33_

12"

22

32

15,

25,

35,

"15 12

_25 22
r
15

25

.35

Γ15

25

35

11

21

31

11

21

31

1
J'
13"

23

33.

12"

22

32

>

16

26

36

"16

_26

"16 11

26 21

_36 31

"16 11

26 21

36 31

J

9

12"

22_>

13"

23

33_

12"

22

32

1,

0,

o,

o,

, o,

, o,

0,

1,

o,

o,

o,

o,

0

0

1

0

0

0

To show that the factor det At splits off from the determinant
of this 6 x 6 matrix, it need only be noted that the matrix can be

reduced to the form L*1 ^ by adding appropriate linear combina-
tions of the first three rows to each of the last three. This argument
is an alternative to a general argument of Loewy [3], who proved
by another method that if det Ax = 0, then necessarily det Bx = 0.
In the special case being expounded, detl?2 = — (det 2^)(det Aj)9 where
Fx is the 3 x 3 matrix

21 23

31 33

'21 22

31 32

The argument given above has general applicability. Formula
(3.04) is established. The multinomial F is in fact the determinant
of an r x r matrix. The (k, I) element of this matrix is the nega-
tive of the cofactor of alr+ι in bk>r+ι = det Mπjlx^ r , Λ and is thus

det

where pos I is the position of I in the set I{k). If ϊ?I(fc), then
fkl — 0, and conversely. For consistency, fkk must be defined as 1
when I(k) — {k}.

—

11

31

11

31

3-12,

13"

33_

12"

32_

"11

-21

"11

21

0

13"

23_

12-1

22
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COROLLARIES.

(3.09) det B, = ( - l)r(det ί\)(det A,)

3.10 [3] If det Aι = 0, then det B1 = 0.

3.11. If F1 is a triangular matrix, then

(3.12) det B, = -(- l)<77(det G[i]) (det Λ), where

(3.1S) G' > =

In particular, relation (1.10) follows; this proof differs from the
first proof.

(3.14) Incase J(l) = {l,2},/(2) = {2,3}, . ., I(ϊ) = {i, i + 1}, . . . , I (n) =
{n, 1}, then formula

(3.15) άetBί = G det Λ holds, where G = det
— α12

#22 — <

the determinant of the bidiagonal matrix shown. This proof is again
different from the earlier proof of (2.09).

3.16. Note that the case 1(1) = {1,2, 3}, 1(2) = {2, 3,4}, . . . is
considerably more complicated than the case (3.14); indeed while the
first type of proof is more direct for the hypothesis (3.14), an attempt
to generalize this proof to the case (3.16) is unrewarding.

3.17. Relation (1.06) holds.
The following proof of 1.06 is somewhat less direct than the

original proof. The matrix F1 is not triangular, so that the determi-
nant det F1 does not factor for this simple reason. However F1 is

seen on inspection to be the r — 1st compound of the matrix Ay γ/Λj,
/ T/-t \r— 1

thus det.Fi = det Ai τ

y

n ) . This proof requires a knowledge of the

formula

(3.18) det Cω = (det C)% e = (£ I J ) , where C{t) is the ί t h com-

pound of the rxr matrix C

4* General factorization of det B (continued)* In this section,
Corollary 3.08 is applied to obtain a general formula for the determi-
nant of the n x n matrix B = [b^] defined in Theorem 3.02.

Since Theorem 3.02 holds for a matrix A of indeterminates, it
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holds in particular for a matrix A of complex numbers.

Proof of Theorem 3.02. The function i κ> I(i) induces a sepa-
ration of the indices {1, 2, ••, n) into s ^ 1 mutually exclusive sets
S(k) such that every set I(i) is in exactly one of the sets S{k), and
the sets S(k) cannot be further decomposed without destroying these
properties.

In following the details of the proof, the reader may prefer to
think of the indices of the sets S(ϊ), S> (2), * as occuring in natural
order.

To continue the proof, the rows of B are partitioned into (mutu-
ally exclusive) sets S(l), S(2), ••• and detί? is expanded according to
the generalized Laplace expansion on these rows. Corollary 3.08
asserts that the determinants of all the S(l) x S(l) minor matrices
on the set of rows with indices in S(l) have a common factor ikf1#
The corollary asserts further that this common factor is a multino-
mial in the particular variables aiS (i, j e S»(l)). Similarly for S(2),
Thus M,M2 Ms is a factor of det B.

Besides the factor common to the determinants of all the S(l) x
S(l) matrices, there is a factor, see (3.04), peculiar to the particular
minor matrix. This peculiar factor is just what is needed, in the
Laplace expansion of det B, to produce det A. The proof of Theorem
3.02 is complete.

Let A be a matrix of indeterminates. If there is more than one
set S(k), then det A is, but (det A)2 is not, a factor of det B.

5* Applications* Theorem 3.02 can be used to obtain bounds
for det A in case the matrix B has dominant diagonal. The details
and results are similar to those of [2]. These results have one re-
markable feature: This is the first occasion on which such bounds
have been obtained for a "partitioning" of a matrix, in which the
sets of rows in the "partitioning" overlap one another.

The results of this paper will be needed in any attempt to obtain
minimal Gersgorin sets related to the Hoffman-Brenner theorem. If
it can be accomplished, this will be an interesting generalization of
the results of [5].
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ON REPRESENTING F*-ALGEBRAS

R. M. BROOKS

The purpose of this paper is to obtain a concrete repre-
sentation for .F*-algebras with identity: a Frechet algebra
with involution for which there exists a determining sequence
of i?*-seminorms. The main result is Theorem 3.4 which is
described here. Let A be an i^*-algebra with identity. Let
{(τrλ, Hλ): λeA} be a complete family of irreducible Hubert
space representations of A. Let ^ = ^ 0 H\, define EQ A to
be equicontinuous provided sup λe E 11 π\(a) II < °° (a e A), and let
X = {xe H: Supp(αs) is equicontinuous}. The linear space X
is given the final topology τf determined by the family {HE =
[xeH:Supp(x)QE]: E equicontinuous} of subspaces of X.
Let Xf be (X,τf) and let jSf*CX» be all operators on X
which have an adjoint relative to the inner product inherited
from H such that both the operator and its adjoint are
τ/-continuous. This algebra will be endowed with the topo-
logy J?Ί> of bounded convergence. Let J?f+(X) be all oper-
ators which have ad joints. It has a natural topology ^ ΐ
described in § 2. Define π: A -»^fa(X) by π(a){xλ} = {πλ(a)x\}
for aeA and x = {xλ}eX. Then π(A) £ βSf+(X) = &\Xf\
and (1) π: A -> (eS

ί?*(-X», ^l) is a topological ^-isomorphism
(into) and (2) π: A -»( c^

7 +(X), ^ΐ) is a topological *-isomor-
phism (into).

In § 1 we recall some results about Frechet *-algebras with
identity, their positive functionals and Hubert space representations,
and set the notation for the remainder of the paper.

In § 2 we obtain the results about algebras of operators on
certain inner product spaces necessary to prove the main represen-
tation theorem.

In §4 we define the concept of an enveloping algebra E(A) for
a Frechet *-algebra with identity, A, and show that E(A) can be
realized either as the inverse limit of the enveloping algebras of the
Banach *-algebras in an inverse limit decomposition of A or as an
algebra of operators naturally constructed from the irreducible Hubert
space representations of A. Also we show that E(A) has the pro-
perty that every Hubert space representation of A factors through
E(A), but that there are representations of A in algebras ^+(X)
which fail to factor through E(A).

l Preliminaries* A Frechet algebra is a complete metrizable
topological algebra whose topology is determined by a (countable)
family of seminorms (submultiplicative, convex, symmetric function-
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als). We may assume that such a family {|| |LKΓ=i for A is ascend-
ing: \\a\\n<^\\a\\u+ί(aeA,neN), and t h a t \\e\\n = l(neN) if A has

an identity e. A Frechet *-algebra is a Frechet algebra with a con-

tinuous involution. If A is a Frechet *-alebra with identity we can

choose a sequence {|| |UKΓ=i of seminorms for A such t h a t (1) {|| | IJ

determines the topology of A, (2) {|| ||w} is ascending, (3) | | e | | w =

l(neN), and (4) | | α * | | Λ = \\a\\n(ae A, neN). Such a sequence we

shall call a *-sequence of seminorms for A. An F*-algebra is a
Frechet *-algebra, for which there is an ascending determining
sequence {|| ||w} of seminorms for A each of which has the ί?*-pro-
perty: ||α*α[|Λ = \\a\\l(ae A, ne N). Such a sequence we shall call
an F*-sequence of seminorms. The usual constructions (see [5]) show
that every Frechet *-algebra (resp., F*algebra) is an inverse limit
of Banach *-algebra (resp., I?*-algebras).

Let (A, {|| |ln}) be a Frechet *-algebra with identity e. We de-
note by P(A) the set of all positive functionals on A and by K{A)
those fe P(A) for which f(e) — 1. For each ne N we let Pn(A) (resp.,
Kn{A)) be the set of all feP(A) (resp., K{A)) such that \f(a)\ ^
f(e)\\a\\n(ae A). If {An,p

n,N} is the inverse system generated by
{|| | |J with pn:A —> An natural map of A onto the nth. member An1

then for each n the dense homomorphism pn induces a one-to-one map
pi of P(An) onto Pn(A). (K(An)) onto Kn(A)). Moreover, pi preserves
indecomposability. A theorem of Do-Shing [2] states every positive
functional on A is continuous so we have P(A) = U?=Λ(A) and
K{A) = \Jn=iKn(A). Also, K{A) is a weak*-closed, convex subset of
A* and is the closed convex hull of its extreme points ext (K(A))
which is exactly \j~=1ext(Kn(A)).

A Hilbert space representation of a Frechet *-algebra A with
identity is a ^-homomorphism μ: A—>$8(H) for a Hilbert space H. A
consequence of Do-Shing's theorem (see Lemma 3.1 below) is that
every such representation is continuous. Moreover, there is a one-
to-one correspondence between the members of K(A) and the equiva-
lence classes of cyclic Hilbert space representations of A (with unit
cyclic vectors). This correspondence matches elements of Kn(A) with
those representations which can be factored through An. Also, the
indecomposable positive functionals on A correspond to classes of
irreducible Hilbert space representations of A.

The "-radical, R*(A), of A is the set {a e A:f(a*a) = 0 (fe P(A))} =
{a e A:f(a*a) = 0 (fe ext (K(A))} = ΓΊ {ker π: π is an irreducible Hilbert
space representation of A}. If A is an ί^-algebra with identity,
then R*(A) = (0). Hence, if we let A be all equivalence classes of
irreducible Hilbert space representations of A and for each Xe Λ we
choose πλ e λ with representation space Hλ, then {(πλ, Hλ): λe Λ) is a
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complete family of irreducible Hubert space representations of A. A
family constructed in this manner for a Frechet *-algebra A will be
called a standard family of irreducible Hilbert space representations
of A. If {πλ, Hλ): λe Λ) is a standard family for A and we let En =
{λ: πλ factors through An}, then for each XeEn there exists a unique
irreducible representation σλ of An on Hλ so that oλopn = πλ. The family
{σ̂ : λ e En) is a complete family of irreducible representations for An

(in case A is F*) and the direct s u m Σ k £ / i on ^xeEn® Hλ is an
isometry and ^isomorphism of An into S5(Σ;e^Λ Θ -Hi)-

We have included no proofs of the facts quoted above since those
concerning Frechet *-algebras are proved for the more general class
of locally m-convex *-algebras in [1], and those relating to Banach
*-algebras can be found in [6].

2* Certain operator algebras* In this section we obtain the
results about special algebras of operators on direct sums and induc-
tive limits of Hilbert spaces which we need in the proof of the main
representation theorem in § 3. The concepts considered in the first
part of this section are discussed in detail in G. Lassner's work [4].

We first establish our notation. If X is a complex vector space
we denote by J5fa(X) the algebra of all linear transformations on X.
If X has a locally convex topology τ we denote by £?(X), or by
=S (̂XT) if there are several topologies on X in the discussion, the
subalgebra of ^fa(X) consisting of all r-continuous operators. For a
locally convex TVS (X, τ) we denote by £/* the family of all r-bounded
subsets of X (with an appropriate subscript on S? if there are
several topologies on X). The topology of bounded convergence J7\
is the topology on £f(X) with base at 0 {Nbd(M, U): Me Sζ U aτ-
neighborhood of 0 in X}, where Nbd(M, U) = {Te £?(X): T(M) S U}.

DEFINITION. Let X be an inner product space with inner product
( , •)> a n d let H be the completion of X. £f+(X) is the subset of

which consists of all Te^fa{X) which have an adjoint in
): there exists Se£?a(X) such that (Tx,y) = (x, Sy)(x, ye X).

LEMMA 2.1. (Lassner) £f+(X) is a *-algebra with involution T—>
T*. Also, (1) each Te ^+(X) is closed, (2) if X = H, then j^+(X) =
S5(iϊ), and (3) if there is a closed operator in ^+(X), then X = H.

Proof. This is merely a compilation of Lemmas 2.1 and 2.2 of

14].

DEFINITION. An Op*-algebra on X is a *-subalgebra 31 with
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identity I of ^f+(X), (i.e., the identify of 21 is the identity operator
on X).

DEFINITION. Let 2ί be an Op*-algebra on X. We define a locally
convex topology τn by taking as a sub-basic family of seminorms
{|| ||Γ: ΓGSI}, where | |a?| |Γ= \\Tx\\(xeX). This is the coarsest top-
ology on X with respect to which each operator in SI is a continuous
map into H.

Lassner shows [Lemma 3.1,4] that each Te3ί is a continuous
linear transformation on (X, τa) Since JeSI it follows that τ% is
finer than the norm topology of H restricted to X.

DEFINITION. Let 31 be an Op*-algebra on X. We define two
topologies ^l and ^ 3 l on 21 by:

(1) ^~% is defined the family {|| \\u\ Me Sζ\ of seminorms
where, (a) Si is the family of ^-bounded subset, of Xand (b) || ΓH* =
snp{\(Tx,y)\:x,yeM}.

(2) ι^"3 ί is the restriction to 91 of the topology ^ on J*f(X, τ a).

LEMMA 2.2. (Lassner) If 31 is an Op*-algebra on X, then,
(1) (2ί, t^

r"2t) is a locally convex algebra (separate continuity of
multiplication), but the involution is not in general continuous.

(2) (3Ϊ, ̂ l) is a locally convex algebra with continuous invo-
lution.

(3) ^l <; ̂ " 2 ί , and ^ = ^~% if, and only if, the multipli-
cation in (21, ̂ ) is (jointly) continuous.

Proof. This is a compilation of Theorems 4.1 and 4.2 and Ex-
ample 5.1 of [4]

NOTATION. For the maximal Op*-algebra ^+{X) on X we shall
let τ+ and ^\ replace the clumsier notation (τ^+(X), ^r^+iX)) of the
definitions above.

We now specialize to a particular class of inner product spaces.
Let {Hp:βeB} be a family of Hubert spaces, let H = Σβ φ Hβ and
let X= ΣβHβ (the algebraic direct sum). For βeB we let pβ: X—>
Hβ be the natural projection and let qβ: Hβ—*X be the natural in-
jection. For x e X we define Supp (x) = {β: pβ(x) Φ 0}.

The locally convex direct sum topology,τf, on X is the final top-
ology determined by the family {qβ:βeB}. We shall abbreviate (X,
τf) by Xf.

LEMMA 2.3. If X— ΣβHr, then C2f+(X) is isomorphic to the algebra
of all B2-matrices (Taβ)aJeB such that
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(1) Taβe£?(Hβ,Ha)(a,βeB),
(2) for each aeB the set Ba = {β: Taβ Φ 0} is finite, and
(3) for each βeB the set Bβ = {a: Taβ Φ 0} is finite.

Proof. If (Taβ) is a matrix satisfying (1)—(3) we define T: X-*
X by {T{Xβ})a = Σ/> Taβxβ for each a. Since Supp (a?) is finite, Σ*β Taβxβ

converges in Ha for each aeB and it is easily seen that the set of
a for which ΣβTaβxβ is nonzero is contained in U {Bβ: βe Supp (#)}, a
finite set. Thus, Te£?a{X) and by considering the matrix (T*β)(Tίβ:
Ha-+Hβ) we obtain an adjoint for T in £fa(X); hence, Te J 2 ^ + ( X ) .

Fix Te £f+(X). For a,βeB define Tα/3 = ̂ T V Hβ-+Ha. Clearly,
Taβ is a linear transformation. We show that it has an everywhere
defined adjoint, hence is bounded. Set Sβa — pβT*qa: Ha-+ Hβ. Fix
xa e Ha, xβ e Hβ1 then;

(TaβXβ, xa) = (paTqβxβ, xa)

= (PaTqβxβ, paqaxa)

= Σr(prTqβxβ1 prqaxa)

= (%β> Sβaxa) (by reversing the steps above) .

Fix βeB. If Bβ is not finite, then there exists a sequence {a3)
it B so that Ta.β Φ 0 (j = 1,2, •••)• For each xβeHβ there exists
n{xβ) so that Ta.β{xβ) = 0 for j > n(xβ). We choose sequences {%} in
N and {x3} in f̂ s by the following procedure. Let nγ = 1 and choose
xγeHβ so that |(x 1((<2~ 1 and Γ ^ ^ 0 (hereafter Γy will be used
for Ta.β). There exists n2 > nλ such that Γy^ = 0 for j ^ τ&2. Choose
x2 e ίf/such that Γnaα>2 ̂  0 and 11 x2 | | < min (2~2, 2~211 Γ , ^ 11/| | T%1 \ |). Con-
tinuing inductively we obtain sequences {%} and {x3) so that:

( 1 ) 1 = nx < n2 < .

( 3 ) T^ΦO
(4) Tnix3 = 0 (i>j).
We let x = Σi7=ι^j^Hβ. We claim that TWfc£ ^ 0 (fe ̂  1). Fix

fc G N, then ΓΛJfca? = Σ*=ί Tnjtxs + Tn]xk + Σ7=*+i T%kx, . For j ^ k - 1
we have Γ âjy = 0 and for j > k + 1 we have || T , Λ i| ^ || TnJ\ \\xd\\ <
2-3' || T%kxh\\. If T%Λx = 0, then, || Tnjcxk\\ - ||Σr=*+i Tnkxs\\ ^ Σr=*fi2~ i

1 1 ^ % 11 < \\Tnjxk\\, a contradiction.
That 5 α is finite for each aeB follows by applying the same

argument to T*.

LEMMA 2.4. Let {Xβ} be a family of Banach spaces and let X =
Σ ^ l ^ . For ceR% define pc:X-+R+ by pc(x) = Σ/J cβ \\xβ\\ Then
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{pc:ceR+} defines the locally convex direct sum topology τf on X.

Proof. Clearly, {pc} defines a separated locally convex topology τf

on X. Since τf is the final topology generated by the injections qβ:
Xβ —> X(βeB), it suffices to show (1) if p is a τycontinuous seminorm
on Z, then there exists ceRl so that p S Pc (hence, τf^τ9), and
(2), for each βeB the map qβ: Xβ —• (X, τ') is continuous.

(1) Fix a Γy-continuous seminorm p on X. For each βeB the
map p°qβ: Xβ —> R is a continuous seminorm on Xβ. Hence, there
exists cβeR+ so t h a t p°qβ(xβ) ^ cβ \\xβ\\ (xβe Xβ). This defines t h e

function ce R+. If x = {xβ} e X, then,

(2) Fix /3 e S, c e RB

+. Then j>β(?^) = cβ \\ xβ \\ and qβ: Xβ -> (X,
τ') is continuous.

LEMMA 2.5. Let X = Σ ^ ^or eαcΛ ceRl we define \\ \\c: X-+
R by \\x\\o — [Σ/3 ^ ll^ | | 2 ] 1 / 2 /or a? = {xβ} e X. If B is countable then τf

is defined by the seminorms {|| | | C : C G J 2 + } .

Proof. Suppose B = N. We have for each ceRl that || ||β ̂  pe,
so r{|,.llc} ^ r/β We fix c e R^.

For xe X we have:

PcO) = ΈunCn\\xn\\ = Σ,nn-1(ncn\\xn\\)

^(Σ.nn-r9iΣ«(ncny\\xn\\r*
= ( c o n s t a n t ) . | | a ? | | { Λ β Λ } .

THEOREM 2.6. If X=ΣβHβ, then ^f+(X)S^f(Xf); hence,
^f+(X) = J*f*{Xf), the algebra of continuous operators on Xf with
continuous adjoints.

Proof. It suffices to show that for each Te^f+(X) and βeB
the operator Toqβ; Hβ —> Xf is continuous (see [Prop. 6.1, p. 54,7]).
Fix Te£?+{X), βeB and a seminorm pe, ceRl, for τf. The set
Bβ = {a: Taβ Φ 0} is finite, so for xβ e Hβ we have:

pc{Toqβ{χβ)) - Σaca\\(Toqβ(χβ))a\\

Hence, Toqβ is continuous.
We now turn from direct sums to inductive limits. Let {Hλ:

XeΛ} be a family of Hubert spaces. Let H= ΣAXΘHX. We fix a
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family g7 of subsets of A which satisfies (α)if is closed under finite
unions, and (b) all subsets of a member of £? belong to S? (i.e., g7

is an ideal in the lattice 2Λ). We let X = {xe H: Supp (x) e if}, and
for Ee& we let HE — {xe H: Supp (x) £ £/}, α Hubert space, and
let ^ be the identity injection of HE into X. Finally, let τf be the
final topology on X determined by the family {iE: Ee g7} of injections.

Since X has an inner product the Op*-algebra ^f+(X) is defined.
A subalgebra of £f+(X) of importance here is £?r(X) = {Tej£f+(X):
for each Ee g% T(HE) s fl* and Γ*(ft) £ HE}; i.e., j^ r(X) consists
of all elements of £f+{X) which are reduced by each HE{EeW).

We denote the topologies on X determined by =Sf+(X) and J*fr{X)
by r+ and r r (respectively) and the corresponding families of bounded
sets by £f+ and £fr.

ASSUMPTION. Throughout the remainder of this section we assume
the existence of an ascending countable cofinal (with respect to the
partial order £ on g7) subfamily g^ = {2?»}?=i. We let the corre-
sponding Hubert spaces HEn and injections iE% be denoted £Γn and
iu(neN).

LEMMA 2.7. T/̂ e final topology on X generated by the family
{in}n=i is τ/ Hence, (X, zf) is a strict inductive limit of the sequence
of Hilbert spaces {Hn} and;

(1) τf\Hn is the norm topology on Hn.
(2) M £ X is τrbounded if, and only if, there exists ne N such

that M is a (norm) bounded subset of Hn.

Proof. That the final topologies are the same can either be
easily proved directly or deduced from Proposition 3, p. 159 of
[3]. That we have a strict inductive limit and (1) follow from the
fact that τn+1 \ Hn — τn (trivial if one writes out the norm of an ele-
ment of Hn considered as an element of Hn+1) and a theorem of
Dieudonne-Schwartz (see [pp. 159-160, 3]). Claim (2) is another theo-
rem of Dieudonne-Schwartz (see [p. 161, 3]).

THEOREM 2.8. Si - £$

Proof. We show first that £fr(X) is a subalgebra of £f(Xf).
Fix Te ^fr(X), neN. We must show that T<>ίn = T\Hn: Hn->Xf is
continuous. But T(Hn) £ Hn and τf\Tn = τn. Thus, we must show
that T\Hn:Hn-+Hn is continuous. Since Te£?r(X) we have that
T*(Hn)^Hn, so {T\HnY = T*\Hn and T\Hn has an everywhere
defined adjoint on Hn, hence is continuous.

Let Me S^ Then M i s a bounded subset of Hn for some neN.
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For each Te£fr{X), T(M) is a bounded subset of Hn since T\Hn is
continuous on Hn. Hence, T{M) is bounded in H. Since T was arbi-
trary, Me £ζ.

Suppose MίS^f. Case (a). There exist sequences {%} in iVand
{Xj} in M so that:

( 1 ) 1 = nx < n2 <
( 2 ) xjeHnj+1\Hn.(j = 1,2, . . . . ) .

Choose a?, e Λf YH^όij. = 1) let n2 be sufficiently large that Supp (â ) £
^ 2 , choose x2eM\Hn2, etc. Let D y = E^E^n, = 0, Eo = 0 ) , and
set C, = (Σ êjDy l l^ l l ) 1 ' 2 . Define T: X-+ X by (Tx)λ = jCj'xλ if λ e Dd.
It is easily verified that Te Sfa{X), Γ* = Γ, and Supp (Γa?) S Supp(a )
force 6 X. Hence, T e ^ . ( X ) . Also,

1 ^ . 2 I I 2

Hence, s u p ^ ^ II TO;|| — <*>, and M i ̂ J . Case (b). M ξΞ= Hn, for some
w, but is unbounded. Easy to show that Mi S^r.

THEOREM 2.9. ^ r = ^ 7 | ^ ( X ) , where ^l is the topology of
bounded convergence on the algebra Jίf(Xf).

Proof. ( 1 ) j r ; ^ ^ 7 on £fr(X): Fix a ^-neighborhood of 0 in
(X), Nbd (ikf, ε) = {T: \\ T \\M < ε}, where MeSζ,ε> 0. Since Sζ=

£ff there exists neN so that M^Hn and | |M] | = supβ6if INII <°°
Let Z7 be a r/-neighborhood of 0 in X so that UnHnS SΛ(0,
(2||ΛΓ||)-1e), the (2| |ilf | |)-1 ε-ball about 0 in H%. If Γ G ^ r ( X ) n
iVbd(M, C7) - {Sfe ̂ r ( X ) : S(M) £ U], then Γ(M) ^UnHn and || Γίc|| <
(2||Jlf||)-1e for xeM. Now

^ sup {sup I (Tec, 7/) |}
M l | l | ^ | | i l f | |

^ ε/2

This shows that r ^ 7
( 2 ) y ^ ^ y on ^ ( X ) : Fix a J^-neighborhood of 0 in

iVbd (M, [7) where Me ^}, U is a ^-neighborhood of 0 in X. There
exists n e N so that ikί is a bounded subset of Hn. Let ilίi. =
MU Sn(Q, 1), bounded subset of iΓTC; hence, a rebounded subset of X.
Choose ε > 0 so that SΛ(0, ε) s [7 Π fl«. Suppose T e ΛΓbd (MΊ, ε). If
x e M, then

T&H =sup,,^ 1 | (Ta?, i/) | ^ sup {] (Tz, y)\:z, ye MJ -

So Γ(Λf) SSJO, ε) £ Z7, and Γ e iNΓbd (Λf, C/). Hence
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We now show that £?+(X) is a subalgebra of £f(Xf). The
problem here is that we do not have an obvious charactrization of
elements of £?+(X). We have a fixed cofinal sequence {En} in S?.
We let D ^ JEί and for n > 1 we set Dn=En\En^. Let Kn = Σirez>nθ Hi
and let Y = Σu K%.

LEMMA 2.10. The map u: X-+ Y defined by u({xλ}λeΛ) = {{xλ}λeDn}n=i
has the following properties:

( 1 ) u is a linear isomorphism (onto)
(2) u is unitary: (u(x), u{x')) — (x, x') for x, xf e X.
( 3 ) u: (X, τf) —* (Y, τf) is topologίcal.

Proof. It is easily verified that u is a linear isomorphism (into).
If yeY, then there exists n e N so that yά — 0 for j > n. Then
yjλ = 0 if λ G 2 ) y , i > π. Set α? = {?/H λ e Z?Λ, A = 1, 2, •}. Then xeH
and Supp (x) gΞ U y=i-Di = -27*. Clearly %(a?) = ?/, and (1) is proved.
That u is unitary depends only on the fact that the series obtained
by taking inner products is absolutely convergent so can be rear-
ranged at will.

(3) We show first that u is continuous. We recall Lemma 2.5
and fix a seminorm || ||β, ce R+. If xe Hn, then:

)) \\x\\2 .

Thus, ||w(aj)||β ^ C(n) \\x\\ for xeHn and uoin:Hn—> Yf is continuous
for arbitrary neN. Hence, u is continuous (X/—• Yf)

Since Xf and Yf are (LF) spaces (each is a strict inductive limit
of Hubert spaces) and u is a continuous surjection of Xf to Y/ it
follows that u is an open map (see [Prop 2.2, p. 78, 7]).

THEOREM 2.11. £f+(X) s £f(Xf)\ hence, jSf+(X) = £f*(Xf), the
subalgebra of L(Xf) which consists of all operators Te£f(Xf) whose
adjoint Γ* exists and belongs to J*f(Xf).

Proof. Let u and Y be as in Lemma 2.10. Since u is a unitary
linear isomorphism the induced map u*: Jtfa(X) —>J?fa(Y) defined by
u*(T) = uoTour1, which maps J*fa(X) isomorphically onto ^fa(Y),
maps ^f+(X) onto ^f+(Y). Also, since u: Xf—> Yf is topological the
same map u* maps £f{Xf) onto £f{Yf). Since
(Theorem 2.6) we must have that J5?+{X) £
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THEOREM 2.12. &

Proof. We show first that τ+ ̂  τf. It suffices to show that for
each ne N the injection in: Hn —• (X, τ+) is continuous. Fix a semi-
norm || ||Γ for τ+, where Te^f+(X). Since Te£f(Xf) we have
that Toin = T\Hn: Hn-^Xf is continuous; hence, T\Hn:Hn-+H is
continuous (rnorm <̂  τ>). But then there exists Cτ > 0 so that
| |Γ |f l .(α?)| |^CΓ | |a? | | for xeHn; i.e., | | s | | Γ ^ Cτ \\x\\ (xe Hn).

We have S% = &f £ &+(?+ ^ τ». But since JS^(X) £
we also have S^ S ^ . Hence, ^< = ̂  and ^ 7 = ̂  on
But Theorem 2.9 says that ^ = ̂  on

THEOREM 2.13. ( ^ ( X ) , ^7) is complete.

Proof. Let {Tα} be a ^7-Cauchy set in £?r(X). For each
we let JI4 be the unit ball in HE. Then, {ME} £ ^ and if we fix

, then {Ta \ HE) is a Cauchy net in

N T 7 77" T7 I TT II — α π n / N T 7 T7 W II 'v c: £7" 11 Ύ» 11 <C 11

\\ 1 a ±1E — 1 β I -Πt^ 11 — o t i p \| | -£ α — -i β)JU 11 . J> fc ̂ ΓZ ,̂ 11 4> 11 ^ JL/

= sup {| ((Γ β - Tf)x, y)\:x,ye ME)

= \\Ta- Tβ\\ME.

Note also || T* \ HE - Tf \ HE\\ - | |Ta - Tβ\\ME. Thus, Ta | HE —

Γ£ 6 a5(iΓs) and Γα* | fẐ  — SE e ®(HE). We define T and S on X by
Ta; = TEx if xe fẐ  and Sx = SEx iί xe HE. If E Ξ F, then 2V | fZ"s =
2^ (Sj? I HE = S^). Hence, T and S are well-defined linear transfor-
mations on X. Clearly, both T and S leave each HE invariant and
S= T*. Thus, TejS?r(X). That ^- l im α Γα = Γ is easily checked.

THEOREM 2.14. (Jt?r(X), J7\) is an F""-algebra with identity. In
fact, (J^r(X),J7~r) ~\imJnvί&(Hn).

Proof. For each ne N we let Mn be the unit ball in Hn. Then
^ and is "essentially" cofinal: if Me £Sr, then Mis a bounded

subset of some Hn, hence there exists ke R+ so that M £ άikf̂ . But
then \\T\\M^k2\\T\\Mn{Te£?*{X)). Thus, the topology ^ is de-
termined by th ascending family {|| |UJ °f (linear) seminorms, and
(J*fr(X), ^r) is a complete metrizable algebla. As we saw in Theo-
rem 2.13 for Te^r{X) and ne N we have || T\\Mn = \\ T*\\Mn = \\ T\Hn\\.
Thus, each || ||ifn ίs a ^^-seminorm, and {£fr(X), ^~r) is an i^*-algebra
with identity. The last part of the conclusion was essentially proved
in Theorem 2.13. The map pn: £fr(X) —* ^8(Hn) is just the restriction
map; as is the bonding map pn: ̂ 8(Hn) —•33(-Hft_1)(τ&e N).
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3* A representation theorem for ί7*-algebras* In this section
we give three concrete faithful (topologically and algebraically) re-
presentations for an abstract F*-algebra with identity as an algebra
of operators on a vector space formed from the irreducible Hilber
space representations of the algebra.

We let A be an .F*-algebra with identity and let {(πλHλ): Xe A}
be a standard family of irreducible Hubert space representations of
A. Since A is an F*-algebra the family is complete.

If A is a i?*-algebra and {(πλ, Hλ) is a standard family for A,
then π: A —• 33(Σ* Θ Hx) defined by π(ά){xλ} = {πλ(ά)xλ) is an isometry
and *-isomorphism. It is easily seen that for non-J3*-algebras (but
still F*-) this is impossible. In fact, one cannot even define π(a) on
Σ * 0 Hλ for all ae A, unless every a e A has bounded norm:
s u p Λ | | α | | n < oo for some determining family of seminorms. If one
moves to the other extreme and defines π(a) by the same formula
on X=ΣχHχ (algebraic sum), then π(a) makes sense and π:A—*
(J*f(Xf), J7l) is a continuous ^isomorphism but fails to be topological.
This is the case because the final topology on X, hence the topology
^ 7 on ^f(Xf), depends on finite subsets of A whereas that of A
depends on much larger subsets of A. Thus, we must seek a middle
ground in order to achieve a faithful representation of A in this
manner. Before we introduce the basic concept we first prove a
crucial fact about Hubert space representations of Frechet *-algebras.

LEMMA 3.1. Let A he a Frechet *-algebra with identity, and let
μ: A —* 23(ίΓ) be a representation of A on the Hilbert space H. Then
μ is continuous.

Proof. Fix ε > 0. Let V = {ae A: \\μ(a)\\ ^ ε} = f] {Vx y: \\x\\,
\\y\\ ̂  1}, where Vxy = {xe A:\ (μ(a)x, y) \ ̂  ε}. For each pair x,yeH
such that | |# | | , \\y\\ ̂  1 the set Vx, y is convex and balanced. Since
for each z e H the map a —»(μ(a)z, z) is continuous (Do-Shing's Theo-
rem [2]), we have that a —> (μ(a)x, y) is continuous (polarization formu-
la). Thus, each Vxy is closed. So V is closed, convex, and balanced.
It is easily verified that V is absorbing; hence is a neighborhood of
0 in A.

DEFINITION. Let A be a Frechet *-algebra with identity and let
{(πλ, Hλ): Xe A] be a stadard family of irreducible Hilbert space repre-
sentations of A. A subset E of A will be called equicontinuous if,
and only if s u p ^ | |^(α) | | < oo for each aeA. The family of all
equicontinuous subsets of A will be denoted &{A).

LEMMA 3.2. If A is a Frechet *-algebra with identity and {(πλ,
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Hλ): Xe A} is a standard family for A, then E ϋ A is equicontinuous
if, and only if, ^XBE^X defines a continuous representation of A on

Proof. Suppose EξΞ=A is equicontinuous. For aeA we let Ca =
sup;^ | |π(α)| | and define π: A —>33(Σ;ui?0 Hλ) by π(a){xλ} = {πλ(a)xλ}.
Now ||{πλ(a)xλ}||2 - Σ * II ̂ ( α ) ^ ||2 ^ Cl \\(x)\\\ So ττ(α) maps Σ,e* Θ Hλ

into itself, and π is a representation of A on Σ i e * 0 £ίί.
Conversely, suppose we can define a representation of A on

Σ^eίj®Hλ by the direct sum formula. It is clear that ||πλ(a) || <̂  ||π(a) \\
for each XeE and aeA.

LEMMA 3.3. Let A, {(πλ, Hλ): Xe A) be as above. Let {|| |U1 be a

*-sequence of seminorms for A. For n e N we set En = {X e A: \\ τcλ(a) || ^
| | α | | w (ae A)}. Then E s A is equicontinuous if, and only if, E is
contained in some En. In particular, the increasing sequence {En} is
cofinal in &(A).

Proof. If E s En for some n, then clearly Ee^(A). Conversely,
if Eeϊ?(A) then π: A—>^8(ΣAXSE θ Hλ) defined as in Lemma 3.2 is a
continuous representation of A. Hence, there exists C > 0, ne N so
that | |π(α) | | <; C\\a\\n(ae A). It is easily verified that we can take
C = 1, and the condition is satisfied.

We set H = Σ^e, θ Hx and let X = {x e H: Supp (x) e &(Λ)}. We
are now in the situation of the second part of § 2 with HE = {x:
Supp (x) £ E), iE:HE-+X the natural injection, τf the final topology
determined by the family {iE: Ee &(A)}. If {|| | | J is any .P*sequence
of seminorms for our i^-algebra A with identity, then we let Hn =
HEn and πn: A —-> ^&(Hn) the induced representation of A on Hn.

LEMMA 3.4. With the definitions given immediately above for
each neN and aeA it is the case that \\a\\n = |]π%(α)||.

Proof. In § 1 we indicated that {πλ: X e En} induces a complete
standard family {σλ:XeEn} of irreducible Hubert space represen-
tations of the I?*-algebra An, the completion of A/{α: | | α | | n = 0} with
respect to the induced norm, and if pn is the natural projection of A
into An we have σλopn = πλ(X e En). If we let σn = Σ ^ e ^ ^ An —> 58(Hn),
then 11 σn{an) \ \ = \ \ a n\ \ f or each ane An. But 11 σn{an) \ \ = supA eEJ\ σλ(an) \ \.
Thus, if ae A, then | | α | | Λ = HiθΛα|| = s u p ^ ^ l l ^ ί ^ α ) ! ! = sup^e^ ||τrΛ(α)|| =

From the above construction we can infer more. For each aeA
there exists XoeEn such that | | α | | Λ = | |τr;(α)| |. This can be proved
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for An by reducing the problem to that for a hermitian elements,
then showing that it holds on the algebra generated by the element
and extending to the full algebra.

THEOREM 3.5. Let A be an F*-algebra with identity, {(πλJ Hλ):
λ e Λ} a standard family of irreducible Hilbert representations of A,
H = ΣλeΛ 0 Hλ1 and X = {xe H: Supp (x) is equicontinuous}. Let π:
A —> ^fa(X) be defined by π(a){xλ] = {7ϋλ(ά)xx}(a e A, x = {xλ} e X). Then

( 1 ) For each ae A the function π(a) defined above is indeed in

)\ in fact, π(a) e Sfr(X).
( 2 ) π: A—> (J*f*(Xf), ^~h) is a topological *-isomorphism (into).
( 3 ) π: A—> (^f+(X), <^~+) is a topological ^-isomorphism (into).
( 4 ) π: A—* (π(A), J7lU)) ^s a topological *-isomorphism.

Proof. ( 1 ) Fix aeA,xeX. Then

^ sup {|Iπλ{a) \|2: λ e Supp (x)}.\\x\|2 .

Thus, π(a)xeH and Supp (π(a)x) <Ξ Supp (x) e &(Λ), so π(a) maps X
i n t o i t s e l f . M o r e o v e r , i f ae A a n d x,yeX w e h a v e (π(a)x, y) —
(x, π(a*)y); so π(a) e S^+{X). It is clear that π(a) e ^r(X).

(2) and (3) It is clear that π is a ^-isomorphism. Since ^+1 £fr(X) =
^TI =^.(X) = ^ 7 (Theorem 2.12) and π(A) S Sfr{X) it is necessary
and suflBcient that we show π: A —> (J*fr(X), ^ 7 ) is topological. We
fix an ί7*-sequence {|| ||w} of seminorms for A, let {En}, {Hn}, and {πn}
be the corresponding cofinal sequence in &(A), Hilbert space sequence
in X, and sequence of representations of A (respectively). We note
that πn(a) = π(a)\Hn for ne N,ae A. We recall from Theorem 2.14
that (£?r{X),^l) is an F-*algebra with identity and that {|| \\MJ is
an i^*-sequence of seminorms for £fr(X), where Mn is the closed unit
ball in Hn(neN). Moreover, for each neN and Te^fr(X) we have
\\T\\Mn = IIΓIfl^H, the norm of the (bounded) restriction of T to Hn.
If ae A, then ]|a|\n = \\πn(a)\\ (Lemma 3.4) and the latter is 11π(a)\Hn\\ =

We again fix an i^-sequence {|| |IJ of seminorms for A. Let
{En}, etc. be as in "(2) and (3)" above. We let 21 - π(A), an Op*-
algebra on X with corresponding family &ί of bounded subsets of X.
The topology S~* on 2ί is defined by the seminorms {\\ -\\M: Me £^},
where M g l belongs to S^ if, and only if, sup^^ || Tx\\ < oo for
each Te%. Lassner's Lemma 5.2 [4] says that π: A-+ (Sί, ^ i ) is
continuous. Fix neN and let Mn be the closed unit ball in Hn as
above. Since SI £ ^+(X), S^+ S ^ ? and {Mn} Q £*+; so {Mn} ££ζ.
We know from above t h a t | | α | | Λ = | | ^ (^)IU U ( α e A, ^ e N). This es-
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tablishes the openness of π: A—• (31, ^l).

REMARKS. (1) Do-Shing [2] obtains a representation theorem
for LMC*-algebras (the same as jP*-algebra without the metrizability
restriction) which uses essentially the same Hubert space, but he
maps A onto an algebra of unbounded operators with special proper-
ties. Also, he does not consider topological properties of the map.

(2) The main problem in studying non-commutative Frechet
*-algebras is the lack of models against which to compare the abstract
algebras. A corollary to Do-Shing's theorem on positive functionals
on Frechet *-algebras is that every one induces a cyclic Hubert
space representation, but as we have seen we cannot represent these
algebras faithfully on Hubert spaces. The examples discussed above,
the algebras ^fr(X), are quite similar to those considered by E. A.
Michael in Appendix A of his memoir [5], where in our case the
underlying locally convex space is an inductive limit of Banach
(Hubert) spaces. It seems that the class he defined in [5] might
include most examples of noncommutative F-algebras, except those
built from a commutative F-algebra and a noncommutative Banach
algebra by tensor products, e.g., C(X, B) where X is an appropriate
topological space and B is a Banach algebra.

4* Enveloping algebras* In this section we define the enve-
loping algebra of a Frechet *-algebra with identity, relate it to
inverse limit decompositions of the algebra, and realize it as an
algebra of operators naturally constructed from A.

We fix a Frechet *-algebra with identity, A, and also fix a
standard family {(πλ, Hλ): λe Λ) of irreducible Hubert space represen-
tations of A. We recall that K{A) = {/:/ is a positive functional
on A, f(e) = 1}.

LEMMA 4.1. If E £ K(A) and {|| ||Λ} is a ^-sequence of semi-
norms for A, then the following statements are equivalent.

(1) E is equicontinuous.
(2 ) sup / 6 E f(a*a) < oo (α e A).
( 3 ) There neN such that E £ Kn{A).

Proof. (1) and (2) are clearly equivalent by the uniform bounded-
ness principle for Frechet spaces: if E <ΞΞ A* and E is pointwise
bounded (σ(A*, A)-bounded), then E is equicontinuous (see [Theorem
4.2, p. 83, 7]). It is also clear that (1) and (3) are equivalent, since
Kn(A) is the intersection with K{A) of the polar of the neighborhood
{aeA: \\a\\n^ 1}.
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DEFINITION- Let 8" (K) be all equicontinuous subsets of K(A).
For Ee^(K) we define

I«U = [sup{/(α*α):/e#}] 1 / 2 (ae A) .

THEOREM 4.2. If A is a Frechet *-algebra, {\ \E: Ee ί?(K)} is
the family of maps defined above, then

( 1 ) Each I \E is a linear seminorm on A.
( 2 ) B*(A) = {αe A: \a\E = 0 for each Eeϊf(K)}.
( 3 ) If {\\ \\n} is any ^-sequence of seminorms for A, then the

topology of (A/R*(A), {| \E}) is determined by the B*-seminorms {| |n},
where | |w = | \Kn(A). Hence,

( 4 ) The completion E(A) of (A/R*(A), {| \E)} is an F*-algebra
with identity.

Proof. (1) and (2) are trivial to verify and (4) follows from (3),
which we now prove. Fix a ^-sequence {|| ||»} of seminorms for A.
For each neN we set En — {XeΛ: ||τr^(α)|| ^ \\a\\n(ae A)} and define
πn:A->ϊδ(ΣiieEn®Hj) by π%(a)({ξ}x}λeEn) - {πx(a)ξx}λeEn for each aeA.
We shall show that for each neN and α e i w e have ||τr»(α)H = | a\n.
Fix neN. For XeΛ we choose a unit vector ζλ e Hλ, define fλ: A-+C
by fχ(a) = (πχ(a)ξi9ξλ), let iΓ; be the completion of A/{a:fλ(a*a) = 0}
with respect to the induced inner product ([a]λ, [b]λ) = fλ(b*a), where
[a]λ is the coset containing a. Finally, define ψλ: A—>^8(Kλ) by
ψλ(a)([b]λ) = [ab]λ on A/{a:fλ(a*a) = 0}, and extending these norm-con-
tinuous operators to Kλ. There exists an isomorphism U: Hλ Kλ so
t h a t Uπλ~ψλU. Hence, for aeA we have \\πλ(a)\\2 —

sup{Λ(6*α*αδ):/ι(6*6) = l} ^fλ(a*a). If/,(6*6) = 1, then A 6 : c
also belongs to iC(A) (that/* does is clear) and/^6(α*α) <^\a\n. Hence,
||τr;Xα)|| ^\a\n for each XeEn1 and | | ^ ( α ) | | = sup || πλ(a) | |: λG En} ^
| α | w . Then reverse inequality follows from the fact that \a\n =
sup {/(α*α):/G X»(A), / is extreme}.

DEFINITION. We shall call the algebra E(A) in Theorem 4.2 (4)
the enveloping algebra of A.

THEOREM 4.3. If (A, {|| | | J) is a Frechet *-algebra with identity
and if {An} is the corresponding inverse limit system of Banach
*-algebras with identity, then E(A) = limn inv {E(An)}.

Proof. We let pn be the natural map of A into An and pn: An —•
An^(n >̂ 2) the induced bonding map. For neN we let J5n be the
enveloping algebra of An and let Ψn be the natural map of An into
JS?Λ. Finally, we let φ be the map of A into
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For neN we have the diagram

Now ker (Wn) = R*(An) and ρn(R*(An)) £ i2*CAΛ-i). Thus, we have an
induced map σn: En —> En^. It is easily verified that {En,σ

n,N} is a
dense inverse limit system of i?*-algebras (i.e., the bonding maps
have dense range and are norm-decreasing). We let E = lim^inv {En,
σn, N} and consider E a subset of ΠnEn with the relative product
topology.

We define τ: E(A) -» E by first defining τ on A/iί*(A) by the
formula τ(φa) = {Ψnρna}. If aeA, then 9>(α) = 0 if, and only if,
a e R*{A) if, and only if, pn(a) e R*{An)(n e N) if, and only if, Ψnρn{A) =
0 (neN). Thus, τ is well-defined and one-to-one A/R*(A). Also,
since all the maps involved have dense range it follows that τ(A/R*(A))
is dense in E. Finally,

\τ(φa)\i = \Ψnσn(a)\l = \PM\1

{f(a*a):feKu(A)}
= |α|2TO(^eiV, α e A) .

Thus, τ is an isometry in each seminorm; hence, extends to a topological

map of E onto E(A). It is clear that the map is a ^-isomorphism.
We now realize E{A) as an algebra of operators on X =

{# £ Σ UΛ φ Hλ: Supp (#) is equicontinuous}. We use the same notation
as in § 3.

THEOREM 4.4. Let (A, {|| |IJ) be a Frechet *-algebra with identity

and let (E(A), {\ |Λ}) be its enveloping algebra, with natural map φ:

A~+E(A). For aeA we define π(a) on X by π(a){xλ} = {πλ(a)xλ}.

Then π: A —> £fr{X) induces a topological *-isomorphism σ of E(A)

onto π(A), where "topological" refers to any of the {equal on £fr{X))

topologies ^ 7 , ^+1 or ^~b on ^fr(X) and the closure of π(A) is with

respect to these topologies.

Proof. Since for each α e A and neN we have \a\n = | |πΛ(α)| |
we have that ker π = R*(A), so there is an induced map σ: A/R*(A) —>

so that the following diagram commutes:
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A-^

λ /
A/R*(A)

E{A).

We have shown in Theorem 2.13 that the topologies
on Jίfr{X) are defined by the sequence {|| \\MJ of seminorms and that
| |Γ |U W = \\T\Hn\\. Also, we know that πn(a) is π(a)\Hn. So from
Theorem 4.2 we have \a\n = | |π n (α) | | , and hence, \a\n = ||7r(α)||jfn. It
follows that GΓ: A/JB*(A) -> ̂ r ( X ) is topological, and since (£?r(X), ^~r)
is complete σ extends to a topological *-isomorphism of E(A) into

If A is a Banach *-algebra with identity and E(A) its enveloping
algebra, then every Hubert space representation of A factors through
E(A). We conclude our discussion of enveloping algebras by ex-
aming this problem for Frechet ^-algebras. We consider only repre-
sentations in J*f+(X), since this is enough to illustrate the problems
involved.

LEMMA 4.5. // {A, {|| ||Λ}) is a Frechet *-algebra with identity,
{| |»} the corresponding sequence of B*-seminorms on A used to define
the topology of E(A), and if μ: A~^ Jίf+(X) is an essential repre-
sentation of A on X (μ{e) — I) then, for each Me S*% there exists ne N
and C > 0 such that || μ{a) \\M ̂  C\a \n(a e A).

Proof. Fix i l ί e y + . We let | |Jlf| | = sup {|| x | |: xe M) (\\M\\ < o o ,
since M is bounded in t h e H u b e r t space completion of X ) . Since μ
is continuous there exist neN and C > 0 such t h a t \\μ(a)\\M^
C\\a\\n(aeA).

Fix xe M. Then /,.: a —* (μ(a)x, x) is a positive functional on A.
A l s o , | / . ( α ) I = I (μ(a)x, x ) \ £ \ \ μ(a) \\M ^ C\\ a \\n. Hence,_ / . e P n ( A ) f o r
each xe M. Therefore, if xe M and x Φ 0, the positive functional
fx(e)~ιf* belongs to Kn{A) and /a;(e)-1/I(α*α) ^ \a\l(aeA). So we have
fx{a*a) g fx(e) \ a \l(x eM,ae A). But fx(e) = (μ(e)x, x) = || x ||2 ^ || M\\\
Hence, /.(α*o) ^ || lί | | 21 a \l(x eM,aeA).

For x, y e M, a e A we have

\(μ(a)x,y)\ = \\ μ(a)x || || y II

^| |M| | .( | |M«)*II 2 ) 1 / 2

^ \\M\\'{μ{a*a)x,xγ>2
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Thus, || μ{a) \\M ̂  \\ M||21 a\n(ae A).

THEOREM 4.6. // (A, {|| ||»}) is a Frechet *-algebra with identity,
(E(A), (| |n}) its enveloping algebra, φ the natural map of A into
E(A), and if μ: A —> Jzf+(X) is an essential representation of A on
X, then there exists a continuous representation σ of A/R*(A) on X
so that σφ = μ. If π(A) is contained in a j7~+-complete subalgebra
of Jίf+(X), then σ extends to a representation of E(A) on X. In
particular, this is the case if X is Hilbert space. Hence, all Hilbert
space representations of A factor through E(A).

Proof. We need only show that σ can be defined on A/R*(A) so
that σφ = μ. The other claims follow from Lemma 4.5. It is sufficient
to show that ker<£>ckerμ. If aekerφ = R*(A) and if xeX, then
b —> (μ(b)x, x) is a positive functional on A; hence, (μ(a*a)x, x) =
|| μ(a)x ||2 = 0. Thus, μ(a) = 0 and a e ker μ.

EXAMPLE 4.7. We show here that some representations μ: A —•
^f+(X) fail to factor through E(A).

Let A = C°°(R) with the topology determined by the seminorms
l |α | | Λ = Σ^o(&D~Ί|α(fc)|Loo, where a{k) is the fcth derivative of a and
IHL.oα is the supremum on [ — n, n]. Then A is a commutative Frechet
*-algebra with identity (involution is conjugation), and

( 1 ) \a\n = \\a\\n>4aeA,neN)
( 2 ) R*(A) = 0, hence
(3 ) AjR* {A) = (A, {| | J) and E(A) is just C(R) with the compact-

open topology. We use hereafter | |Λ for || |L«»
Let X = C~(R), the compactly-supported C°° functions on R, con-

sidered as a dense subspace of U(R). We note that if aeC(R) and
feC~(R), then there exists neN such that || af\\ ^ | a\n \\ f \\ (n de-
pends on /, n is any positive integer so that Supp (/) £ [ — n, n]), and
|| || is the norm in L2(R).

Define μ: A —> ^fa(X) by μ(a)f = af. It is clear that this formula
actually does define a linear transformation on Xand that (1) μ(a)* =
μ(a), (2) μ is a representation of A in ^f+(X), hence, (3) μ; (A, {Hn})—>
,_ζf+(X) is continuous (by Theorem 4.6). We now show that μ cannot
be extended continuously to C(R). We prove (4): if μ is the ex-
tension to C(R) of μ and if / e l , then, we must have μ(a)f =
af (aeC(R)). We know that there exists neN and C > 0 so that
\\μ{a)f\\SC\a\n for each aeC(R). Fix aeC(R) and choose [a3] £
C°°(R) so that C{R) — limy aά = a. Choose C > 0 and n e N as above
(for feX) and such that Supp (/) £ [- n, n]. Then 11 μ(a)f - μ{a3)f \\ ^
C\ a — aό |n. Hence, {μ{a3)f} converges in L2(/2) to /Z(α)/. But μ{a3)f =
a5f and by our earlier estimate || aάf — af\\ ^ || / || | a5 — a \n. So
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μ(aί)f = asf converges to μ(a)f and to af. Thus β(a)f = af for each
feX. But C(R)-C?(R) g ^( iJ ) , so μ fails to extend to C(R).

REMARKS. In the last example we could have considered μ a
representation of C°°(R) in £f(C?(R),^l). It is not too difficult to
show that μ is continuous when thought of this way. It clearly still
fails to extend.

Fainally, we do not know whether representations of A in
(J*f*(X), ^l) where X is a locally convex TVS with a continuous
inner product are necessarily continuous, in contrast to representations
in J*f+(X). It probably is possible to find an example of a discon-
tinuous representation, since the topology ^ 7 need not be related to
the inner product.
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EXTENSIONS OF TOPOLOGICAL GROUPS

LAWRENCE G. BROWN

In this paper, we will be concerned with topological
group extensions of a polonais group A by a polonais group
G. When A is abelian, we will consider two cohomology
groups: H2(G, A) and H£(G, A), H2(G, A) is based on Borel
cochains and was studied by Moore. Hy(G, A) is obtained by
identifying cochains which differ only on a first category
set, an idea suggested to us by D. Wigner. We will show
that each of the groups classifies the extensions and that
the hypothesis that A be abelian can be eliminated.

By a polonais group, we mean a separable metrizable topological
group which is complete in its two-sided uniformity. The complete-
ness requirement is equivalent to topological completeness (see [2],
Exercise Q(d), p. 212). If E is a topological group having a polonais
normal subgroup A such that E/A is polonais, then it is elementary
to prove that E must be polonais also.

If A is abelian, then the cohomology groups are defined in terms
of an a priori action of G on A. If A is non-abelian, then we will
define sets (not groups) H2{G, A) without given action of G on A.
For brevity, we proceed directly to the general case.

Let Sf be the group of topological automorphisms of A. We
will write θa for the action of θ e sf on a e A and Ia for the inner
automorphism 6—>αδα~1. Let e denote the identity of any group.
Then H2(G, A) is defined by means of cocycles (σ, p) where:

(1) σ:G x G->A, ρ:G-+JZf,

σ is a Borel function on G x G and (x, a) —> p{x)a is a Borel function
on G x A.

σ(x, y)-σ(xy, z) = p{x)σ(y, z) σ(x, yz) ,

ιΦ) -p{v) = iσtx,V)p(χ, v),

σ(x, e) — σ(e, y) = e, and

p(e) = e .

(σ, p) and (σ', p') are identified in H2(G, A) if there is a Borel function
λ: G —»A such that:

σ'(x, y) - \(x)

P\χ) = h^

H£(G, A) can be defined by simply stipulating that (2) and (3)
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hold only on the complement of a first category set. However, for
purposes of motivation, we prefer a slightly different description.

If X is a complete metric space and Y a metric space, then
(following Wigner) by a virus from X to Y, we mean an equivalence
class of continuous functions /: R—+Y where R is a dense Gδ set
in X. f and / ' are equivalent if they agree on R Π Rr. (We could
eliminate the equivalence relation by using maximal continuous ex-
tensions.) It is clear that if Y is separable, the viruses amount to
Borel functions modulo first category sets. The concept of virus will
be used later. In the abelian case, it could be incorporated directly
into the definition of H£(G, A).

H£(G, A) is defined by means of cocycles (σ, p) where:
(1') σ: R1 —• A, p: R2 —> J^ where R^ and R2 are dense G/s in

G x G and G. σ is continuous on Rlf and (x, a) —• pix)a is continuous
on R2 x A.

(2') σ(x, y)σ(xy, z) = pix)σ(y, z)σ(x, yz) and ρ(x)p(y) = Iσ{*,y)p{xy)
whenever everything is defined, (σ, p) and (σr, pf) are identified in
Hv(G, A) if there is a continuous function λ: R —• A (R a dense Gδ in
G) such that:

(3') (3) holds whenever everything is defined. (In particular,
(σ, p) is identified with (σ', pf) if they agree off a first category set.)

We need two technical results:

LEMMA 1 (Dixmier [1]). If E is a polonais group, A a closed
normal subgroup, and p: E-+EJA the projection, then there is a Borel
function f: E/A —»E such that p(f(x)) = x for all x e E/A.

LEMMA 2 (Wigner). If E is a metrizable group complete in its
two-sided uniformity, A a closed normal subgroup, and p: E—> E/A
the projection, then there is a dense Gδ, RdE/A and a continuous
function f: R-+ E such that p(f(x)) = x for all xe R.

Proof. (One may note first that Lemma 2 follows from Lemma
1 in the polonais case.) Let UΊ, U2 be a fundamental system of
symmetric neighborhoods of e in G. Define recursively subsets On of
G such that On is maximal with respect to:

(4) On is open; O . c O ^ ; and if x,yeθn and p(x) = p(y), then
χ-ιy,yχ-ιeUn-(O« - E.)
It is not hard to see that p(On) is dense in E/A:

If F c O ^ is open, VV'1 and F ' Ψ c Uu, and p(V) is disjoint
from p(On), then OnU V satisfies (4). If R = Π p(On), then it is not
hard to prove that R is dense (i.e., that E/A is second category in
itself. Actually, E/A is even complete in its two-sided uniformity.)
For xeR, let yne0n be such that p(yn) = x. Then (yn) is Cauchy
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and hence yn —• y, for some yeG. y can easily be seen to be inde-
pendent of the choices of ynf and if we define f(x) = y, it is straight-
forward to prove / is continuous.

Now we can define a map π: Ext (G, A) —> H2(G, A). (Ext (G, A)
is the set of equivalence classes of topological group extensions of A
by G.) If E is a given extension, let / be as in Lemma 1 such
that f(e) = e.

Define (σ, />) by:

( 5 ) f(x) -f(y) = σ(x, y)f(xy); pMa = f(x) α./(a;)-1 .

It is easy to see that π(E) = [(σ, ^)] gives a well defined function π
where [(σ, p)] denotes the class of (σ, p).

There is a natural map j : H2(G, A) -> H£(G, A). If (σ, p) satisfies
(1) and (2), then there are dense G/s R1dG x G and R3c:G x A
such that the restriction of σ to u?x and the restriction of (x, a) —*
p{x)a to i23 are continuous.

LEMMA 3. // R2 = {xe G: {a: (x, a) e R3} is a dense Gδ in A}, then
R2 is a dense Gδ in G and (x, a) —> p{x)a is continuous on R2 x A.

Proof. That R2 is a dense Gδ is clear. Now suppose x% —> x and
an—>a(xn, xe R2). We can find be A such that:

(xn, b) e R31 (x, b) e Rs, (xn, δ " 1 ^ ) e i?3, (a?, 6 - 1a) e i?3 .

Then ^ " ' α * = p{Xn)b-p{Xn)b-ιan—>p{x)b-p{x)b-ιa = ^ ( a ? )α.

Now let σ and ô be the restrictions of σ and <o to J?x and R2,
and define i[(σ, p)] — [(σ,p)]. It should be clear that j is a well-
defined map on H2(G,A).

The map JTΓ: Ext (G, A) -^ Jϊ^(G, A) can be described a little more
simply. If / and R satisfy the conclusion of Lemma 2, then we can
use (5) to define σ, p, Rx and R2. Note that R2 = R and Rλ = R =
{(xy y)eG x G: x, y, xy e R}.

We can now state:

THEOREM. // G and A are polonais groups, then π and jπ are
bisections.

Proof. The main part of the proof is that jπ is surjective, and
we prove that first. Let σ, p, Rx and R2 be given. We first reduce
to the case where Rγ and R2 are as in the previous paragraph. Let
R = {x e R2: {y: (x, y) e JBJ is a dense Gδ in G}. Then for (x,y)eR,
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define:
( 6 ) Σ(x9 y)(z) = pix)σ(y, z) σ(x, yz) σ{xy, z)~ι for all z such that

this makes sense.
Then Σ induces a function from R into the set of viruses from

G to A. For (x, y) eR Π i?t, it is easy to see from (2') that Σ(x, y) is
the constant virus σ(x, y). Since R Π i?i is dense in R and J is
continuous, it is now clear that Σ{x, y) is a constant virus, σ(x, y),
for all (x, y) e -B, and σ is continuous. We now replace σ by σ (and
iϋ2 by ϋ!) to obtain the desired situation. We will also assume that
e$R.

We next extend (σ, p) to a cocycle defined everywhere, following
Moore [7]. To this end, let V be the group of all viruses from G
to A. For xeR.aeA, define θ{x): V-> V and Ja: F—• F by:

[#0%]0/) (̂2/» »)̂ (2/») and
j (Jag)(x) = ^ a . g ( x ) t o r geV.

It is a straightforward computation to verify:

θ(x) θ(y) = Jσ ( a ; y) - ^ 7 / ) , (α?, 2/, xyeR), Jab = Ja-Jb, and

^(α?)"1 exists and θ(x)Jaθ(x)~ι — JP{x)a .

Now let J5" be the group generated by J(A) and #(iϋ). We can see
that if A is identified with J(A), then A is normal in Er, and each
element of E' induces a continuous automorphism of A. Let p: £" —>
2£'/A be the projection. Clearly, for (x,y)eR, pθ(xy) = pθ(x) pθ(y).
It is now easy to see that pθ extends to a homomorphism Θ:G-+
E'jA. Let f:G-+ Er be an extension of θ such that f(e) = e and
p/ = θ. Then we can extend (σ, p) by:

9 /(») -f(v) - Λ(,») -/(αi/), and

It is clear that the extended (σ, p) satisfies the cocycle relations (2)
(though not (1)).

We will later have occasion to use a uniqueness result for the
extended (σ, p). Thus let (σ', pf) satisfy (2) everywhere, suppose σf

agrees with σ on a dense Gδ, RL, and p1 agrees with p on a dense
Gδ, R2- Define R' = {y e R f] R2: {x: (x, y) e R,} is a dense Gδ in G}.
We can see that for any veG, there is a dense G&, Rv, such that
σ'(u, v) is continuous in u on Rv. This follows from the following
consequence of (2):

(10) .σ'(u, yz) = p'^σf{yy z)-γ-σ'(u, y)-σ'{uy, z)

where we choose y, ze R' such that yz = v.



EXTENSIONS OF TOPOLOGICAL GROUPS 75

Thus we can use (7) to define θr on all of G, agreeing with θ on
jβ', and θf will satisfy (8) (with {σf, p') instead of (σ, p)). If we
define λ by θ'(x) = λ($)/(α?), then we see that (3) is satisfied and λ
vanishes on R\ This is the desired uniqueness result.

Using the extended (σ, p), we can now construct a (non-topolo-
gical) extension E of A by G and a function f: G—>E such that if
p: E—*G is the projection, then pf(x) = »,/(e) = e, and (5) is satisfied.
We must topologize E, and we first define sequential convergence to
e. If an e E, we say that αH —> e if there exists β — b f(y)(y e R) such
that if βan = bn-f(yn), then yΛ e R, bn ~>&, and j/Λ->y. If an = an-f{xn),
then it is readily seen that this condition is equivalent to:

(11) yxn eR,xn~* e, and p{y)an-σ(y, xn) -> e .

The condition is thus independent of b, and we now show it is inde-
pendent of y (subject to y,yxneR). We need:

LEMMA 4. ( a ) For xeG, σ(x, y) is continuous in y on Rx =

{2/: y,xyeR}.
( b ) σ(a?, 2/) is continuous in x on Ry = {x: x, α j/ e JB}.

Proof, ( a ) Let yn-+y in i?^. Consider:

(12) α (α?, 2/w) = <7(v, w ) - 1 - ^ ' ^ ^ , yn)-σ{v, wyn)

where v — xw1 and w, xw~\ wyn, wy e R.
Then from the continuity of σ on R, we see that σ(x, yn) —* σ(x, y).

(b) is proved similarly.
Now if y = uyf where y, yxn, y', y'xn e R, we find:

(13) p{y)an-σ(y, xn) = σ(u, yTιp{u)lpίyΊ^σ(y\ xΛ)]-σ(u, y'xn) .

Using Lemma 4(a), we see that (11) is satisfied for y if it is for y\

LEMMA 5. If an —• β, then βanβrι —> e for any βeE.

Proof. First, let β = be A where an — anf(xn). If y, yxne R and

f{y)βanβ~ι = cn f(xn), then:

(14) c, = ' ( I ' )δ.[' ί ' ' )αn σ(if> α j ,)]-^^^- 1 .

Hence (11) is satisfied for βanβ~~ι if satisfied for αΛ. Now let β = /(«).
Then if T/, yzxnz~\ yz, yzxneR, and f(y)βanβ~1 = dnf{yzxnz~ι),

(15) dn - (7(2/, 2) [ρ{yz)an-σ(yz, xn)] -σ(yzxnz~\ z)~ι .

Hence (by Lemma 4 (b)), (11) is satisfied for βa^βr1 if satisfied for an.
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From this lemma, it is easy to see that the definition of an—>e
could equivalently have been given in terms of anβ instead of βan.
The criterion would then have been:

(11') If w, xnw e R, then an σ(xn, w)-*e and xn —> β (an = an-f(xn)).

LEMMA 6. If an—>e and βn—>e, then cxn βn—+e.

Proof. Let an = an f(xn), βn = bn f(yn). First, choose z such that
z, zxn, and zxnyn G R. Then choose w such that w, ynw, and zxnynw G R.
Then if f(z)-an-βn = cnf(zxnyn), we find:

(16) cn = [ ^ α ^ z , < * P ( ^ } [ & . 0 (^, w)].£7(«α?n> ynw) σ(zxn, yn, w)~ι .

Hence (11), for αw/5w follows from (11) for an and (11') for /9ft.

LEMMA 7. / / αΛ —>e, α"1 —> e.

Proof. Let α n = an f(xn). Choose « such that ^ ^ e J ί . Then
choose w such that w,zw,xnweR. Then if f{z) oc? = cnf(zxzι), we
find

(17) c-1 = o{z*n\an-σ{xn, w)\ -σ(zx?> xnw)*σ{z, w)~ι .

Thus (11), for α"1 follows from (11') for αΛ.
We now must show that there is a metrizable group-topology

on E such that convergence as defined above is convergence in the
topology. To do this, it is sufficient to find a sequence Wm such that
e e Wm c E, and an —> e as defined above if and only if an is eventu-
ally in Wm, for each m. Let Um be a fundamental system of neigh-
borhoods of e in A and Vm a fundamental system of neighborhoods
relative to R of u0 e R. Then we define:

(18) Wm - [ Umf{ F m ) Γ f/m/( Fm) .

Suppose that an is eventually in each Wm. Then an = β~ιjn where
βn, 7n are eventually in each Umf(Vm). Hence f(uo)~^n—>e and
f(uQ)~17n-->e. Thus α:Λ = [/(^o)"1/?^]"1 [/W" 1^] —>β. Now assume α^ =
UnfM —• e Since F^ 1 F m is a neighborhood of e in G, we can find
yn,zneR such that yn—>uQ,zn—+u0 and y^ιzn — xn. Now define
β» = /(l/n) and 7» = cnf(zn) where cΛ is chosen such that β?Ίn = αΛ

Then calculation shows:

(19) cn - ^(VΛ)[αΛ (7(ajn, w)] σ ( ^ , xnw) -σ(zn, w)~ι

where we assume w chosen so that w, xnw, znw and uow e R. Then (11')
shows that cn—>e. Hence βn,yn are eventually in each Umf(Vm)9 as
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desired.
Now that we have a metrizable topology on E, it is easy to see

that the subspace topology on A is the correct one. It is also not
hard to see that the quotient topology on G is the correct one. Indeed,
all we must show is that if xn —> e in G, then we can find an —* e in E
such that p(an) = xn. To do this, choose yn and zn as in the preced-
ing paragraph. Then an = /(yj^fizj. From the fact that A and
G are complete and separable, it now follows easily that E is com-
plete and separable and hence polonais. It is clear that / is continu-
ous on R. Hence jπ(E) — [(σ, p)], and we have proved that jπ is
surjective.

To show that jπ is 1 — 1, assume jπ(E) = jπ(Ef). Then we can
find a dense GδRczG and continuous f:R-^E, f':R~+E' such that
pf(x) = x = p'f'{x), and (σ, p) = (σ', p') where σ, p, σr, and p' are
defined by (5). Then we can define a function <p: p~ι{R) —> vr~ι{R) by:

(20) <P(a f(x)) = a-f'{x) ,

and clearly φ{aβ) =φ{a) φ{β) for a, β, aβe p~ι{R). From this, it is
not hard to prove that φ can be extended to a homomorphism of E
onto Ef and that this homomorphism is a topological isomorphism.

It is now clear that π is 1 — 1. To show that π is surjective,
let (σ, p) satisfy (1) and (2). Let E be such that jπ{E) = j[(σ, p)].
Then we can find a Borel function f:G—>E such that pf(x) — x,
f{e) = e, and if (cr', pf) is defined by (5) (with (σ', pf) substituted for
(σ, p)), then (σ, p) agrees with (σ\ pf) except on a first category set.
Now the uniqueness result proved above shows that there is a function
λ: G —> A, which vanishes on a dense Gδ,R', such that (3) holds. We
must show that λ is Borel. (3) implies:

(21) X(xy) = σ'{x, yyi'X(x)'p{x)X(y)-σ(x1 y) - σ'(x, y)-ι-σ{x, y) ,

for (Xy y) e R! x Rr. Thus if m: Rf x R! —> G is the group operation,
then λom is Borel. Since m is surjective, it follows from well-known
results on Borel sets (see Kuratowski [3] or the first few pages of
Mackey [4]) that λ is Borel. The theorem is now proved.

We make two final remarks:

1. If A is abelian and we are given an action of G on A, then
it is easy to see that the bijections π, j, and jπ preserve the group
operations (where the group operation on Ext (G, A) is the usual
Baer product).

2. The hypothesis that A be separable can be dropped by con-
sidering A as a direct limit of closed separable subgroups (G-subgroups
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in the abelian case).
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REVERSIBLE HOMEOMORPHISMS OF THE
REAL LINE

ARNOLD B. CALICA

Let G be the group of germs of Ck local homeomorphisms
of the real line which fix the origin and have nonzero de-
rivative there. In this paper the possibility of factoring an
element of G which is conjugate to its inverse into the pro-
duct of two involutions is investigated. It is shown that it is
always possible to do this in the analytic case and not
always possible in the continuous case. In the intermediate
cases several necessary and sufficient conditions are develop-
ed for determining whether or not such a factorization is
possible. Included is a construction which allows one to
determine an explicit factorization. Indication is given of
the application of this material to the same problem in
higher dimensions. This work is related to some material in
Dynamics.

!• Introduction* If G is an abstract group an element g e G is
called reversible in G if there exists an element heG such that
hghr1 = g~\ The product of two involutions is always reversible by
an obvious argument. There arises the following question:

Question #. If g is reversible in G can g be factored into the
product of two involutions in G?

D. C. Lewis has decided this issue in the case G — GL{n, C) affir-

matively (Lewis [4])
This paper concerns itself with the investigation of this question

in the case where G is the group of germs of continuous or differen-
tiable homeomorphisms of the real line.

Reversible transformations play a role in Dynamics. For further
information on this connection see the references in Lewis [4].

2* Definitions and Notation* Ck = {F: F is a local homeo-
morphism of a neighborhood of 0 in R to another such neighborhood
which fixes the origin and is of class Ck on some neighborhood of 0,
JF'(O) ^ 0 if k > 0, for 0 ^ k ^ co or analytic for k = ω}. Tk =
{germs of elements of Ck}

Let φk: Ck —> Tk be the map which assigns to each element of
Ck its germ in Tk. The binary operation of (local) composition of
mappings in Ck induces a group multiplication in Tk. Tk will be
viewed as a group with this structure henceforward.
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If a property is locally true for each aef9 aeCk, feTk the
property will be attributed to /. The identity element of any group
under consideration will be called 1.

pk = {set of all real power series of the form Σϊ=i <V̂ r> &i ̂  0,
1 ^ k ^ oo}

Pω = {aeP°°: a has a nonzero radius of convergence}

P°={1, -1}.
Let pk: T

k —> P*, A: > 0 be the mapping which assigns to each
element of Tk its Taylor expansion to degree k about the origin.
Put po(f) = ί l according as / is the germ of a locally increasing or
locally decreasing element of C°.

REMARK 1. If 0 tί k <^ <>o or k = ω, pk is onto. This trivial for
k < oo familiar for k — ω and true for fc = °o. For the last case see
Borel [2].

The multiplication in Tk induces via the mapping pk a group
multiplication in Pk. Pk will be viewed as a group with this multip-
lication. The elements of Pk are often referred to as jets in the
literature. Note that composition of elements in Pk is not multiplica-
tion of polynomials but is substitution followed by truncation to
degree k. Other homomorphisms which will be found useful are the
mappings Tk —> Tm and Pk —> P m , mf^k defined by the inclusion map-
ping of Ck^Cm followed by Φm or ρmφm.

For FeCk, let F+ (resp., F) be the restriction of F to R+ =
{x e R: x ^ 0} (resp., to R_ = {xeR: x ^ 0}). F+(resp., F_) is a local
homeomorphism fixing 0 of R+ to R+ or i?+ to /?_(resp., i?_ to /ϊ_ or
jR_ to R+). The notation / + and /_ will denote the corresponding
notion for the germ/, f'1 (resp., /r1) will denote ( / ^

3* Periodic local homeomorphisms of R. Let
Γ+ = the set of elements of Tϊ which are increasing,
Pk

+ = pk(Tk)

Tί = the set of elements of Tk which are decreasing,

REMARK 2.

( i ) r* n r i = 0, Γί u τi = τk

(ii) Γί is 2, subgroup of Tk which is of index 2 and is there-
fore normal.

(iii) TkTk - TUTl - Tϊ, TΪTί = Tk

The corresponding statements are true of P+ and P i .
Repeatedly used subsequently are following obvious facts:
If / G Tk, then (/-% = / - and (/"1)_ = /r 1 .
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If / 6 Γ*, then (/-% = /r 1 and (f~% - / ? .

PROPOSITION 1. If g e Tk, gm = 1 /or some integer m Φ 0, ί/iβn

1.

COROLLARY, If ge Tk and gm = 1 /or some integer m Φ 0, then

Proof of Proposition 1. Let GeCk such that $frfc(Cr) = # and #w =
1. G is clearly monotone near 0. Thus for small x > 0, if x < £?(#),
then a? < G(a?) < < Gm(#) = α. This is impossible. If x > G(x) a
similar argument applies. This constitutes a proof of this proposition.

It is to be noted that Proposition 1 follows trivially from a
theorem in Bochner [1] in the case k > 0.

REMARK 2. feTl and p = 1, if and only if /_ = /+ 1 .

4* Factorization of Reversible Transformations of the Real line*
In this section the possibility of factoring a reversible element of Tk

is investigated.
Df: If fe Tϊ, then / is the element of T° such that,

(/) + = /+ and (/)_ - /71 .

LEMMA 1. If fs Th and ρk{f) is an involution in Pk, then f is
an involution in Tk.

Proof. (/"% - /r 1 and (f~% = f? since fe Tl. pk(Γ) = 1 im-
plies Pkif"1) = Pkif) Therefore the right derivatives of /+ at zero
are the same as the left derivatives of f+ι at zero. Therefore, fe Tk

and p = 1 by Remark 2.

THEOREM 1. If fe Tk(0 ̂  k ̂  co or k = ω), then f is the pro-
duct of two involutions in Tm, (m ̂  k) if and only if there exists
g e T™ such that gfg~ι — f"1 and ρm(g) is an involution in Pm.

Proof of Theorem 1. If / - hk, h, ke Tm and h2 = k2 = 1, then
by Remark 2 and Proposition 1 and its corollary one can conclude
that either h, ke Tm or / = 1. It h, ke T™, set g = h. If / = 1 set
# equal to any involution in Γ™. In either case pm(g) is also an in-
volution.

Assume now that f"1 = gfg~ι where geT™ and pm(g) is an involu-
tion. If one sets (g)+ = g+, (g)_ = ̂ r̂ 1 it is then easy to verify that
gfg-1 = Z"1 implies ^Z^"1 = Z"1. This means that Z = ^(^Z) and
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both factors are involutions.
Some of the preceding material can be utilized to demonstrate

the impossibility of factoring each reversible element of T° into the
product of two involutions. This is embodied in the following pro-
position:

PROPOSITION 3. There exists a reversible element of T° which
cannot be factored into the product of two involutions.

Proof of Proposition 3. Suppose there exists an element fe Γ+
such that / is reversible and /_ = 1 and f+Φl. It is clear that
gfg"1 = /- 1 implies that geT+. If such an element exists it cannot
be factored as the product of two involutions by Theorem 1. An
element of this type is constructed below:

Let / = φQ(F) where F_ = x, FeC°

and F+ =

Fo xe (1/2,1]

F1 xe (1/4,1/2]

Fk a e (2~*-\ 2-*]

and

and

Fk+1 = Fk and Fk(x) = (1/2

F0(x) =
xe (1/2,1)

x = 1

with M large enough to ensure that Fo is one to one on its domain
of definition. It can be easily verified that F is continuous on
(- oo, 1], Moreover 2F(l/2 x) = F~\x). Therefore/ - φo(F) is rever-
sible and not the product of two involutions. This completes the
proof of the proposition.

REMARK 3. Composition in the group Pn is given as follows:
If

# = Σ ak%k and β = Σ
k=i k=ι

then
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where

rx! r 2 ! rk!

rx + 2r2 -f + krk = k

and

LEMMA 2. Suppose aeP\ m^k

(a) 1/ a - a + awxm + o(xm) ,

•»**

a"1 = x - amxm + o(tτ
m) .

(b) If a = -x + amxm + o{xm) ,

a"1 = — x + (- l) w a m x m + o(>m) .

LEMMA 3. Suppose aePk, a is reversible, m^k and a =
x + amxm + o{xm), am Φ 0.

If βaβ~ι = a" 1 and /9 = Σί=i M% then δx = — 1 . Moreover, m
must be even.

LEMMA 4. If ae P2 and a = — x + a2x
2, then a is an involution.

The verification of Lemmas 2 — 4 is straightforward and will
therefore be omitted.

Df: If fe Tk, k > 0, m g ft, let

for any FeCk

x ; dx"

such that φk{F) — f.

THEOREM 2. If fe Tk, ft ^ 2, / reversible and ρk(f) Φ 1
δβ factored as the product of two involutions in T2.

Proof of Theorem. Let f"1 = gfg"1] Lemma 3 and Lemma 4 show
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that p2(g) is an involution; now Theorem 1 applies to the image of /
in T\

COROLLARY. // feT+ and f reversible in Tω, then f can be
factored as the product of two involutions in T2.

This follows from Theorem 2 and the observation that if f e T+
and /(w)(0) = 0 for m > 0, then / = 1.

The question of factorization of reversible elements of Tl is set-
tled positively in the following material.

LEMMA 5. If g,he T? and g2 = h2, then g = h.

Proof of Lemma 5. If g — h has zeros in every neighborhood of 0,
then g = h since g and h are analytic. Assume therefore that there
exists a neighborhood (0, ε], ε > 0, such that g(x) > h(x) and g(x), h(x)
are monotone in (0,ε]. Choose x0 > 0 sufficiently small such that x0,
g(x0), h{xQ), g2(x0) e (0, ε]. Then g(x0) > h(x0) and g2(xQ) > gh(x0) > h2(xQ).

This contradicts g2 — h2.

THEOREM 3. If feT? and f is reversible in Tω, then f is an
involution in Tω (hence 1 / is the product of two involutions in
Tω).

Proof of Theorem 3. Suppose f"1 = gfg"1. The proof of this
theorem is divided into two cases according as ge T+ or ge Γiϋ.

Case I. ge T%.
Moreover, gfg~ι=f-1 iff g_f+gτι = fi1 and g+f_gz'=f+ iff /_ =

g+f^gz1 and /_ = gTf+"g~

iff \f~ =

\g% = f?fjLf+ = {f?g-f+Y (#) .

Since g+ is locally increasing and analytic the foregoing implies
that

g+ = / i W + (*) .

using Lemma 5.
Therefore

/ - = ^/^flfi1 by (#) .

/_ = (/rflr-ΛJ/ί1^1 by (*) .

Therefore /_ = /+x so / is an involution.
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Case II. Suppose g e Tl.
Therefore, gfg*1 = f~ι is equivalent to g+f-gz1 = /r 1 and g-f+g^:1 =

/+ 1 . The foregoing is equivalent to g_ = /_#+/_ and #_ = f^g+f+K This
means #_#+ = (/_#+)2 and #_#+ = (f+'g+f. Therefore, (/-#+)2 = (f+'g+Y
Lemma 5 implies f_g+ =f+1g+. This means that /_ = / + ι . The last
statement and Remark 2 implies that / is an involution. This con-
cludes the proof of this theorem.

REMARK. It is known that Lemma 5 is false in T°. It is not
known if Lemma 5 is true in Tk 1 <L k <£ °o. The truth of Lemma
5 for Tk would permit one to state the analogue of Theorem 6 for
Th. If Lemma 5 is false for Tk one could conclude that reversible
elements of Tk could not be factored into the product of two involu-
tions.

There is a square root lemma, weaker than Lemma 5, which will
be proved which provides an additional criterion for the factorability
of a reversible element of Tk into the product of two involutions.

LEMMA 6. If f, ge Tk, /'(0) = a Φ 1, k ^ 2, f2 = g\ then f = g.

Proof of Lemma 6. If f2 = g2 = I, then V(0) = a2. By Sternberg
[5] Theorem 2 there exists he Tk~x such that hlh"1 = φk^{a2x). It is
now shown that the only diίferentiable square root of ΦkStfx) in 7T+~1

is Φk-άax). Suppose there is another square root of φk-i(cfx) given by
Φ^Kix)). Consider some set (0, η) on which K2(x) = a2x, (η>0). It
is clear that K{x) > ax or K{x) < ax cannot hold in (0, rj). Therefore
there is some point xoe (0, η) where ax = K(x). Assume further that
a < 1. If this is not the case one can apply the argument to l~\

In the argument following it will be convenient to utilize the
notation (F»(y0))' for d/dx Fm(x) \x=Vo.

Let xk = Kk(x0) = akx0. Since a < 1 lim^a. xk = 0 monotonically.
K'(x)Φax at some point in (x19x0)'9 otherwise K{x) = ax on (0,97)
and there is nothing to prove. Assume, therefore, that there exists
yoe (x19 x0) such that K'(y0) = β Φ a. Let Zk = K*h~l{y^. Since
x2k < Zk < a?2Jfe-1 one observes that lim^^ Zk = 0. Since iΓ2(x) = α2a;,
one observes that K'(0) = a by the chain rule and the fact that
K'(0) > 0. This implies l i m ^ K'(Zh) = a.
But,

K\Zk) = * ' Z »

K(yo)Y
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Therefore,

K'(Zk) = a2k = ^-Φa.
} a2k~2β β

Therefore lim^oo K' (Zk) Φ K'{ϋ) which contradicts the continuity of
K'{x). This means that φk^{ax) is the only square root of φk^(a2x)
in T£-ι(R,0).

Since hfhr1 and hgh~x are differentiable square roots of ^A_i(α2^),
hfhr1 = hghr1 which implies / = g. This concludes the proof.

The foregoing leads to the following theorem.

THEOREM 4. If fe Tϊ, k ̂  2, / reversible in Tί and f~ι = gfg~ι

g eTl and g'{ϋ) Φ 1, then f is an involution.

Proof of Theorem 4. The proof utilizes the construction in the
proof of Theorem 3 and will therefore be omitted.

5* Conclusions. In this paper Question (#) of the introduction
is shown to have answer " n o " for continuous homeomorphisms and
nearly "yes" for analytic homeomorphisms. For Ck homeomorphisms,
1 ^ k ̂  oo, the reply to the Question is shown to depend on the
existence of unique square roots in a particular group and the non-
existence of an element feT+ such that pk(f) = 1 and / is reversible
in jPf. It is not known whether gfg~ι = f"1 in Tω, / G Γ ; / Φ 1
implies that g is more than twice differentiable. One conjectures
that this is not the case since it may be shown that aβar1 = β~x

in P 3, β Φ 1 and β = x + b3x\ does not ensure that a2 = 1.
One may generalize some of this material to higher dimensions.

The techniques of this paper are applicable to some germs of trans-
formations of Rn which fix a sufficiently nice n — 1 manifold con-
taining the origin. This and related questions will be treated in a
subsequent paper.
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SEMI-GROUPS OF LOCAL LIPSCHITZIANS
IN A BANACH SPACE

J. T. CHAMBERS AND S. OHARU

The purpose of this paper is to construct a nonlinear
semi-group determined by a given (multi-valued) nonlinear
operator A in a Banach space X, and to investigate the dif-
ferentiability of this semi-group. The semi-group treated in
this paper is the semigroup {T(t); t ^ 0} of nonlinear
operators in X such that for each τ > 0, {T(t); O^t^τ} is
equi-Lipschitz continuous on bounded sets. In order that an
operator A in X determine such a semi-group {T(t); £ Ξ> 0}
o n D(A) w i t h (d/dt)T(t)xeAT(t)x f o r a l m o s t a l l t ^ O a n d
xeD(A), it is required that X have a uniformly convex
dual, A be dissipative in a local sense, I-λA, λ positive and
small, satisfy a range condition and an injectiveness condi-
tion, and finally the family of operators (J—XA)~~n

9 n =
1, 2, 3, be locally equi-bounded.

Let X be a Banach space and S a subset of X, and let {T(t);
t ^[0} be a family of nonlinear operators from S into itself satisfying
the following conditions:

( i ) Γ(0) = /( the identity) and T(t + s) = T(t)T(s) on S for ί,

(iij,) For xeS, T(t)x is strongly continuous in t ^ 0.
Then the family {T(t); t i> 0} is called a semi-group on S. The
infinitesimal generator Ao of the semi-group {T(t)\ t ^ 0} is defined
by Aox — \\mh_++Qhrι{T{h)x — x) and the weak infinitesimal generator
A! by A'x = w-lim^+oh"1 {T{h)x — x}, if the right sides exist, the
notation "w-lim" means the weak limit in X.

An operator A in X is called a D-operator if for every bounded
set B in X there exists a number ωB >̂ 0 such that

re <xf - y', f > ^ ωB \\ x - y ||2 for x, y e B Γ\ D(A), x' e Ax, y' e Ay

and some feF(x — y), where F denotes the duality mapping of X.
Our discussion requires that X have a uniformly convex duaL

Then, if A is a D-operator satisfying some additional conditions, we
obtain a semi-group {T(t); t !Ξ> 0} on D(A) such that

(A) T(t)x = lim (I - \A)-ίtlλ]x , x e D(A)

and the convergence is uniform with respect to t in every finite
interval;
(B) for every bounded set B in D(A) and τ > 0, there exists a number
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ω B , τ ^ 0 s u c h t h a t || T(t)x - T(t)y || ^ eωB,r* \\x - y\\ f o r x , y e B a n d
t e [ O , T ] .

The additional conditions on A are stated roughly as follows:
(1) The operator (I — XA)"1 must exist as a single-valued oper-

ator with domain R(I — XA), the range of J — XA, for X small; this
is condition (I) of the paper.

(2) In order that the iterations of (/ — XA)"1 be meaningful on
D(A), it is required that the range of I — XA contain D(A); this is
condition (R).

(3) The operators (/ — XA)~k, k = 1, 2, 3, must map bounded
sets into bounded sets; this is the idea behind condition (E).

We note that if A is a dissipative operator, i.e., ωB = 0 for
every bounded set B in X, then (1) and (3) are satisfied.

Concerning the differentiability of the semi-group constructed we
obtain, among other results, the following. If A is a Z)-operator
satisfying (I), (R) and (E) and is maximal on D(A) in the sense
explained in § 1, then there exists a uniquely determined semi-group
{T(t);t^O} on ~D{AJ such that for each xe D(A) (d/dt)T(t)xe AT{t)x
at almost all t ^ 0.

Finally, we remark that for the Cauchy problem

(d/dt)u(t) e Au(t), u(0) = x ,

where A is a Z)-operator in X satisfying (/), (R) and (E), we can
construct the semi-group solution using the convergence (A). And
conversely, in a reflexive Banach space, if Ao is the infinitesimal
generator of a semi-group {T(t); t ^ 0} satisfying (B), then Aΰ is a
iλ operator in X and for xeD(A0), T{t)x is a solution of the Cauchy
problem formulated for the operator Ao.

Section 1 deals with the notion of a .D-operator and some of its
properties. Section 2 concerns the abstract Cauchy problem. Section 3
contains the construction of the semi-group determined by the
D-operator A. Finally, in Section 4, the question of the differentia-
bility of the constructed semi-group is discussed.

The authors want to express their deep gratitude to Professor I.
Miyadera for his many valuable suggestions.

O Preliminaries* In this section we introduce some of the basic
notions which are used in this paper.

Throughout this paper X denotes a Banach space. Let A be a
multi-valued operator in X, that is, A assigns to each xe X a subset
Ax of X. Ax may be empty for some xe X. The domain of A,
D(A), is the set of all x e X such that Ax Φ 0 ; the range of A, R{A),
is the set \Jxex Ax. We write AS (or A(S)) for (JUs Ax, S c X.
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Note that a single-valued operator is a special case of a multi-valued
operator in which Ax, xeD(A), denotes the value of A at x or the
singleton set consisting of this element, and Ax is the empty set if
xϊD(A).

For subsets Su S2 c X, Sί + S2 denotes the set {x+y; xeSί9ye S2}
where S, + S2 = 0 if S, = 0 or S2 = 0 . For a scalar λ and S c l ,
λS denotes the set {Xx; xe S}, and we write y + £> for {?/} + S.

Accordingly, for two operators A and I? in X, we define the sum
A + B in X by (A + £)# = Az + #£, D(A + B) = D(A) Γ) D(B); the
scalar multiplication λA in X by (λA)& = XAx, D(XA) — -D(A); and
the product AB in X by (AB)x = A(Bx), D(AB)czD(B). We
write 7+λA for the operator τ/+λA, where / denotes the identity
operator in X. For any positive integer k, we define the iteration
Ak in X by AH = A(Afc-^), where A0 = I and D(A&) c D(A).

Let A, A be two operators in X. A is an extension of A, and
A is a restriction of A (denoted ΆZDA, A c A), if AcccAx for each
xeX, thus D(A)cZ>(A). If S c l , then by a restriction of A to S,
A I s, we mean the operator such that D(A \ s) = D (A) Π S and A\sx =
Ax if a? G S.

If S c l , we denote the closure of S in X by S. Let A be an
operator in X, then 5 is called the closure of A, if G(i?) = Cr(A),
where G( ) denotes the graph of the operator. We write B = A.

Let X* be the dual space of X. We denote by (x, /)> the
pairing between xeX and / e l * . The duality mapping F of X is
the mapping from X into X* defined by

F(x) = {feX*; re<>, /> - | | x | | 2 = ||/||2}

for x e X. If X* is uniformly convex, then i*7 is single-valued and
uniformly continuous on bounded sets [4; Lemma 1.2].

We now state some standard definitions and collect some well-
known results.

DEFINITION 1. An operator A in X is said to be dissipative if
for each x, yeD(A) and x'e Ax, y'eAy, there exists an feF(x — y)
such that re ζxf — y*, /)> ̂  0. A is said to be an m-dissipative oper-
ator in X, if it is a dissipative operator in X and R(I — λ0A) = X
for some λ0 > 0. Let S c X and A be a dissipative operator in X,
if every dissipative extension of A coincides on S with A, then A is
said to be a maximal dissipative operator on S.

An m-dissipative operator A is maximal dissipative on D(A). If
X* is strictly convex and A is a maximal dissipative opetator on S,
then Ax is closed and convex for xe S. If A is an m-dissipative
operator, then R(I — λA) = X for all λ > 0 ([9; Lemma 4]).
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DEFINITION 2. An operator A in X is said to be demί-closed if
the following condition holds: if {xn} aD(A), xn—+xeX (strong con-
vergence) and if yn e Axn, such that yn-^yeX (weak convergence)
implies that x e D(A) and y e Ax.

A demi-closed operator is closed. If X* is uniformly convex and

A is maximal dissipative on D(A), then A is demi-closed ([5; Lemma

3.7]).

DEFINITION 3. Let A be an operator in X. The operator A0

defined by A°x = {yeAx; \\y\\ = inί[\\u\\;ueAx]} is called t h e

canonical restriction of A.

If X* is uniformly convex and A is an m-dissipative operator,
then D(A°) = D(A) and A°x is a non-empty closed convex set for
xeD(A). If X and X* are uniformly convex and Ax is closed and
convex for xeX, then A° is single-valued and D(A°) — D(A) ([5;
Lemma 3.10]).

Finally, we list some notations which are used in this paper.

(1) Let {xn} be a sequence in X, then " xn —> x ", means that xn

converges to x in the norm topology, whereas, " xn —* x ", means that
xn converges to x in the weak topology.

(2) Let G be a single-valued operator in X and Ba X, then by
l|(?llLip<JB>> we mean the smallest Lipschitz constant for G on Bf]D(G).

(3) We write Jλ for the resolvent (/ — \A)~ι if it is well-defined
and Rλ for the range R{I — XA) = {x — Xy; x e D{A), y e Ax}.

(4) Let KczX. Then coK denotes the convex hull of K and
σδK, the convex closure of K.

(5) For any nonempty set S c X, we write

Thus for any operator A, | | |A&|| | is defined for xeD(A)

1* D-operators* In this section we introduce the notion of a D-
operator and establish some of its properties.

Let X be a Banach space and A an operator in X. If for every
bounded set Ba X there exists a nonnegative number o)B such that

re<x' -y',f> ^ωB\\x- y||2
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for x, yeBf] D(A), %' e Ax, yf e Ay and for some / eF(x — y), then
A is called a D-operator.

Put Bn = {x G X; || a? || < w}, w = 1, 2, 3, If there exists a se-
quence {ωn} of nonnegative numbers such that

re<x' - y>, f> ^ ωn\\x - y\\*

for a?, yeBnΠD (A), xr e Ax, yf e Ay and for some / e F(x — y), n =
1, 2, 3, •••, then A is a £>-operator. If such a sequence is identically
zero, then A is a dissipative operator. Note that if A is a .D-opera-
tor, then (A — ωn) \ B% is a dissipative operator on J5n.

The next lemma by Kato [4; Lemma 1.1] gives a basic property
of dissipative operators.

PROPOSITION 1.1. (Kato) Let x,yeX. Then there is a λ0 > 0
such that || x \\ ̂  || x — Xy \\ for λe (0, λ0) if and only if there is an
f e F(x) such that re ζy, /> ^ 0.

Let A be a D-operator in X, then for every bounded set Ba D(A),
we have that (/ — \A)x Π (/ — XA)y = 0 for x, y e B, if x Φ y and
λ € (0, l/o)B). In fact, for xf e Ax, y' e Ay, and some / e F(x — y) we
have that

\\{x - Xx') - (y - Xy')\\ || x - y \\ ̂  re<(x - Xx') - (y - Xy'), / >
^ ( 1 -XωB)\\x-y\\\

H e n c e , w e h a v e || (x — Xx') — (y — Xy') || ^ (1 — Xo)B) \\x — y\\, so,
(/ — XA) I B has a Lipschitz continuous inverse and

||(J - XA \ ̂ W^u-iAm ^ (1 - λω^)-1 for λ e (0, l/ωB) .

However, in general, (/ — XAy1 is not a single-valued operator. For
example, take X to be the real line and Ax, the function x sin x. A
is a i)-operator, in fact, for the bounded set [ — ikf, M] we may take
o)^M>M1 to be 1 + M. And

| | ( I - XA Ic-^])-1
 IILIPUZ- UΪC-*,*] ^ (1 - λ(l + ilί))-1 for λ e (0,1/(1 + M)).

But R(I — XA) = X for λ > 0, and (/ — λA)"1 can not defined as a
single-valued operator on X, no matter how small we restrict λ > 0.

Hence, we make an additional assumption on the operator A:

(I) (I - XA)x Π (/ - XA)y = 0 for x, 2/ e X if x Φ y and λ e (0, λ0) .

Condition (I) guarantees the existence of the resolvent Jλ = (I—
for λe (0, λ0) as a single-valued operator with D(Jλ) = R(I — XA). (I)
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corresponds to the assumption that I — XA is injective, if we are
considering single-valued operators.

DEFINITION 1.1. Let G be an operator in X. G is said to be
locally bounded if G maps bounded sets into bounded sets.

DEFINITION 1.2. Let {Gγ}, T G Γ , be a family of operators in X.
{Gr}, yeΓ, is said to be locally equi-bounded, if for every bounded
set B, UrerGr(B) is a bounded set.

PROPOSITION 1.2. Let A be a D-operator in X satisfying (I).
If {Jx; λ e (0, λ0)} is locally equibounded, then for every bounded set
B c X there exists a number ώB ^ 0 such that

II Jx ||LIP(*, ^ (1 - λώ^)-1 for λ e (o, min{λ 0 , -A-J) .

Proof. Let B be any bounded set in X, then BY = \Jλe(0 χG)Jλ(B)
is a bounded set and Bx aD(A). Hence, there exists a number ώB^> 0
such t h a t (1 — XώB) \\ x — y || <£ ||(a? — λa?') — (2/ — λ?/')ll for a?, y e B19

xf G Ax, y' e A /̂ and λ e (0, min {λ0, l/ώB}). Thus, if w, 1; e B Π i2 ;, then
Jλu, Jλv e Bx and

(1 — XώB)\\Jλu — Jλv \\ ^\\u — v\\ for λ e f 0, m i n i λ0, -z—\)

In the next proposition we impose two additional conditions on
the operator A, which are essential to the construction of the semi-
group in this paper.

PROPOSITION 1.3. Let A be a D-operator in X satisfying (I). //

(R) R (I - XA) Z) D(A) for X e (0, λ0) ,

and

(E) {J?; λe(O,λo), %λe[0,τ]}

is locally equi-bounded for any τ > 0, then for every bounded set
B c X and τ > 0, there exists a number coB,τ ^ 0 such that

WJϊlUtB) ^ (i - λ Λ ) ^ ) -

for X e (0, min {λ0, l/ωB>τ}) and nX e [0, τ ] .

Proof. Let B be any bounded set in X and τ > 0. Set 5X =
, then J5X (j J3 is a bounded set and so there exists a

o
?Ue[0,r]
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number coB r ^ 0 such that

^ (1 - λω^)" 1 for λe(θ, min|λ0, — } )

Thus, if u, v e B Π i2;, then J?- 1 w, JΓ1 veBx{jB, provided nX e [0, τ\. So
that \\J?u - J?v || £ (1 - λ ω ^ ) - 1 H J r 1 ^ - JΓ" 1* II ̂  (1 - XωB,τ)-n\\u- v\\
for λ G (0, min {λ0, l/α>5.r}).

The next proposition gives some sufficient conditions for (E).

PROPOSITION 1.4. Let A be a D-operator satisfying (I).

(a) // there exist nonnegative numbers M and N such that

\\Jλx || ^ (1 + λilf) || x || + λiV for Xe (0, λ0) and x e Rλ ,

then (E) holds.

(b) // A is single-valued and sup {\\Ax\\; x e D(A)} < + °°, then
(E) holds.

Proof, (a) Let B be any bounded set in X and xe B f) Rχ,
λe(0, λ0). Then, it is easy to see that

HJ ̂ H ^ (l + MX)n(\\x\\ + n\N) ^ e ^ ( s u p | | ^ | | + nXN) ,

which is bounded for λ e (0, λ0) and nXe [0, τ\.
(b) Take x e Rλ, then || Jλx \\ ^ || x \\ + λ || A Λx 11. Put

N = sup 11 Ace 11 ,
xeD(A)

then lle/aa; || ^ \\x || + λΛΓ. Now apply (a), note that in this case
M= 0.

We now wish to introduce a notion of maximal D-operator. Given
a sequence of nondecreasing nonnegative numbers {ωn}, we consider
the family of D-operators, .β^{(0n}, consisting of all D- operators A
in X such that there exist numbers o)Bn(A) ^ ωn, n = 1, 2, 3,
with

re<x' -y',fysωBn{A)\\x-y\\>

for x,ye D(A) Π J?%, x' e Ax, yf e Ay and some / 6 F(x — y), n = 1, 2,

3, . Recall that Bn denotes the open ball with radius n and center
0 in X. Note that if A is a D-operator, then there exists a sequence
{ωn} such that

DEFINITION 1.3. If Ae^~{ω%}, then A is called a (D, {α>Λ})-o
αίor. Let Scz X and A be a (Z>, {ωJ)-operator in X. If every
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(D, {ωn})-extension of A coincides on S with A, then A is said to be
a maximal (D, (ωj)-operator on S.

PROPOSITION 1.5. If A is a (D, {ωn})-operator in X and SczX,
then there exists a maximal (D, {ωn})-operator Ά on S such that
A\8Z>A\g.

Proof. Apply Horn's Lemma.

We now show that if A is a maximal (D, {ω%})-operator on D(A)
and furthermore if X* is uniformly convex, then A is demi-closed
and Ax is closed and convex. The uniform convexity of X* gives
the above properties which are essential in establishing the facts
concerning the differentiability of the semi-groups constructed in this
paper.

PROPOSITION 1.6. Let X* be uniformly convex. If A is a

maximal (D, (ωn)}-operator on D(A), then
(a) A is demi-closed,
(b) Ax is closed convex.

Proof, (a) Let {xk} be a sequence such that {xk}aD(A), xk—*xQeX
and Axk 3 yk -* y. We must show that x0 e D (A) and y e Ax0.
Define Άw = Aw if w Φ x0 and Aw U {y} iϊ w = x0. Then A z> A and
D{Ά)(zD(A). It is easy to see that Ά is a (D, (ωj)-operator, Hence,
by the maximality of A, A = A and so x0 e D(A) with y e Ax0.

(b) The same type of argument as in (a) easily establishes (b).
The next proposition states some basic properties of a demi-closed

operator.

PROPOSITION 1.7. Let X be a reflexive Banach space and A be a
demi-closed operator in X. Let {xn} aD(A), xn-^xoz X, and let {yn}
be a sequence in X such that yn e Axn for each n. Then:

(a) if {yn} is bounded and V is the set of all weak cluster points
of {yn}> then xoeD(A), V Φ 0 , and V a Ax0; if in particular, A is
single-valued, then yn—^Ax0;

(b) if furthermore, X and X * are uniformly convex, the canoni-
cal restriction A0 is single-valued and if lim sup \\yn\\ ^ ||| AxQ || |, then
xoeD (A0) and yn —> A°x0.

Proof, (a) First, the reflexivity of X and the boundedness
of {yn} imply that V Φ 0 . Let Y be the closed linear manifold
determined by {yn}. Then 7 is a reflexive Banach space and F * is
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separable. Hence, for each y e V a subsequence {yn.} can be found
such that yn. —* y in Y. Now, any x* e X* determines a y* e Y*
such that (x, x*y = <(#, #*> for α e Y; thus, since ^ e ϊ", ζyn., #*>—•
<#, #*> for x* e X*, and #n < -^ y in X. Since #%. —> &0, 2/n4 e AxH, yn. -» y
and since A is demi-closed, we have that xQeD(A) and ί / e i ^ . This
means that VaAx0. If in particular, A is single-valued, then y =
Ax0; hence all weak limits of subsequences of {yn} are same and equal
to Ax0. Therefore, it follows that yn -* Ax0.

(b) Since {yn} is bounded and A is demi-closed, there is a sub-
sequence {yΛ<} and a ye Ax0 such that yn. —*#. Thus, by assumption,
we have

HI Aα0 HI 5̂ 11 y || ^ Km i n f | | ^ || £ lim sup || yni\\ ^ \\\ Ax0 \\\ .

Since A0 is single-valued, 7/ = A°x0 and lim| |2/n 4 | | = || A°#o||. But, X
is uniformly convex; thus yn.—>A°x0. Therefore, all strong limits of
subsequences are same and equal to A°x0, and it follows that
yn -* A°x0.

PROPOSITION 1.8. Let X and X* be uniformly convex. Let A be
a closed D-operator in X satisfying (I), (3.9) (stated in Remark 3.1)
and (E). If A is a maximal ((D, {ωn})-extension of A on D(A) such that

D(A) a{ze D(A); \\Jxz- z\\= 0(λ) as λ [ 0} ,

then A° = Ά°.

Proof. First, note that Ά is demi-closed, Ax is closed and con-
vex, and so, A0 is single-valued with D(Ά°) — D(Ά). Take a sequence
ηk I 0 and set Jk = JV]c and Ak — ηΰ1 [Λ — /]• Let x e D(A), then, since
D(Ak) Z)D(Ά), w e s e e t h a t || Akx \\ = ητ1 II J& - Jk(x - VuV) II S III Ax |||/
(1 — coB7]k) for y e Ά°x, where ωB is a constant associated with the
c l o s u r e B of {x — ηky; ye Ax, \\ y\\ — \\\ Άx\\\, k s u f f i c i e n t l y l a r g e }
through the D-operator A. Since AkxeAJkx for k, Akx—>A°x as
k-+ +oo by Proposition 1.7 (b), for each x e D(A). Now take ^ e D(Ά).
Since i2(J — λA) Z)D(A) for λ e ( 0 , λ0) by assumption and since
D(A) z)D(A), we see that s e JR(I — ^A) for A; sufficiently large.
Hence, there exist xk e D{A) and τ/Λ e Axk such that

^ = %k VkVk

But, xk = Jkz—*z as /c —> + oo hence, by the closedness of A, 2 e D(A)
and A°2 e Az. But A^ c Άz, so that A°s e A°z. Also, 111 A°z \ \ \ ̂  11 Ά°z \ \.
Therefore, v e A°z c Άz implies that v = A°z because A0 is single-
valued. So, A0 is also single-valued.
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REMARK 1.1. Brezis and Pazy [1; Theorem 2.1] give the follow-
ing result. Let X be a Hubert space and A be a closed dissipative
operator such that RλZ)~cδD(A) for all λ > 0 , then A has a unique
extension to a maximal dissipative operator A satisfying D(Ά)czD(A),
and, in fact, D(A) = D(A) and Ά° = A0.

2. Abstract Caucy problem* In this section we discuss the
relationship between the abstract Cauchy problem formulated for a
D-operator and the semi-group generated by such an operator.

The abstract Cauchy problem may be stated as follows:
Given an operator A in X and an element x e X, find a X-valued

function u(t; x) on [0, oo) such that
( i ) u(t; x) is strongly absolutely continuous on every finite

interval;
(ii) u(0; x) = x and (d/dt)u(t;x) e Au(t; x) for almost all t.
We call this the abstract Cauchy problem, ACP, formulated to A.

PROPOSITION 2.1. Let A be a D-operator in X. Then there is
at most one solution of the ACP formulated to A with the initial
value xeD(A).

Proof. For xeD(A), suppose that u(t; x) and v(t; x) are solutions
of the ACP formulated to A. By Kato's lemma [4; Lemma 1.3] we
have that

II u(t; x) ~ v(t; x)\\2 = 2 J re((^}u(s; x) - (-£-)*(*; &), f(s))ds

^ 2ωXtr Γ || u(s; x) - v(s; x)\\2 ds ,

Jo

where ωXyT is a constant associated with the bounded set

B = {u(t; x), v(t; x); te[O, τ]}

through the D-operator A and f(s)eF(u(s;x) — v(s;x)), and also,
note that (d/ds)u(s; x) e Au(s; x) and (d/ds)v(s; x) e Av(s; x) for almost
all s. Hence, u(t; x) = v(t; x) for ί e [ 0 , τ ] . Since τ is arbitrary,

u(t; x) Ξ v(t; x) for all t ^ 0.

PROPOSITION 2.2. If A is a D-operator in X such that for each
xeD(A), there is a solution u(t; x) to the ACP formulated to A satis-
fying the condition that for any sequentially compact set KaD(A)
and τ > 0, {u(t; x); t e [0, τ], xeK} is bounded, then there is a semi-
group {T{ty, t^0} defined onD(A) and such that T(t)x = u(t; x), x e D(A)
and t e [0, τ]. Conversely, if X is reflexive and Ao is the infinitesimal
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generator of a semi- group {T(t); t ^ 0} satisfying the condition that
for every τ > 0 and bounded set B there is a constant ωB,τ ̂  0 such
that || T(t) || Lip (5) ̂  exp (coB,τt), t e [0, τ], tfAew Ao is α D-operator in
X and for each xeD(A0), T(t)x is a solution of the ACP formulated
to Ao.

Proof. Take xeD(A) and τ > 0, and put T(t)x = u(t; x),
te[0,τ]. Since u(t;x)eD(A) for almost all £e[0, r] and u(t; x) is
strongly continuous, w(i; a?) eD(A), i.e., Γ(ί)a? e J9(A) for all ίe[0, τ].

Hencβ) Γ(ί) maps D(A) into D(A). By Kato's lemma, for x, yeK,
a compact set, we have that

T(t)x - T(t)y \\2-\\x~y ||2 - 2 J Vβ ^( A

where ω^,r is a number associated with the bounded set

{T(t)x; te[0,τ],xeK}

and f(s)eF(T(s)x - T(s)y), and also, note that (d/ds)T(s)xe AT(s)x
and (d/ds)T(s)y e AT(s)y for almost all s. Therefore,

- T(t)y\\ ^exv(ωK9Vt)\\x-y\\, x , yeK, ί e [ 0 , τ ] •

Now, take zeD(A), then there exists a sequence {a;ft}cΰ(A) such
t h a t xn—>z, and so, || T(t)xn — T(t)xm\\ ^ exp (ωKtVt) \\xn — xm\\ where

K = {xn}. Hence, define T(t)z = lim^^ T(t)xn, thus T(t) maps
into itself. The semi-group property follows from the uniqueness of
the solution of the ACP. Conversely, take any bounded set B in
D(A0), then for x, y e B

re<hr\T{h)x-x) - h~\T(h)y-y), /> ̂  /^(exp (ωB,τh)-l)\\x-y |

where he[0, τ\ and f e F(x — y). Letting h—>+0, we have that

re(Aox - Aoy, /> ̂  ^ , r || a; - y ||2 ,

so Ao is a D-operator. Let x e D(A0), then

sup {h-1

and || T(t + fe)» - T(£)α || ^ Meίcp {ωBJ)h for ί e [0, r], he (0,1] and
J5 = {T(h)x; he(0, 1]}. Thus, T(t)x is strongly absolutely continuous
on every finite interval. Since x is reflexive, T(t)x is strongly dif-
ferentiable for almost all t e [0, τ] and (djdt)T(t) = A0T(t)x for almost
all £e[0, r]. Therefore, T(t)x is a solution of the ACP formulated
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to Ao.

Combining the properties mentioned above we have the following:

PROPOSITION 2.3. Let A be a D-operator in x. Then there is at
most one semi-group {T(t); t^O} on D{A) such that for each xeD(A),
T(t)x is a solution of the ACP formulated to A.

3* Construction of the semi-groups* In this section, we con-
struct the semigroup determined by a D-operator A which satisfies
conditions (I), (R) and (E).

Throughout, it is assumed that X has a uniformly convex dual.

LEMMA 3.1. Let A be a D-operator in X satisfying (I), (R) and
(E). If xe D(A) and τ > 0, then

(3.1) y(t; x) = lim (J - \A)~ίtlλ]x
λλ-++Q

exists uniformly for t e [0, τ].

Proof. Set Jλ = (I - λA)"1 and Aλ = X~ι(Jλ - I ) , λ e (0, λ0). Let
x e D(A) and τ > 0. Set

Bx>τ = {J^x; h e (0, λ0), mh e [0, τ]} u {x-hy; h e (0, λ0), y e Ax, \\ y \\

then BX>T is a bounded set by (E). Let coBχ>τ be a number associated
with this bounded set in the sense of Proposition 1.3. Then we have
that

|| AJΓιx II = h-11| JΓx - JΓιx II = h-1 \\JΓx - Jΐ(x - hy) \\

for ye Ax with \\y\\ <; ||| Ax\\\ + 1. Hence, a positive number CX,T

can be found such that

(3.2) || AhJΓιx II ^ (1 - hωBχχ™ \\\Ax\\\<, Cx,τ ,

for h sufficiently small and mhe[0, r] Now, assume that Xn ^ h
and hm ^ τ, where h e (0, λ0) and m, n are integers. And let k^m.
Since

J 'nkn, Tn(k—1)™ \ χ~»

we have
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(Jfx - JVk~ι)χ) - (J£χ - Jk~n%)

= λ Σ {Axjy
k~ι)+*x - AkJ£-ιx} + (»λ - h)AhJ£~'x .

Thus, we can write

fx - Jί(fe-Uίc) - (J£x - Jt'x), F{J?kx - JZx)>

Σ,ζ-1)+px - AhJ£~%
ί>=0

+ xΣtζAxJt^-v+'x - AhJt% F(J?kx - J£x)

- F(Jϊι*-1)+p+1x - J£x)>

+ (nX - h) <AhJt% F(J?kx - J£x)> = I, + It + I3 .

We now estimate each term. Since A is a Z>-operator and Bx,τ is a
bounded set, It ^ λ Σ?=J ωBχ,τ || J?t*-1)+J>+1» - Jf* IΓ Since

^ λ " Σ II AλJix || ^ λ ( l - λ ω - ) ~ n k + 1 n \\\Ax\\\
j = n(k-l)+l

^ CXtTn\ ^ CXtTh ,

we have

I, ^ ω5jPfΓfe || J Γ ^ - J ^ ||2 + const (x, τ)h ,

by using (3.2). Also, we have

I* ύ 2C,,rλ Σ II F(Jϊhx ~ Jtx) - F(Jrk~ι)+p+1x - Jh

kx) || .
0

Employing the uniform continuity of F on bounded sets, we can find
a function &(h) = ξ?(h; x, τ) such that i?(Λ)->0 as h->0+ and
such that

sup II F{Jfx - Jix)

Note that || Ji"
ι*-»+»+1αj - J?*»|| ^ C.,Λ Also,

7, ̂  Inλ - λ I || 4 t Ji"ic II II Jχ"x ~ Jix II

Consequently,
m

|l Γ w w ^ Γ m ^ | | 2 _ 'SΠ f|| Tnk^ Tkv\\2 II Tn{k~ι) V T^-l™ 1121

^ Σ 2reζ(J?"x - J£x) - {Jfik~l)x - J£~ιx), F{Jfx - J?ίc)>
Λ = l

^ 2ωSχ>τh Σ II J ? * « - Λ * s II2 + ̂ ( λ , A) ,
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where φ(\ h) ΞΞ const(x, r) (h + &(h) + m\Xn — h|) and note^that

2re<x - y, F(x)> ^ 2 || x ||2 - 2 || x || || y ||

= II * I ! 2 - l i a / I I 2 + ( I I x II - I I i / I I ) 2 ^ 1 1 * I I 2 - I I 2 / I I 2 -

Hence, for each ί e [0, τ], we can wri te

I J^x _ jγMx\\*d8 + φ(\, h) .

This is a Gronwall type inequality, and so, we have that

|| Jn\tihiχ _ Jltlhiχ ||2 <g ψ^ jψ e χ p (2θ)5a. j rί) .

Therefore, we have

(3.3) " ntm"~ Π ί M U "
- jrίtihlχ\\ + Vψ(\

First, take λ = eμ = 2"^, h = ev = 2~v, m = [ί/εj and ^ = 2^~v. In

this case ^(ε^, εv) = const (x, τ) (εv + ^(ε^)) —> 0 as v —• co, and

[ [ί/εj - 2μ~v [t/εu] [ ^ 2μ~\ So, we see that (by (3.2))

y Jε f1 x — Jε

 v v x — u ί ε v ) ,

and hence

; J μ, ev)

This means that {Jl^^x} is a Cauchy sequence. We then set

(3.4) y(t; x) = Km /ί^^a? , ί e [0, τ] ,

Finally, we show that the existence of the limit is independent of
the sequence chosen. Let 0 ^ t < τ, and 0 < λ <g A, < min {λ0, τ — ί}.
Taking, this time m = [t/h] + 1 and n = [[ί/λΊ/[ί/A] +1] we observe
that

/Q pjv ί mfe ^ ί + h, nX ^ fe, 11 — %λm | ^ 2λ + τλ/fe,

11 [t/X] — ^ m I X <; 3λ + τλ/fe, m\nX - h\ <,2h + 2X + τX/h .

Similarly, as above, tak ing X = εu, then let t ing v —> oo, W e see using

(3.4) and (3.5) t h a t

|| y(t; x) - Jψ"x || ^ const (a?, τ) i/3Λ + e(Λ) .

LEMMA 3.2. Let A be a D-operator in X satisfying (I), (R) and
(E).

(a) For every bounded set B in D(A) and τ > 0, there exists a
number ωBjT Ξ> 0 such that
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II y(t; x,) - y(t; xj\\^ exp(α>5,rί) || χλ - x21|

for t e [0, τ] and xu x2 e B.

(b) For every x e D(A) and τ 0 > 0, there exists a number cox>τ >̂ 0

such that

|| y(t; x) - y(t'; x)\\^\t-t'\ exp(ω x , r τ) | | | Ax \\\

for t, ί 'e[O,rJ.

Proof, (a) Let B be a bounded set in D{A) and r0 > 0. Take
x19x2e B, then by Proposition 1.3 we have that

for some ωBfT ^ 0 and h sufficiently small. Now letting h-++0, we
obtain (a).

(b) Let x e D(A), τ > 0 and set

BX,Γ = {J?x; h e (0, λ0), mh e [0, τ]}

U {x - h y ; h e ( 0 , λ 0 ) , y e Ax, \ \ y \ \ ^ \\\ A x | | | + 1} .

Then, BXfT is a bounded set by (E). Now, let ωXfT be a constant
associated with this bounded set in the sense of Proposition 1.3 and
let 0 £ V < t ^ τ. Then, by (3.2),

[ί/fc]-l
II 7"^+1τ — 7"^ II < /? VV

/
- [t'/h] I M l ~ to,)7)-[ίM] n i e l l i .

Letting h—> +0, we have (b).
Consequently, we have the following main theorem:

THEOREM 3.1 If A is a D-operator in X satisfying (/), (R) and

(E). Then there exists a semi-group {T(t)} on D(A) such that

(3.7) T{t)x = lim (/ - XA)~[tlλ]x for t^0 and x e D(A) ,

and the convergence is uniform with respect to t in every finite in-
terval.

Proof. In view of Lemma 3.1, set T(t)x = y(t; x) for t ^ 0 and

x e D(A). First, by using Lemma 3.2 (a), we can obtain a unique

extension of T(t) to D(A) by continuity, we denote this extension by

the same symbol T(t). Then each T(t) maps D(A) into itself, and

also for every bounded set B in D(A) and τ > 0 there exists a

number ωBτ Ξ> 0 such that
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(3.8) || Γ(ί) | |L l p ( B ) £ exp (ωBJ) , t e [0, τ] .

To establish the semi-group property, first take x e D(A) and t, s ^ 0
with t + s <̂  τ. Let i?β,r be the bounded set defined in the proof of
Lemma 3.1 and N(T{s)x) be a bounded neighborhood of T(s)x (small),
and then consider the bounded set Bx,τ U N(T(s)x). Now using
Proposition 1.3 and (3.8), it is seen that || T(t + s)x — T(t)T{s)x\\ can
be made arbitrarily small. (3.7) was established in Lemma 3.1.

REMARK 3.1. In Theorem 3.1, (3.7) holds for xeD(A), if either
of the following conditions is satisfied:

(3.9) R(I - XA) z> D(A) for λ e (0, λ0), or

(3.10) A is closed.

In fact, if (3.9) holds, then by Proposition 1.3 {J^1^} is equi-Lipschitz
continuous on bounded sets in D(A). Hence, Lemma 3.1 implies the
convergence (3.7) for all xeD(A). Next, assume that A is closed.
Let xeD(A), ίe[0, r], and then choose a sequence {xn}czD(A) with
xn —> x. Let B = {αjj, then by Proposition 1.2, we see that there is
a number λ̂  such that if λe(0, XB), then yn(X) = Jλxn—*vλeX.
Hence, Ayn(X) 9 λ-^^λ) — xn) —> λ""1^ — x). This means that

λ Γ 1 ^ — x)e Avλ, i.e., x e (I — XA)vλ c R(I — XA) .

Therefore, Proposition 1.3 implies that {J[tιn} is equi-Lipschitz con-
tinuous on B, and so, Lemma 3.1 implies the convergence (3.7) for
the x.

4* Differentiability of the Constructed Semi-Groups* The dif-
ferentiability of the semi-group obtained by Theorem 3.1 is investi-
gated in this section. The central part of the arguments is based
on the results of Kato [4] and [5]. Throughout this section X is
assumed to have a uniformly convex dual.

Let A be a Z)-operator in X satisfying (/), (R) and (E). Set
en = 2~n and Ir = [0, r] for r = 1, 2, 3, and define Jn = {I-εnA)-1

and An = ε"1 [Jn — I] for n with εn e (0, λ0).
In view of (3.2), we note that for each r,

xW <ί ( 1 - e%ωBmtr)-™^ \\\Ax\\\ ,

n sufficiently large and te[0, r], for the bounded set

Bx>r = {Jitlε^x; te[0,r],n s u f f i c i e n t l y l a r g e }

U {x - eny; n l a r g e , y e Ax, \\y\\^ \\\ Ax \\\ + 1} .
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Since

(1 - e - β O - 1 = 1 + ωβχtrεn(l - enωBβtr)~ι

^ exp(ωBa§ren(l - enωBχtr)-1)

for n sufficiently large and te[0, r]. Hence,

II AJl^x || ^ exv(ωBχJr + en)(l - ε%ωBmtΨ)-*) \\\ Ax \\\

for n sufficiently large and t e [0, r]. Therefore, if we set fn(t; x) =
^x for t ^ 0 and a e D(A), then /,(*; &) e Ajw^x, and

(4.1) for every r, ||/»(ί; α?)|| is uniformly bounded with respect to
sufficiently large and te[0, r].

Also, since

we have

(4.2) || [Jl'i^ - I]Jnx - \'fn(s; x)ds\\ = O(εn) .
JO

The main result of this section is the following:

THEOREM 4.1. Let A be a demi-closed D-operator satisfying (I),
(R) and (E), and {T(t)} be the semi-group on D(A) obtained by
Theorem 3.1. Then for x e D(A),

( i ) T(t)xeD(A) for t ^ 0,
(ii) there exists a function f(Λ',x) on [0, °o) such that

f(t;x)eAT{t)x

for almost all t^O, where Ax = {yecδAx; \\y\\ <̂  | | | Aa?|||}, and

(4.3) T(t)x - x = (' f(s; x)ds t ^ 0 .
Jo

Proof. Take x e D{A) and p with 1 < p < + oo. Set fn(t; x) =
^-^</ew:l^> then by (4.1) {/n( a?) | J r ; % sufficiently large} forms a
bounded set of Lp(Ir; X) for integer r. Thus by moving r and using
the diagonal process, we find a subsequence {q} c {n} and a function
/ ( x) on [0, oo) such that fq( ;x)\ Ir converges weakly to / ( ;x)\ Iτ

in Lp(Ir; X) for each integer r. Hence,

β* I fq{s\ x)ds >α?* 1 f(s;x)ds
Jo Jo

for all x* e X* and ί ^ 0. Thus (4.3) follows from (4.2). Write V(t)
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for the set of all weak cluster points of {fn(t; x); n} for t ^ 0, then
Lemma 3.1 and Proposition 1.7 (a) imply that T(t)xeD(A), V(f)Φβ),
and V(t) c AT(t)x for t ^ 0. Hence, by the same argument as in
Kato [5; Lemma 8.2] we see that f(t;x)ecδ AT(t)x for almost all
t ^ 0. And, in a similar way to Kato [5; Lemma 6.2], \\f(t; x)\\ ^
HI AT(t)x HI for almost all t ^ 0. Thus, it follows that f(t; x) e AT{t)x
for almost all t ^ 0.

REMARK 4.1. Let A be a demi-closed D-operator in X satisfying
(7), (R) and (E), and {T(t)} be the semi-group obtained by Theorem
3.1, then {T(t)\DU); t ^ 0} forms a semi-group on D(A) by the above
theorem. By (4.3), we see that the infinitesimal generator Ao of
{T(t)\DU)} is densely defined in D(A).

In view of these results and Proposition 1.6, we have the fol-
lowing.

THEOREM 4.2. Let A be a maximal (D, {α)J)-operator on D{A)
satisfying (/), (R) and (E). Then there is a uniquely determined
semi-group {T(t)} on D(A) such that for each xeD(A),

(d/dt)T(t)x e A°T(t)x for almost all t^0 .

THEOREM 4.3. If A is a single-valued, demi-closed D-operator in
X satisfying (I), (R) and (E). Then there is a uniquely determined
semi-group {T(t)} on D(A) such that

(a) for xeD(A), AT(t)x is. weakly continuous in t Ξ> 0 and

(4.4) T(t)x - x = [ AT(s)x ds fort^O,
Jo

(b) A is the weak infinitesimal generator and the infinitesimal
generator Ao is densely defined in D(A).

Proof. Using the notation in the proof of Theorem 4.1, we have
that V(t) is a singleton, since A is single-valued. And thus, by
Proposition 1.7, w-\im fn(t; x) = AT(t)x for t i> 0. The strong con-
tinuity of T(t)x and the boundedness of AT(t)x give that AT(t)x
is weakly continuous in t ^ 0. Finally (4.4) follows directly from
(4.2).

COROLLARY 4.1. If A is a demi-closed D-operator in X satisfying
(I), (R) and (E), and A0 is single-valued, then there exists a unique
semi-group {T(t)} on D(A) such that for xzD{A), (d/dt)T(t)x = A°T(t)x
for almost all t ^ 0.
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Proof. In this case, note that we have that A = A0, where A is
defined in Theorem 4.1 by Ax = {yecdAx; \\y\\ == |||Aα?|||}.

COROLLARY 4.2. If A is a demi-closed D-operator in X satisfy-

ing (I) and (R) and \\ Jλx|| ^ (1 + MX)\\x\\ + NX for Xe (0, λ0), xe Rλ,

where M and N are nonnegative, then there is a semi-group {T(t)}

on D(A) such that (d/dt)T(t)xecδAT(t)x for almost all t^O and

II T(t)x | | ^ eMt(\\ x II + Nt) for t ^ 0.

Proof. By Proposition 1.4, A satisfies condition (E) and also we
have that || J? / ; π£| | ^ (1 + ikfλ)[ί/; ](|| x 11 + Nt), hence using Theorem
4.1 we have the assertion.

COROLLARY 4.3. If A is a single-valued, demi-closed D-operator
in X satisfying (I) and (R) and sup || Ax || = N < + ©o, then A is the
weak infinitesimal generator of a semi-group {T(t)} on D{A) such
that || T(t)x || ^ || a; || + Nt for t^O and x e D(A) and

sup {|| AT(t)x \\;t^0,xe D(A)} ^ N.

Proof. Employ Proposition 1.4.
In the remainder of this section, we consider the case in which

X is uniformly convex.

LEMMA 4.1. Let A be a demi-closed D-operator in X satisfying
(I), (R) and (E) such that A0 is a single-valued operator with
D(A°) = D(A). Then if {T(t)} is the semi-group on D(A) obtained by
Theorem 4.1, we have for xeD(A),

(a) HI AT(t)x HI is of bounded variation on every finite interval
and has no positive jumps,

(b) the right derivative D+T(t)x exists and is strongly right-
continuous in t, and D+T(t)x = A°T(t)x for t ^ 0,

(c) A°T(t)x is strongly continuous except possibly at a c count-
able number of points t.

Proof, (a) Take xeD(A). Then by the same argument as in
Kato [5; Lemma 6.6] we obtain that

e-ωB,S HI AT(t)x HI ^ e-** fr* ||| AT(r)x \\\

for all r and t with 0 ^ r ^ t ^ r. Thus, ||| AT(t)x ||| is of bounded
variation.

(b) Take x e D(A) and t ^ 0. Choose a sequence tk { t. Then by
the proof of Kato [5; Theorem 7.5] we see that {A°T(tk)x} contains a sub-
sequence which converges strongly to A°T(t)x. So, A°T(t)x is strongly
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right-continuous in t. But, since T(t)x — x = 1 A°T(s)xds by
Theorem 4.1, it follows that D+T(t)x = A°T(t)x for each t.

(c) By (a) \\A°T(t)x\\ = \\\AT(t)x\\\ is continuous except for a
countable number of points t. In order to show that A°T(t)x is con-
tinuous except for those points, it suffices to repeat the same argu-
ment as in (b) with tk \ t. But the continuity at t of || A°T(t)x\\ as-
sures that limfc || A°T(tk)x || = || A°T(t)x \\. Thus the uniform convexity
implies that A°T(t)x is strongly continuous at the t.

Consequently, we have the following:

THEOREM 4.4. Let X be uniformly convex. If A is a demi-
closed D-operator in X satisfying (/), (R) and (E) such that A0 is a
single-valued operator with D(A°) = D(A), then A0 is the infinitesimal
generator of a unigue semi-group {T(t)} on D{A) such that for
xeD(A), D+T(t)x = A°T(t)x for t ^ 0, and D+T(t) is strongly right-
continuous in t ^ 0.

The following results are the direct consequences of the above
theorem.

COROLLARY 4.4. Let X be uniformly convex. If A satisfies the
assumptions of Theorem 4.2, then A0 is the infinitesimal generator
of a unique semi-group {T(t)} on D{A) such that for xe D(A), T(t)x is
strongly right-continuously differentiable in t and D+T(t)x — A°T(t)x
for t ^ 0.

COROLLARY 4.5. Let X be uniformly convex. If A is a single-
valued, demi-closed D-operator in X satisfying (I), (R) and (E), then
A is the infinitesimal generator of a unique semi-group {T(t)} on
D(A) such that for xeD(A), T(t)x is strongly right-differentiable
in t and D+T(t)x = AT(t)x for each t :> 0.

REMARK 4.2. Let X be uniformly convex. If A is a closed dis-
sipative operator in X satisfying (R), then A0 is the infinitesimal
generator of a unique semi-group {T(t)} of contractions on D{A) such
that for xeD(A), T(t)x is strongly right-continuously differentiable
in t and D+T(t)x = A°T(t)x for t ^ 0. For details, see [10].

APPENDIX

A.I. After this paper was submitted for publication, Crandall
and Liggett gave (in " Generation of semigroups of nonlinear trans-
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formations on general Banach spaces ", to appear) a new method for
constructing a semigroup of nonlinear contractions in a general
Banach space. The main results in their paper can be extended
straightforwardly to our case. As was stated in § 1, Propositions 1.2
and 1.3 are valid for general Banach spaces. Using these propositions
in a similar way to their proof, we can obtain the assertion of
Theorem 3.1, without assuming that X* is uniformly convex. Also,
we can obtain a similar result to theirs on the differentiability of
semigroups of nonlinear contractions. For details, we shall publish
elsewhere.

A.2. We did not give in the body of this paper any examples
of D-operator satisfying conditions (/), (R) and (E). We state here
a simple example of a .D-operator which is not necessarily a dis-
sipative operator.

Let Ω be a bounded domain with smooth boundary in RN and let
us consider the Cauchy problem

%γ — ΔUi + Φu2 ,

(A.I)
(d/dt)u2 = Au2

with the initial condition

u /Q g\ _ u ίg\

u2(0, s) = u2(s) ,

over the Hubert space H = L2(Ω) x L2(Ω) with the inner product

\uj' \v2i

It is well-known that the operator A with domain H2(Ω) f] Hi(Ω) is m-
dissipative. We then assume that the operator Φ is locally bounded
on X and Lipschitz continuous on bounded sets.

Now, let us define an operator A in H by the relation

I An, + Φuλ ( luλ )
An = I for ueD(A) = \u = Ί; uu u2eH\Ω) n fl?(fl) .

Then the problem (A.I) is understood as the ACP for A in the space
H.

In the following, we demonstrate that A so defined is a demi-
closed D-operator satisfying conditions (I), (R) and (2£).

(a) Let B be any bounded set in H and w, v e ΰ n D{A). Then
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(An — Av, u — vy

- v2), u2 - v2y

v J l ϊ - | | ^ 2 - v 2 | | ί + \ \ Φ u 2 - Φ v « | | l l ^ i - v J I

v2 II II uγ - v1 II ^ ΊBj2 (II u, - v, ||2 + || u2 - v2

where ΎB is the smallest Lipschitz constant of Φ on the bounded set
B. Hence, A is a D-operator.

(b) Let ve X, λ > 0 and let us consider the equation

(A.2) u — XAu = v ,

or equivalently,

((I -

1
Since z/ is m-dissipative, we obtain a unique solution

(A.4)

of the second equation of (A.3). Substituting this into the first equa-
tion and using the m-dissipativity of A, we get

(A.5) uλ = (I- λz/)-1 [vx + XΦ(I -

Therefore, u = (Ul) is the unique solution of (A.2) and since λ > 0

and v e X were arbitrary, we see that I — λA is injective and
R(I - XA) = H for all λ > 0. Hence, A satisfies (J) and (R).

(c) From (A.4) and (A.5) it follows that

" I I 2 = 1 1 ^ 1 I I 2 + 11 u2 I I 2

v, ||2 + 2λ || Vι || II Φ(I - \Δ)~'v2 \\ + λ2

v II2 + 2λ || v || || Φ(I - \A)"v2 \\ + λ2

or
\\J\\^ \\v\

where u = Jλv, λ > 0 and v e X. Now, let v e H, τ > 0, λ > 0, and
let nXe [0, τ], then

^ \\JΓ2V ιι + λ {iι Φ(J - λj)-1 μ r 2 ^ ] 2 II + II Φ(I - ^rvriv\* in

and inductively,
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where [J!v]2 means the second component of J\v. But, since [Jχv]2 =
(I-λj)-^2,

i — 1

^ || v || + τ sup || Φ(I - \Δ)~% || .

Let B be any bounded set in H. Since (/ — λj)" 1 is a contraction on
H, the set {(/ — λj)~%2; veB, 0 ^ iλ <̂  τ} is bounded in L2(J2). On
the other hand, Φ maps bounded sets into bounded sets by assump-
tion, and hence

sup {|| Φ((I - \j)~% W veB, 0 ^ iλ ^ τ) = MB,τ < +

Consequently,

\\Jiv\\ ^ sup {|| v ||; v e ΰ }

for v e 5 , λ > 0 and riλ,e[0,τ], which means that A satisfies condi-
tion (E).

(d) Finally, we show that A is demi-closed. Assume that
u{n) G D(A), uin) -> u and that Au{n) -^ v in H. Then, n\%) ->ui9 i = 1,
2, Φu{

2

n) —>Φu2, and z/^w) —̂  v2 in L2(Ω). Since the closed linear operator
4 is demi-closed, we have that v2 = ju 2 . Also, j ^ w ) —̂  vx — Φ^2;
hence, ^ — Φu2 = z/^. Consequently, v = A^. This means that A is
demi-closed.

From the above, it can be seen that other D-operators can be
exhibited by replacing the operator A by any m-dissipative operator
satisfying the assumption of Proposition 1.4 (a). Also, we can con-
sider unbounded operators Φ by restricting the Hubert space
H = ίZi x H2 so that Φ is a locally bounded, locally Lipschitz con-
tinuous operator on a Hubert space Hx into another Hubert space H2.
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FINITE DIMENSIONAL TORSION FREE RINGS

THOMAS J. CHEATHAM

In the class of rings with zero singular left ideal, several
characterizations of rings with finite left Goldie dimension
are given. They include: the direct limit of torsion free
modules is torsion free; the direct limit of torsion free injec-
tive modules is injective; each absolutely pure torsion free
module is injective; each module has a unique (up to isomor-
phism) torsion free covering module. The latter result gives
a converse, in a special case, to a theorem of Mark Teply.

Throughout, R will denote an associative ring with identity and
module, without further qualification, will mean unitary left R-
module. For a module E, we use S^'E to denote that S is a
large submodule of E[4, p. 60]; Z{E) will denote the singular sub-
module of E, which consists of those elements in E whose annihilators
are large left ideals in R.

DEFINITION 1. A module E is torsion free if Z(E) = (0) and if
Z(R) — (0) we say R is a torsion free ring.

A submodule S of a module E is closed in E if S C T S E
implies T = S. The following facts are easily verified.

LEMMA 1. Let S be a submodule of a module E.
(a) / / Z(E/S) = (0), S is closed in E.
(b) / / Z(E) = (0), S is closed in E if and only if Z(E/S) = (0).

Proof. See Lemma 2.3 in [8].

DEFINITION 2. A module E has finite (Goldie) dimension if it
contains no infinite direct sum of nonzero submodules. If the module
R has finite dimension we call R a finite dimensional ring and write
dim R is finite.

1* Torsion Free Rings* Over an integral domain the direct
limit of torsion free modules is torsion free. In this section we show
that, in the class of torsion free rings, this property characterizes
the finite dimensional rings. We also give two noetherian-like charac-
terizations of such rings.

We record a theorem of F. Sandomierski [7] for easy reference.

THEOREM S. Let Z(R) = (0), and Q the maximal left quotient

113
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ring of R[4, p. 106], then the following are equivalent.
(a) QI=Q for every I <^' R.
(b) For I£' R there are au α2, an e I such that Σ R<L% § ' R
(c) For IQ R there are au α2, ane I such that Σ Ra{ £ ' I.
(d) dim R is finite.
(e) Q is a semisimple (artinian) ring.
(f) Ker (R ® Λ E-+Q (g)RE) = Z{E) for every module E.

Sandomierski [7, Th. 2.5, p. 118] noted that if R has finite dimen-
sion the direct sum of torsion free injective modules is injective. If
Z(R) = (0) the converse is also known. In fact, under this assump-
tion, it follows from Teply [10, Th. 2.1, p. 451] that dim R is finite
if and only if any countable direct sum of torsion free injective
modules is injective.

A set S? of submodules of a module is directed if given X, Ye
£f there i s a ^ e y such that X{J Y£ Z. Clearly the union of a
directed set of submodules is a submodule.

We will make use of the following lemma which is an unpublished
remark of M. Teply.

LEMMA 2. Let Z(R) — (0). The union of a directed set of closed
submodules of a torsion free module is a closed submodule if and
only if dim R is finite.

Proof. Assume that dim R is finite then, to show that the con-
dition is necessary, we proceed as in [9, Prop. 2.1 (3)] using Theorem
S(b).

Conversely, let Eu E2, be a countable family of torsion free
injective modules. Then E = 0~= 1 En is a torsion free module so has
a torsion free injective hull I{E). But E can be written as the union
of the chain S1 £ S2 £ of injective (hence closed) submodules of
I(E), where Sn = φ? = 1 E,. Hence E is closed in I{E). But E £ ' I(E)
so E = I(E), i.e., E is injective. By a remark above dim R is finite.

The following useful result is well-known and trivial to prove.

LEMMA 3. Let fge HomR{E, F) where Z{F) = (0).
(1) If f and g agree on a large submodule of E then f = g.
(2) If E is injective, f(E) is a direct summand of F.

THEOREM 1. Let Z(R) = (0). Then the following statements are
equivalent.

(1) dim R is finite.
(2) The direct limit of torsion free modules is torsion free.
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(3) The direct limit of torsion free injective modules is injective.

Proof. (1) implies (2). Let {E,fa} be the direct limit of the
directed system of torsion free modules {Ea;f*, A}. Then E = \JaeA Im
fay so to show E is torsion free it suffices to show Im/α is torsion
free for each aeA. But Im/α = EJKerfa, and Ker fa = \Jb^a Ker
fb

a. Furthermore, for each aeA, {Ker f\ \ b ̂  α, b e A} is a directed
set of submodules of the torsion free module Ea and since Im/* £
£75, Ker/* is closed in £7α. By Lemma 2 Ker/α is closed in Ea and
hence by Lemma l(b) Im/α is torsion free. Hence (1) implies (2).

(2) implies (1). Let {Ca: aeA} be a directed set of closed sub-
modules of a torsion free module E. For α, b e A such that Ca £ C&
define a function fa: E/Ca-+ E/Cb by fa(x + Ca) = x + Cb. Clearly
fb

aeΉ.omR(E/Ca, E/Cb) and one easily checks that {S/Cα; /ί, A} is a
directed system of torsion free modules with direct limit E/\JaeACa.
So from (2) E\ U Cα is torsion free and hence (Lemma l(a)) \}a&ACa

is closed in E. So (1) follows from Lemma 2.
(1) implies (3). Let {E, fa} be the direct limit of a directed

system of torsion free injective modules {Ea; f
b

a, A}. Let / be any
left ideal of R and he HomΛ(I, E). By Theorem S(c) there is a
finitely generated left ideal J of R such that J g ' 7 . From condition
(2) we know that E is torsion free so by Lemma 3(1) we see that an
extension of / ' = f\y. J —> E to all of iϋ will give the desired exten-
sion of /. To see that / ' can be extended to R we proceed as
follows.

Let p : F —> J be an i?-homomorphism of a finitely generated free
module F onto J and identify J with F/Ker p. It follows easily
from Theorem S that F has finite dimension and that any submodule
of F has a finitely generated large submodule. Thus let K be a
finitely generated large submodule of Ker p.

Now fΌp(F) is a finitely generated submodule of E — \JaeA Im
/α so there's an aeA such that f'°p{F) £ Im/ t t. Hence, by the
projectivity of .F, there's an Λ, e ΉomB(F, Ea) such that fa°h = fop.
Then Ẑ (Ker /Όp) £ Ker fa = \Jb^a Ker f\ and since if is finitely
generated h{K) £ Ker /£ for some δ ̂  α, i.e., fb

aoh(K) = (0). There-
fore /α°& induces an i2-homomorphism g from F/Ker p — J into 2£6.
But J&J is injective so g can be extended to g* eΉ.omB(R, Eb). Define
/* from R to £7 by /* = /6°#*. Then /* is an extension of / ' so
the desired extension of / .

(3) implies (1). Clearly (3) implies that any direct sum of torsion
free injective modules is injective. So (1) follows by a previous
remark. This completes the proof.
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As a corollary we give an easy proof of (d) implies (e) in
Theorem S.

COROLLARY. A finite dimensional torsion free ring R has a
semisimple (artinian) maximal left quotient ring Q.

Proof. It suffices to show that every left ideal of Q is a direct
summand of Q (as a Q-module). Since Q is von Neumann regular
any finitely generated left ideal of Q is a direct summand. Hence
any such ideal is left iϋ-injective as Q is. But Z(BQ) = (0) and it
follows, via a direct limit argument and Theorem 1(3), that any
left ideal of Q is i?-injective, hence Q-injective. Thus any left ideal
of Q is a direct summand.

B. Maddox [5] calls a module M absolutely pure if for every
module E containing M as a submodule the sequence 0—>G®M—»
G (x) E is exact for every right iϋ-module G. He showed that any
direct sum of absolutely pure modules is absolutely pure. C. Megibben
[6, Th. 3, p, 564] characterized left noetherian rings by the property
"each absolutely pure module is injective." This result was also
obtained indepently by Edgar Enochs.

We have a corresponding characterization of finite dimensionality
in the class of torsion free rings.

THEOREM 2. Let Z(R) = (0). Then dim R is finite if and only
if each absolutely pure torsion free module is injective.

Proof. Assume that dim R is finite, and let E be an absolutely
pure torsion free module and / an i?-homomorphism of a left ideal
/ of R into E. Let J be a finitely generated left ideal of R such
that J <ΞΞ' I. As remarked above it suffices to extend /', the restric-
tion of / to J, to all of R. But this can be done by [6, Cor. 2,
p. 562].

Conversely, it suffices to show that the direct sum of torsion free
injective modules is injective. But any such sum is torsion free and
absolutely pure, hence injective.

2* Torsion free covers. The main result of this section (Theorem 3)
gives a converse to [9, Th. 2.4, p. 459], in a special case. We begin
with a definition.

DEFINITION 3. A torsion free cover of a module E is a homo-
morphism g from a torsion free module T(E) onto E such that:

(1) Ker g contains no nonzero closed submodule of T(E),
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(2) given feΉ.omR(F,E) where F is torsion free there is an
heRomR(E, T{E)) such that goh = f.

This definition was given initially for modules over an integral
domain by E. Enochs [3] who proved that, in this case, every module
has a unique (up to isomorphism) torsion free covering module. B.
Banaschewski [1, p. 59] gave the following construction for the cover
of a module E over an integral domain R with quotient field K:
T(E) = {/ e BomB(K, I(E)) |/(I) e E}; g{f) = /(I).

M. Teply [8, p. 449] generalized the notion of a torsion free
cover to a hereditary torsion theory (^\ &~) [2] of 22-modules. He
proved that each module has a ^torsion free cover if R e J^ and
the direct sum of ^torsion free injective modules is injective.

The Goldie torsion theory (2^, J^~) is the torsion theory whose
torsion class 3^ is generated by all factor modules B/A where A is
a large submodule of B. The Goldie torsion free class ^ is precisely
the class of torsion free modules given by Definition 1. Teply's
result shows that Sf-torsion free covers exist if Z(R) — (0) and dim
R is finite. We prove the converse and show that Banaschewski's
construction has an obvious analogy in this case.

THEOREM 3. Let R be a ring with identity and maximal left
quotient ring Q. If every left R-module has a torsion free cover
then Z{R) = (0) and dim R is finite. Moreover , the evaluation map
from T(E) = ifeΈLomB(Q,I(E))\f(l)eE} onto E is a torsion free
cover of E.

Proof. Let (0) -> Ker g -* T{R) —̂ -> R -* (0) be a torsion free
cover of the module R. Since R is protective this sequence splits
and hence Ker g is closed in T{R). Then Ker# = (0) as g is a cover
of R so R = T{R) e J^, i.e., Z{R) = (0).

To show that dim R is finite it suffices, by Theorem S, to show
that Q is a semisimple ring. But, since Z{R) — (0), Q is von Neu-
mann regular so it suffices to show that Q is a finite dimensional
ring. If not, there is an infinite set of nonzero elements {»<: iel}
of Q such that the sum B = X Qx{ is direct and a proper large left
ideal of Q. Then Q/B Φ (0) has a torsion free cover (as an iϋ-module),
say g:F->Q/B.

Since Z(RQ) = (0) the natural jR-homomorphism p : Q —•> Q/B fac-
tors thru g, i.e., there exist heHomB(Q, F) such that goh = p. Then
h(B) s Ker g and p Φ 0 implies h Φ 0 so by Lemma 3(1) h(B) Φ (0) -
we must note that B is a large i?-submodule of Q. Then h{Qxά) Φ
(0) for some index j e I. By Lemma 3(2) h(Qx5) is a direct summand
of F. Thus we have a nonzero closed submodule of F contained in
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Kerg. This gives a contradiction so Q is a finite dimensional ring,
hence semisimple.

Since Q is a semisimple ring it follows that any Q-module is tor-
sion free when considered as an ϋJ-module. Hence any JS-submodule
of such a module is a torsion free jβ-module. Conversely, it follows
from Theorem S(f) that any torsion free iϋ-module is an J?-submodule
of a Q-module (i.e., is Q-extendible in Banaschewski's terminology).
Banaschewski [1, p. 63] established the existence of Q-extendible co-
verings.

Note that if qί9 q2, ., qn e Q, and / l f /2, , Λ e T(E) = {f e KomR(Q,
I(E))\f(l)eE} are such that Σ ?*/< = 0 e HomΛ(Q, !(#)) then the
large left ideal I = {r e R \ r q{ e R for all i) annihilates Σ Q% Θ ft i n

Q <g)Λ T(E). Thus Σ ( ? ί ® fiSZ(Q®BT(E)) = (0). This shows that
the .β-homomorphism Q (g)Λ T(E) -> Ή.omR(Q, I{E)) given by the Q-
module structure of Homi2(Q, /(J?)) is one-to-one. Therefore by [1,
Prop. 3, p. 64] the evaluation map from T(E) onto E is a torsion free
cover of E. This completes the proof.

REMARK. This theorem shows that "torsion free" covers do not
exist for the ring mentioned by Banaschewski [1, p. 66], that is, the
ring of all functions on a set X with values in a field which are
constant except on some finite set. Since Z(R) = (0) the "torsion
free" he is using agrees with our torsion free and covers do not
exist.

This paper constitutes a portion of the author's doctoral disserta-
tion at the University of Kentucky. The author is deeply indebted
to Professor Edgar Enochs, his advisor, for his generous advice and
encouragement.
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A DUALITY BETWEEN TRANSPOTENCE ELEMENTS
AND MASSEY PRODUCTS

BYRON DRACHMAN AND DAVID KRAINES

The purpose of this note is to show that if v is an
element whose suspension is nonzero, and if u is dual to v,
then the transpotence φk(v) is defined and nonzero if and only
if the ZoMassey product (u)k is defined and nonzero.

We wish to thank Dr. Samuel Gitler for a helpful conversation
on this material.

1* Preliminaries*
1.1. The Cobar Construction: (Adams [1]). Let C be a simply

connected DGA coalgebra over K with co-associative diagonal map
where K is a commutative ring with unit. The Cobar Construction
F(C) is the direct sum of the w-fold tensor products of the desuspen-
sion of C = Ker (ε) where ε: C—>K is the augmentation. Suppose C
has a differential {dn: Cn —> C^-J. A typical element is a linear com-
bination of elements of the form

x = s-'ic,) (g) (g) s^(cn) = [c, I I cn]

where x has bidegree (—n, m) and m = Σ?=i degree (c*). The differ-
ential in F(C) is defined on elements of bidegree ( — 1, *) by

d[c] - [-de] + Σ (-l) d e g "'I*
i

where

Δ(e) =c(g) l + l<g)c + Σ e /
i

A: C-^C®C being the diagonal mapping of C. The differential is
extended to all of F(C) by the requirement that F(C) be a DGA-
algebra.

If C has a differential of degree +1 instead of —1, we no longer
ask that C be a simply connected but only connected, and the element
to I I CΛ is assigned bidegree {n,m).

1.2. The Bar Construction. Let A be a connected associative
DGA algebra over K. Let ε: A—>K be the augmentation. Let
A = ker ε. Then the Bar Construction B(A) is the direct sum of
the w-fold tensor products of the suspension of A. Let

{dn: Λ-+A>-i}

119
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be the differential in A. B(A) is bigraded by assigning the element
[αx I ••• I an ] degree (n, m) where m = Σ?=i deg α< B(A) has a dif-
ferential d = dE + dΣ where

n—ί

dis([<t>ι I I α n ]) = Σ ( — l ) u ( t ) [ α i I I «»«*+! I I α J
i=ι

n

where

deg αfc .Σ
k-i

We also mention that [a | (k) | a] is Ύjα], the fcth divided
power of [α]

If instead of the above the differential of A has degree + 1 , we
put the bidegree of [aγ \ | an] to be ( — n,m). In this case we will
always assume A is simply connected.

1.3. The Suspension Map. In the case of the Bar Construction
the suspension map σ: H*(A) —>H*(B(A)) is represented by a—* [a].
In the case of the Cobar Construction, σ: H*(PA) —> H*{F{A)) is
represented by a —> [α] where PA is the subcomplex of primitive
chains.

DEFINITION 1. The Massey Product ζu}k. (Kraines [6]).
Let A be a DGA algebra over K. Suppose au «, ak^ are given

in A such that α2 is a cycle (or cocycle) and that

5an = Σ ( - l ) d e g α r α rα n- r for π = 2, , k - 1 .
r = i

Suppose u is represented by α :. Then the Massey Product <(uyk is
represented by the cycle

Σ d

THEOREM 1. (Kraines, [6]). The operation <(u)k depends only on
the class {a^

DEFINITION 2. (Gitler, [5]). Suppose that A is an associative
DGA algebra. Suppose x e H(A) is such that vk = 0. The transpotence
φk(v) e H(B(A))/Imσ is defined as follows: If be A represents v then
there exists Me A such that dM — —bk. φk(v) is represented by

-11 b] + [M] where w = (l) d e g bk~1 + 1 .
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2* M a i n T h e o r e m *

THEOREM 2. Let C be a co-associative DGA coalgebra over K and
let A be the dual associative DGA algebra over K. Suppose H(A; K)
and H(B(A); K) are free and of finite type over K. Let v in H(A)
and v in H(F(C); K) be such that the Kronecker index ζσ(v), u) is 1.
Then φk{v) is defined and is not zero in H(B(A); K) if and only if
ζu)k is defined and not zero in H(F(C)) K). In this case

In order to prove this theorem we shall consider the Eilenberg-
Moore Spectral Sequences with

E2 = Cotor^I(_j);jr) (K,K)
Er => E° H(F(B(A)); K) M H(A; K) as algebras, and dually,
(E'Y = Toτ*&w *>(K, K)
(E'Y => E°H(B{F(C); K) ** H(C; K) as coalgebras.
We also note that the Kronecker Index <( , >: C ® A —»K induces

a pairing

< , >: F{C) (g) B{A) - K

LEMMA 1. Let be A represent veH(A). Suppose vk = 0. Then

dk[φk(v)] = [σbf in Ek .

Proof. Let

V = Σ-P(*) IW I W ([[bW^1 where P(i) = (- l) d e g *ί+1

and the outside bars refer to the Cobar Construction and the inside
bars refer to the Bar Construction.

Taking dV gives a telescoping series and so

dV = [σb]k + (-l)w[σ(bk)]. Here (- l ) w = P(k - 1) .

In E\ V represents the class {-l)w[[bk~ι \ b\\ + [[M]] = [φk(v)].
The Lemma follows from the definition of a spectral sequence of

a bi complex.

LEMMA 2. Let a e F(C) represent u. Then, by definition,

7k[a] = [a I (k) I α] e B(F(C)) .

If 7jα] lives to Ek~ι then ζu}k is defined and

dk{Ίk[a\) = <uy in {E')k .
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Proof. We first make an observation: Suppose <X>* is defined.
Let (a<) be a defining system for <V>*. Let

W = ± Σ K | . . |α,r]e5(F(C)).
r=2 iiH \-ir=t

Then

= 1

Now to prove Lemma 2, we use induction on k. Suppose the
lemma is true for k — 1. Suppose 7fc[α] lives to Έk^γ. Since i? is a
spectral sequence of DGA coalgebras, and d^y^a]) = 0, we have

k

Δ <4-i7fc[α] = df^ Δ yk[a] = df^ Σ 7;[α] <g) 7*-i[αJ = 0

where d® is the differential in E' (g) £" . That is, in particular when
i = k — 1 in the above, we see

djfc_i7jfe_i[α] ® [α] = 0 so dΛ_1 7^-iIα] = 0 .

Now by inductive hypothesis, <(̂ )>fe~1 is defined so there is a defining
system (aί9 •• ,αA_1) for ^u}^1 and a cochain αfc such that

fc-2

i=2

since (u}k~ι = d&_1 7*-i[α] = 0.
The observation at the beginning of this lemma shows that

dkΊk[a] = <» f e .

We now give the proof of Theorem 2:
Assume φk(v) is defined and nonzero. We are assuming = 1 = (σv, u}.

Hence

1 = ζσv, u} = <σb, α> = ζ[σb]k, 7*[α]> = ζdkφk(v), 7Λ[α]>

by the duality of the two spectral sequences and Lemma 2.
It remains to be shown that if <X>fe is defined and nonzero, then

so is φk(v). Consider the map
A->F(B(A)) defined by

This map is homotopy multiplicative (in fact is a SHM map) and is
an equivalence. Hence [[bk]] differs from [σb]k by a boundary. But
[σb]k = [σb \ . (k) | σb] is dual to yk[a] = [a \ (k) | a] in BF(C),
and so dkyk[a] = ζu}k is not zero in Ek (Lemma 2) and so does not
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survive to E™, i.e., represents 0 in E~. The dual element [σb]k

represents 0 in E°°, i.e., [[bk]] ~ [σb]k ~ 0. Therefore bh ~ 0 and so
φk{v) is defined.

We wish to mention two applications:
Al: Let K = Zv and let X be a K(π, n) space (p an odd prime).

Let C = C*(X; ίJp) and A = C*(X; Zp) be cochain and chain complexes
for Xof finite type. In the notation of Cartain, A = A*(π, n; Zp) ([2]).

Cartan proved that ζφp(v), βPm(u)y = ζσv, uy. Now by Theorem 2, if

(σv, v,y — 1

then ζφp(v), <^>p> = 1. Hence ζφp(v), βPmu + <^>p> = 0. By Lemma
18 ([5]), <V>P = cβPmu. This gives an easy proof of the fact that
c = — 1. (Compare Theorem 19 [5]).

A2: Now let x = CP*-1. Then in H^CP"-1; Z) - P(v)/(1>*, we
have vk = 0. Then φk{v) is defined in H*(Ω CPk~ι; Z) and by the
Theorem 2, so is <u}k in J3iA_2(fl CPk-u, Z) where ue H2(Ω CPk-\ Z)
and <9>(v), <%>*> = 1. This gives another proof of the results of
Stasheff ([7]).
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INTEGRAL REPRESENTATION OF EXCESSIVE

FUNCTIONS OF A MARKOV PROCESS

RICHARD DUNCAN

Let Xt be a standard Markov process on a locally compact
separable metric space E having a Radon reference measure.
Let £f denote the set of locally integrable excessive functions
of Xt and exS^ the set of elements lying on the extremal rays
of £f Then if u e exS^ is not harmonic, it is shown that there
is an x e E such that Pvu = u for all neighborhoods Voίx where
Pv is the hitting operator of V. A regularity condition is
introduced which guarantees that two functions in S^ having
the above property at x are proportional. A subset E c E
and a metric topology on E are defined which allows one to re-
present each potential peS^ in the form p(x) = \u(x,y)v(dy)

for some finite Borel measure v Ξ> 0 on E. Here the function
u: E X E-+ [0, oo] is measurable with respect to the product
Borel field and has the property that for each y e E the function
x —» u(x, y) is an extremal excessive function. In the course
of this study a dual potential operator is introduced and some
of its properties are investigated.

In § 2 we introduce the notation and assumptions which will be
assumed to hold throughout the paper. Section 3 begins our study of
exS^ and using a result of Meyer [7] we show that to each function
u e exS^7 which is not harmonic we can associate a point x e E such
that Pvu = u for all open neighborhoods V of x. Here Pv is the hitting
operator associated with V. We then say that u has support at x in
analogy to the property introduced in axiomatic potential theory by
Herve [4]. We then discuss the axiom of proportionality, i.e., when
is it true that if uu u2 e exS^ have support at x, it follows that uγ —
au2 for some a ^ 0. Some conditions are given which guarantee this
property.

In § 4 we begin the discussion of representation of elements of £f.
A uniform integrability condition on S^ is imposed and we define a
suitable compact, convex set J2Γ in 6^. Using the Choquet theorem
and the characterization of ex6f established in § 3, we define a subset
EdE and a metric topology on E which allows us to represent each

potential p e J Γ in the form p(x) = \u(x, y)v{dy) for some Borel meas-
ure v ^ O on E. Here u: E x E—>[ϋ, oo] is a function measurable
with respect to the product Borel field on E x E and having the
property that the function x -+ u(x, y) is an extremal excessive func-
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tion for each yeE.

In § 5 the dual operator U is introduced, defined for a continious

function on E with compact support by Uf(y) — \f(x)u(x, y)dx. Some
properties of U are investigated, and the integral representation is
then extended to all potentials p e S^.

2. Preliminaries and notation* The primary reference for the
material in this paper will be Blumenthal and Getoor [2], and most
of the notation will be taken from that book. Let therefore E be a
locally compact separable metric space, and write EΔ = E (J {A} where
A is the point at infinity if E is not compact and an isolated point
otherwise. We denote by &(E) and &{EΔ) the Borel sets of E and
EΔ respectively. Let X = {Ω, J?~, J^, Xt,θt,P

x) be a standard process
with state space (E, &(E)). Thus Xt:Ω-*EΔ for each t, 0 <Z t <Ξ oo,
such that Xs(ω) = A for all s ^ £ if Xt{(ύ) = A. The path functions t
—+Xt(ω)y ω eΩ, are right continuous on [0, oo) and have left-hand
limits on [0, ζ) almost surely. Here ζ = inf {t: Xt = A} is the lifetime
of X. The shift operators θt: Ω-+Ω are defined by Xt°0h = Xt+h' For
each xe EΔ, P

x is a probability measure on the σ-algebra J^ such that
x->PX(Λ) is &(EΔ) measurable for each Λ e J ^ and PX(XO = x) = 1.
The reader is referred to [2] for the definitions of {^7} and ^ .
Finally, X is assumed to be strong Markov and quasi-left continuous
on [0, ζ).

If F is any topological space, we write B{F) for the real-valued
Borel measurable functions on F, and bB(F) for the bounded elements
of B(F). If F is locally compact Hausdorff, CK{F) will denote the
real-valued continuous functions on F with compact support. If L is
any space of functions, L+ will denote the nonnegative elements of
L. If / G B(E) we extend / to EΔ by setting f(A) = 0.

We denote by P/*, a ^ 0, the ^-transition operator so that Pt

af(x)
= e-β t#x[/TO] for / G &£(#). Set P t = P,0. Our notation for the re-
solvent of the semi-group is Uaf(x)= \~Pt

af(x)dt = Ex[O°e-(Xtf(Xt)dt,
Jo Jo

and we put U = U°9 the potential operator. Recall that for a > 0,
Z7α: bB(E) —• bB(E) is a bounded linear operator on the Banach space
bB(E) with the supremum norm, and \\Ua\\ <g or1. If 5 is Borel,
then P£f(x) = Ex[e~aT^f(XTB); TB<ζ] defines the α-hitting operators.
Here T5 = inf {t > 0; Xt e B) is the hitting time of B. Recall that if
Be<^(E), then £** = {x: PX[TB = 0] = 1} is the set of regular points
for B, and B\jBr is the closure of B in the fine topology. Also if
D e &(E) and D = Dr then for each xeE there is a decreasing se-
quence {Gn} of open sets containing D such that TG% \ TD a.s., P^ on
{TD < oo}. A Borel set D for which D = Dr is called finely perfect.

We let ^ α denote the ^-excessive functions of X and set 6^ =
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S?\ Thus a nonnegative Borel function / is in &a if Pff ^ / for all
t ^ 0 and P?f(x) ί f(x) as t [ 0 for all xeE. Recall that the fine to-
pology is the coarsest topology on E relative to which each / e S^a is
continuous, a > 0. Let u e S^ Unless otherwise qualified, the state-
ment u = 0 will mean that u is the zero function. Similarly, u Φ 0
will mean that u is not identically zero.

One basic assumption which will be assumed to hold throughout
is the existence of a (Radon) reference measure. This is a Radon
measure dx having the property that a set Be^(E) is of potential

zero, i.e., U(x, B) = 0 for all x e E, if and only if I dx = 0. This con-
dition is satisfied if the elements in £fa are lower semi-continuous for
some a > 0. If /, g e 6^a and f = g a.e., dx, then / and g are iden-
tical. Also, under this assumption each / e £^a is Borel measurable.
An important situation where a reference measure exists is when
there is a dual Markov process Xt as in Chapter VI of [2]. Here the

resolvent kernel is of the form Uaf(x) = \ua{x, y)f{y)ξ{dy) where ua:E

x E—>R+ is &{E) x &(E) measurable, ξ(dy) is a Radon measure on
E, and the function x —> ua(x, y) is α-excessive for each y e E, a ^ 0.
Moreover, the resolvent of the dual process Xt is given by Uaf(y) —

\ua(x,y)f(x)ζ(dx), and for each xeE, the function y -+ua{x,y) is a-

excessive for Xt. One can then define, analogous to Xu a cofine to-
pology for Xt, and it turns out that the notion of semi-polar is equi-
valent in these two topologies. If D is Borel, then rD\Dr is semi-polar,
where rD denotes the set of points cofinely regular for D.

We make finally the following assumption on U: If / is a bounded
Borel measurable function on E with compact support, then the func-
tion x —> Uf(x) is finite. This condition is always satisfied by the
operator Ua for a > 0 and in fact the assumption is mainly a con-
venience that simplifies the notation. The reader can easily convince
himself that all of the following results are true when stated in terms
of α-potentials for a > 0. Under this assumption each excessive func-
tion is the limit of an increasing sequence {Ufn} of finite potentials
where each fn ^ 0 is in B(E).

We fix once and for all a reference measure dx and, changing
our notation slightly, we agree to denote by Sf the set of all exces-
sive functions of X which are locally integrable with respect to dx.
Now £/* is a convex, proper, pointed cone of functions on E and we
denote by ex6^ the set of extreme rays of S^\ ueexS^ if and only
if for any representation of u in the form u = ut + u2 with u19 u2e
£S it follows that ut = au2 for some a ^ 0. We will draw heavily
upon the following result found in Meyer [7, p. 59]:

THEOREM 2.1. Let {un} be a sequence of excessive functions. Then
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there is a subsequence {un) and an excessive function u such that un,
—>u a.e., dx.

From now on all "almost everywhere (a.e.)" statements will be
in reference to the measure dx.

3* Characterization of ex&\ We now want to give a charac-
terization of the extremal rays of £f. For this we make the

DEFINITION 3.1. An excessive function w e y is said to have
support at x e E if for any open neighborhood V of x, Pvu = u. Also,
u is said to be harmonic if PK°u — u for all compact subsets KaE.

REMARK 3.2. If u e £f has a support at x, then u is harmonic
in E\{x}. In this connection, see Bauer [1, Chap. V].

We now prove

THEOREM 3.3. Let u e ex 6^'. Then if u is not harmonic, u has
support at some xe E.

For the proof, we will need a series of lemmas.

LEMMA 3.4. Let {ul} and {ul} be sequences of excessive functions
in £f such that ul + ul—*u for some u e £S. Then if ul —> uλ a.e., and
ul —> u2 a.e., for uγ, u2 e 6^, we have ul —•> ux and ul —> u2 on {u < oo}.

Proof. Of course u = uγ + u2 since they agree almost everywhere,
hence everywhere. The important fact here is that if vn, v e 6^ and
vn—+v a.e., then ^^l iminf ΐ^ [Proof: We have by Fatou's lemma
aUa{x, liminf vn) ^ lim inf aUa(x, vn) ̂  lim inf vn(x) for any a > 0, so
liminft^ is super-median. If v is the excessive regularization of
lim inf tv, then v ^ liminf vn. But v = l iminf^ a.e., and therefore
v = v a.e., hence v — v everywhere so that v ^ liminf vn]. Now if
uf + u2 -+ u = uL + u2, then on {u < oo}, A = {lim sup ul > ttj c {lim inf u*
< u2) since xe A and u(x) < oo implies there is a subsequence {nf}
such that v£(x)-+a>ul{x) and hence u2'(x)->β < u2(x). Therefore
\immfu%(x)^ liminf u2'(x) < u2(x). But {liminf w? < u2} = φ by the
above remark. Thus A = ψ and for any xe E with u(x) < co we have
lim sup v%(x) ^ u^x) ^ lim inf u?(x); therefore ut —> u, and hence ul —> u2

on {u < oo}.

LEMMA 3.5. Suppose {%J c y and un-+ βu on {u < oo} with β
> 0 and un<L ue S^ for all n. Let B be Borel. Then if PBun = un

for all n, we have PBu = u.
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Proof. Since u e Sf we always have PBu ^ u. To show P^w ̂  M,
consider a point x e E where u(x) < oo. Then the measure PB(x, .)
puts no mass on {u = oo}. Since %ft ^ % for all n, the dominated con-
vergence theorem implies PB(x, un)—>PB(x, βu) = βPBu(x). But PB(CC, ww)
= %»(#) —• /S (̂x) and since β > 0, PBu{x) = u(x). Hence P sw = u on
{̂  < 00} and since {u = 00} has cfo-measure zero, PBu = u everywhere.

LEMMA 3.6. Suppose u e ex£f is not harmonic. Then there is a
compact KdE and a sequence {fn} c B+(E) of Borel functions vanish-
ing outside of K such that Ufn ^ u for all n and Ufn —>u as n —> oo
on {u < oo}.

Proof. Since ueexS^, there is a sequence {gn} of nonnegative
Borel functions with Ugn } u. Assume the conclusion is not true, and
let KaE be an arbitrary compact. Then 1 = Iκ + Iκc and hence
Ugn = UIκgn+ UIκcgn \ u. Here IB denotes the indicator function of
B, "for any Be^(E). By Theorem (2.1) and Lemma (3.4) and the
fact that Ugn ^ u for all n, we can find a subsequence {n'} and exces-
sive functions uu u2 e £f such that UIκgnι —> uγ and ΌIj?gw —> ^2 on
{% < oo} with % = ux + %2. Since u e exS^, u2 = βu for some β ^ 0.
Now /S^O since otherwise UIκgn,—>u and J ^ , = 0 on Kc for all n'.
Thus UIκcgn, —> βu on {% < oo} and /3>0. But for any xeE,

= UIκcgn,{x) .

Hence Lemma (3.5) implies that Pκcu = u. But i ί was an arbitrary
compact and u is therefore harmonic, giving a contradiction.

Proof of Theorem (3.3). Suppose ue ex£/* is not harmonic. Then
by Lemma (3.6) we can find a compact KczE and a sequence {/Jc
B+(E) with each /Λ vanishing outside of if and Ufn—>u on {% < oo},
Z7/Λ ^ % for all n. We define recursively a decreasing sequence {Bj}
of nonempty Borel sets such that diameter (Bj) [ 0 and such that for
each j > 0 there is an aά > 0 and subsequence {n'} c {n} with UIB.fnr
—* (XjU on {u < oo}. Set Bγ — K and assume i^ has been defined with
a corresponding a3- > 0 and subsequence {w'} c {w}. Since B3czK is
compact, we can find a finite Borel partition {CJ of Bά such that
diameter (d) < 1/j diameter {Bj) for each i. Then 75y = Σ * ^ a n ( i
hence UIB.fn> = ΣiUIc.fn, —> aόu. By Theorem (2.1) and Lemma (3.4),
there is an i0, a subsequence {w"} c {̂ '}, and excessive functions uu u2

e^ with u^φQ such that UICifn"-^^ι and Σ i ^ o ^ Λ " ^ π 2 o n {̂
< oo}. Since mi = ^ + u2 £ exS, ux = βa5u for some β > 0. Let l? i+1

= Cίo and ccj+1 = /9^ > 0. Then diameter (B, +1) ^ 1/j diameter
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and UIBj+1fn>> —>aj+1u on {u < oo}, thus completing the definition of
the sequence {Bj}.

Consider now the decreasing sequence {Bj} of nonempty compact
subsets of E, and let x e C\jBά. Let V be any neighborhood of x.
Since diameter (Bj) J, 0, there is some j0 with V ZD BJo 3 BJQ, and hence
Tv <: TBJG a.s. Now there is a subsequence {nr} c {%} and an aJQ > 0
such that UIBJ0 fn,—>(XjQu on {u < oo}, UIB fn. ^ w for all w\ But
for each & e E

PvUIBj/n,(x) =
Bj

since Tv ^ ϊ7^. a.s., Lemma (3.5) implies that Pvu = w and the proof
is complete.

We list here a property of

PROPOSITION 3.7. ( i ) If ue S has support at x, there is a se-
quence {xn} with xn—>x and u{xn} j \\u\\ = {supu(y): y e E).

(ii) If u is harmonic and E is not compact, there is a sequence
{xn} such that xn—* Δ and u(xn) ] \\u\\.

Proof. ( i ) Suppose not. Then there is a neighborhood V of x
and a constant M < \\u\\ such that u(x) ̂  M for all x e V. Let G be
a neighborhood of x with G a V. Then U(XTG) <̂  M a.s., on {TG < CXD}

since XTGeGaGraGa V a.s., on {7^ < oo}. But M(T/) = PGu{y) =
^^[^(X^); Te; < oo] and hence u(τ/) ^ M for all yeE, a contradiction.

(ii) Same proof as in ( i ) using neighborhoods of infinity.
Recall that a point & e E is polar if P y [Γ β < oo] = 0 for all yeE

where Tx is the hitting time of {x}. It follows from (3.5) of [2, Chap.
II] that if u e S^, then {u — oo} is polar. As a converse to this result,
we prove

PROPOSITION 3.8. Assume Ua: CK(E) —• 0(^7) /or some a :> 0.
i/ x ΐs poiαr αwd 0 Φ ueexS^ has support at x, \\u\\ = oo.

Proof. Suppose OJ is polar and let 0 Φ u e ex6^ have support a t
x with \\u\\ — M < oo. Let {(?J be a decreasing sequence of open sets
containing x with f\nGn = {x}. Let yeE he distinct from x. Then
TGn \ oo a.s., P» and ̂ (T/) = PGu{y) = E«[U(XTGJ] £ MP«[TGn < oo]. By
(4.24) of [2, Chap. II], X?Gn -> A a.s., P* as ^ - > c o . Since XTGn e Gn

on {TGn < oo} a.s., it follows that TGn = oo a.s. Py for large w. Hence
Py[TGn < ° ° ] | 0 a s ^ — > o o and therefore u(y) = 0. Since y Φ x was
arbitrary, u{y) = 0 for all y Φ x and hence % = 0 as dx does not
charge the polar set {x}. This contradicts the fact that u Φ 0, thus
completing the proof.
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We now investigate the following uniqueness problem: When is
it true that if uuu2e ex<9* have support at x, then ux = au2 for some
a ;> 0? For this we make the following

DEFINITION 3.9. ( i ) If u has support at x e E, then u is said
to be regular at x if PDu — u for all finely perfect sets D = Dr con-
taining x of the form D — Gr where G is finely open.

(ii) A family ^f a ex£f of excessive functions is said to be re-
gular if any ue^f which has support at x is regular at x.

PROPOSITION 3.10. Suppose ue £^ has support at xeE and has

the following property: For every decreasing sequence {Gn} of open

sets containing x with l i m ^ T ^ = T α.s., we have PGnu-*Pτu. Then

u is regular at x.

Proof. Let D be a finely perfect set containing x, and let y e E
be arbitrary. Then there is a decreasing sequence {Gn} of open sets
containing D such that TGn ] TD a.s. Pv on {TD < co}; hence PGnu(y) —>
PDu(y). But each Gn is a neighborhood of x, therefore PGnu{y) = u(y)
for all n, and it follows that u(y) = PDu(y). Since y was arbitrary,
pDu = u.

REMARK 3.11. If u e y has support at x and is regular at x,
then Pvu — u for all finely open V containing x.

We now prove the main result concerning regularity.

THEOREM 3.12. Suppose ^ aexSs* is regular, and let xe E. Then
up to a nonnegative multiplicative constant, there is at most one u e
^ having support at x. Moreover, if ue Sf has support at x and is
regular at x, then u e ex6^'.

Proof. We first show that if uu u2e Sf have support at x and
are regular at x, then ut ^ u2 or u2 ^ ut. Indeed, set Dt = {uL < u2}

r

and D2 = Df c {u2 ^ uj. Now Dλ and D2 are finely perfect and since
E = Όγ U D2, x must be regular for one of these sets. Assume that
xe {uY < u2}

r — Dγ (the other case is treated similarly). Since uY and
u2 are finely continuous, uγ = PΌμγ ^ PΏ^ = u2, i.e., ux ^ u2. Let now
β = sup {α ^ 0: auγ ^ 2̂} ^ 1. We claim that if β = °o then ^ = 0.
For in this case u2 = °o on {^ > 0}. But u2 e S^ and hence I dx = 0,

J{«l>0}

for otherwise there would exist a compact K c {uL > 0} such that

I da; > 0 which would imply that \ u2dx = oo. Thus ^ = 0 a.e., hence

ut = 0 everywhere. Assume therefore that β < oo . Then βUi ^ u2.
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On the other hand, if ε > 0, there is an x e E such that u2(x) < (β +
eίu^x). But (β + ε)^ and w2 also have support at x and are regular
at x, implying that u2 <̂  (β + ε)^. Since ε > 0 was arbitrary, u2 ^
yδ̂ i and therefore βuλ = u2, proving the first part of the theorem.

To prove the second part, assume that u e Sf has support at x
and is regular at x. Then if u = ux + u2 with uu u2eS^, we have u
= pDu = PDuγ + PDu2 = ux + u2 for all finely perfect D containing x.
But PDUi ^ u{ (i = 1, 2) and hence P ^ = %<. Thus ^ and u2 have
support at a; and are regular at x. The preceding proof implies that
uγ = ίra2 for some a ^ 0 and therefore w e e x ^ .

Suppose eα;^7 has the following property: If u e exS^ has support
at x, then u is locally bounded and continuous on E. Using Proposition
(3.10), it is easy to see that exS^ is regular. We show that in certain
cases a form of continuity is actually necessary for regularity to hold.

PROPOSITION 3.13. Assume X is a Hunt process. Let x0 be re-
gular for {x0} and suppose u e exS^ has support at x0 and u(x0) Φ O
Then u is the unique (up to a nonnegative multiplicative constant)
element in ex£f having support at x0 if and only if u(x) ^ u(x0) < oo
for all xeE.

Proof. Since x0 is not polar and u(x0) Φ 0, it follows that the
excessive function PXnu(x) = Ex[u(xTχ)] ^ u(x) is not identically zero,
has support at x0 and is regular there, and is therefore in ex£f from
Theorem (3.12). If u(x0) = oo, then E*[u(xTχ)\ could only take the
values 0 and oo since XTχ = x0 a.s., on {TXQ < oo}. But then Pxjι =
0 a.e. since PXύu e 6^, and hence PXQu = 0, a contradiction. Now the
uniqueness assumption on u implies that u = (xPXQu for some a >̂ 0
and since 0 < PZdu(x0) = u(x0) < ©o it follows that a = 1 and therefore
u(x) = PXdu(x) = E*[U(XTXQ)] ^ u(x0) < oo for all xeE.

Conversely, assume u(x) g u(xQ) < oo for all xeE. Let {Gn} be
a decreasing sequence of open sets containing x0 such that f\nGn =
{xo} Then TGn | T^ a.s. Since X is a Hunt process, X ^ —*XTχ = ^0

and limww(-3ΓΓσ ) ^ ^(JCΓa.) = 6̂(α;0) on {TXo < oo}. But τ̂ (x) ^ i6(α̂ 0) for
all xeE and hence lim%u(XΓG ) = u(x0) on {ϊ7^ < oo}. The bounded
convergence theorem now implies that u(x) = PGru{x) — EX\U{XTQ )]
—>Ex[u(XTχ)] = PΓa.^(x) for each xeE and the proof is complete.

The property of regularity is not shared by all standard processes
(consider translation to the right on the line), and we now seek other
conditions which guarantee the uniqueness property announced in
Theorem (3.12). First let us state this property explicitly.
(A) Let x e E be arbitrary. If uu u2e ex£f have support at x, then
uγ = au2 for some a ;> 0.
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This property was first studied by Herve [4] in axiomatic potential
and is known as the axiom of proportionality. We introduce now a
property that will guarantee (A) in a large number of cases.
(B) Suppose u e ex&* has support at x, and let D be finely perfect
set containing x. Then PDu has support at x.

Note that the property includes the case PDu = 0. We will state
explicitly when (B) is assumed to hold.

Let T — inf {t: Xt Φ Xo}. A point x e E is called an instantaneous
point if P*[T — 0] = 1. It is easy to see that if dx does not charge
singletons, then the points of E are instantaneous.

THEOREM 3.14. Assume (B) and that dx does not charge singletons.
Let u e exS^ have support at xQ and suppose that either x0 is polar or
u(xQ) — 0. Then if D = Dr contains x0, we have PDu — u or PDu == 0.

Proof. Let v = u — PDu >̂ 0. Then (B) implies Pvv — v for all
open neighborhoods V of xQ. It follows that if B c E is any Borel set
such that x0 is in the interior of B% then PBev = v. Let E' — E\{x0}
and consider the standard process Xt defined by Xt = Xt if t<TXQ and
Xt = A if t >̂ TXQ. Then Xt has state space Ef and transition func-
tion Ptf(x) = Ex[f(Xt]; t < TXQ]. Let d be a metric on E compatible
with the topology and suppose xeE'. Then there is a closed ball
B(zEr with center x such that x0 is in the interior of Bc. Thus if
y e E', PBcv(y) = Ey[v{XTBC)\ TB* < Γ.J ^ E"[V(XTBC)] = v(y). Since v is
nonnegative and finely continuous, it follows from [2, Chap. II, (5.9)]
that v is excessive for Xt. Therefore if we denote by {Ua} the re-
solvent operators for Xt, we have

x°e~atv(Xt)dt ^ v(x)
0

for all x e Ef. Now if x Φ x0,

aUav(x) = aϋav(x) + aEx\ e~atf{Xt)dt
J T

£ v(x) + E*[e-a

If x0 is polar, the third term in the inequality is zero. If u(x0) = 0,
then PDu(x0) — 0 and aUau(x0) ^ u(x0) = 0; similarly aUaPDu(x0) = 0.
It follows that aU"v(x0) = 0 and therefore Ex[e~aT^aUav(XTχ)\ - 0
since XTχ — x0 a.s., on {TXQ < co}. Thus in both cases allav(x) g v(x)
for all x Φ xQ. We now define a function v by v(x) = t;(α?) if x Φ X0,
v(x0) — co. Sin e x0 has αfe-measure zero, {x0} has zero measure with
respect to the measures aUa(xJ.), xeE. It follows that aUav{x) =

a;) ^ τ(a?) for all xeί/ and therefore \\ma^aUav{x) = v(x) is in
Thus we have a decomposition of % in the form u = v + Pχ>%
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where v and PDu are in £f. Since u e ex^, PDu = u for some α ̂ > O
If α = 0 or PDu = 0, then u = 0. We claim that if PDu Φ 0, then D f]
{0 < u < oo} ̂  φ. For if otherwise, Z> = Df]{u = 0}[jDn{u = oo}, a

disjoint union. But {u — oo} is polar, hence 7^ = Tz>nN=o} a.s., and
therefore XTj) e {u = 0} a.s., on TD <co. Hence PDu{x) = EX[U(XTD)]

= 0 for all α? e E, a contradiction. Thus if α > 0 and P̂ w ̂  0, there
is a point a? e D with 0 < i φ ) < oo and hence aPDu(x) = £ra(α?) =
implying that a = 1, or P^w = u.

COROLLARY 3.15. Assume (B) cmd suppose points are polar and
that S^ has the following property: if ue exS^ has support at x and
u Φ 0, then u(x) Φ 0. Then exS^ is regular.

Proof. If points are polar, then dx certainly does not charge sin-
gletons. If 0 Φ ue ex^f has support at x and D = Dr contains x,
then PDu = u or PDu = 0 by Theorem (3.14). But PDu{x) = t&(ίc) ̂  0
and therefore PDu = u, proving that eα;^ is a regular.

According to Theorem (3.3), to each u e exS^ which is not harmonic
we can associate a point xe E such that u has support at x. We
want to consider the case where to each u e exS^ which is not har-
monic, there is a unique point x at which u has its support. In axio-
matic potential theory this property holds by virtue of the sheaf
properties of the harmonic functions in that theory. Here, however,
we do not have the property that if Gt and G2 are open and u is
harmonic in G1 and G2, then u is harmonic in GiUG^ For a Hunt
process this property holds if u is locally bounded (cf. Meyer [7]).

For the moment we content ourselves with the following results.

PROPOSITION 3.18. Assume <fs c ex£f is regular. If ue^f has
support at xt and x2, then u(Xj) = u(x2).

Proof. Suppose u{xt) < 8 < u{x2). Then V = {u < 8} is finely open
and contains xx. Now u(XTv) <Ξ 8 a.s., on {Tv < oo} since u is finely
continuous; hence u{x2) = Pvu{x2) = EX2[u(XTv); Tv < oo] ^ δ, a contra-
diction.

DEFINITION 3.19. <2S s βx^7 is separating if to each u e ̂  there
is a unique xeE such that w has support at x.

From Proposition (3.7), it follows that if ^ £ e α ^ contains no
harmonic functions and each ue^ has the property that its sup-
remum is approached in any neighborhood of one and only one point
in E, then ^ is separating. The following proposition justifies the
terminology.
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PROPOSITION 3.20. Assume ^ g ex£f is regular and contains no
harmonic functions.

( i ) Suppose ^ has the property that if ue^ has support at
x, then 0 < u{x) < °o. Then ^ is separating if 6^ separates points.

(ii) Suppose %f has the following property: If ue^S has sup-
port at x and if y Φ x, there is a function v e £/" and a Borel set D
= Dr containing x such that v ^ u on D and v{y) < v(x). Then *%£
is separating.

Proof. ( i ) It suffices to consider the case where ue^ has sup-
port at two distinct points x and y. By Proposition (2.16), u(x) — u(y)
= β > 0. Let v e S^ satisfy v(x) > v(y). Then there is an a > 0 such
that av(x) > β > av{y). Now V = {av > u) is finely open and contains
x. Therefore av > Pvav ^ Pvu — u, i.e., u ^ av. But av(y) < u(y),
a contradiction.

(ii) Suppose u has support at x and y, x Φ y and let v and D be
as in the hypothesis. We have from Hunt's theorem [2, p. 141], u
= PDu = inf {s e &*: s ^ u on D). Thus, from v ^ u on D it follows
that u ^ v and hence u(ίi?) ^ v(x) < v(y) = u(i/). But tt(a?) = (̂̂ /) by
Proposition (2.16), a contradiction.

4* Representation of excessive functions* In this section we
prove a representation theorem, in integral form, for a certain class of
potentials of the standard process X. In the next section we extend
this representation to all potentials in £f. Recall that &" denotes
the set of all excessive functions that are locally integrable with re-
spect to the reference measure dx. We now topologize y as a sub-
set of M+(E), the nonnegative Radon measures on E: to each ueS^
we associate the measure u(x)dx. This topology on £f is locally con-
vex and it is given by the family of semi-norms {pf: f e CK{E)} defined
bypf(u) = \fudx. Thus a sequence {un} c S? converges to u e £f if and

only if \fundx—*\fudx for all feCκ(E). Moreover, because of the
hypotheses on the state space E, S^ is metrizable (Cf. Choquet [3]).

A cap of Sf is a compact subset of Sf of the form {h ^ 1} where
h is a map of Sf into [0, °o], linear in the sense that h(0) = 0, h(u +
v) = h(u) + h(v) for u, v e 6f, and h(au) = ah(u) for u e Sf, a e R+ =
[0, oo). In order to guarantee the existence of a sufficient number of
caps of S^, we will make a special assumption. Recall that a sequence
{vn} of nonnegative Radon measures on E is bounded if the sequence
{Vn(f)} is bounded for each feCi(E). Our special assumption, which
holds in the situation discussed in [7, Chap. II], is as follows:
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(4.1) Suppose {un} c Sf is a bounded sequence in M+{E) and un—>u
a.e., for some ueS^. Then there is a subsequence {un,}cz{un} such
that MΛ/ —> % in *5^.

It follows that ^ is a closed subset of M+(E), for if {̂ J is a
sequence of excessive functions in 6^ and %n —• v in M+(E) for some
V G ¥ + ( J E ) , then by Theorem (2.1) we can find a subsequence {un)(Z
{un} and an excessive function u such that un, —•• w a.e. But for each

/ e CK{E) we have by Fatou's lemma \fudx = \flimmΐundx ^ liminf

S r J J

fundx = \fdv(x) so that M G ^ . By (4.1) there is a subsequence
{un,)c.{un) such that un,,—*u in ^ and therefore l/mfo = \fdv(x)
for all feCκ(E), implying that dv{x) = u(x)dx. Note that (4.1) is
satisfied if S? has the following property: If {un} c S? and un—>u
a.e. for some w e y , then for each compact KaE, there is a subse-
quence {un) c {̂ } which is uniformly integrable over K.

Now (4.1) implies that Sf is well-capped, i.e., Sf is the union of
its caps (Meyer [6, Chap. XI]). Thus Choquet's representation theorem
applies (cf. [3]). Let &" denote the continuous linear forms on S^.
Then if v e y , there is a nonnegative Radon measure v carried by
exSf such that for I e Sf\ l{v) = [ l{u)v(du).

Let now {Kn} be an increasing sequence of compact subsets of E
with Kn c= Kn+1 and E = \JnKn. Let {/J be a sequence of nonnegative
continuous functions with compact support such that for each n, fn{x)
= 1 for all x e Kn. Choose numbers an > 0 such that Σ Λ \ / ^ =

1, and denote by h: £f —> [0, ©o] the functional defined by h(u) = ^nan

\fnudx. It is clear that h(0) = 0, Λ(i6 + v) = h{u) + h(v) for %,VG ^ ,

and h(βu) = /Sfc(̂ ) for /S ̂  0. If we let J>T = {u: h{u) ^ 1} = {̂ : Σ»«n

l/»i«2α; ^ 1}, then (4.1) implies that J%Γ is a compact, convex set in

Sf. Therefore, if & is the convex, proper cone generated by J?",

S? will have compact base J%Γ and will be σ-compact. Note that S?

— {ue<^: h(u) < <>o} and that if v e S^ is bounded, then v e Sf. final-

ly, we denote by ^{^T) the Borel sets of

LEMMA 4.2. Suppose {uj} is a sequence of excessive functions in
such that u$ —> u in 3ίΓ for some u £ J ^ \ Then for each integer

n > 0 and a > 0 we have Ua(x, uά A n) —^-* ί7α(x, u Λ n) for all x e
E.

Proof. Consider an integer n > 0 and α > 0. We show first that

\ Uj A ndx —+ 1 u A ndx for all Borel sets B c E having compact clo-
}B JB

sure. Assume this is not the case so that there is an ε > 0 and a
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> ε for somesubsequence {j'} c {j} with I ujf A ndx — I u A ndx

Borel set B with compact closure and for all f. By Theorem (2.1)

and (4.1) we can find a subsequence {j"} c {j'} and an excessive func-

tion u such that ujf, —>u a.e. as j " —> oo and that \fujf,dx —•> \fudx

for all feCκ(E). It follows that ί/ffώ = \fudx for all feCκ(E)

and therefore u — u a.e., hence everywhere. Thus Uj,,—>u a.e., and

S %,, Λ ndx—* \ u A ndx, giving the desired contradiction.
B JB

Fix x e E. Then the Borel measure B —> Ua(x, B) is absolutely
continuous with respect to dx, and Ua(x, E) = Z7αl(#) ̂  1/α < oo. Since
I Us A ndx —^-> 1 w Λ ^ώα; for all J? e &{E) with compact closure, it
JB JB

follows that Ua(x, % Λ n) ~-+ Ua(x, u A n) as j —> ©o and the proof is
complete.

THEOREM 4.3. The map Φ:Ex SΓ—>E+ = [0, oo] defined by Φ(x, u)
= u(x) is &{E) x &{SΓ) measurable.

Proof. It is sufficient to show that for each a > 0, the map Φα:
-+R+ defined by 0α(α;, %) = Z7α(̂ , u) = Uau(x) is ̂ (-&) x &0T)

m e a s u r a b l e s ince for e a c h xeEand ue J3f, aΦ*{x, u) = aUau{x) ] u(x)
= Φ(x, u) as a —• co. Let a > 0, and for each integer w > 0 define
the map Φa

n:Ex J%T -• .B+ by Φ;(a;, u) = Ua(x, uAn). For fixed u e &
the map x —+ Φa

n{x, u) is &{E) measurable, and Lemma (4.2) implies
that for fixed x e E the map u —• Φl(x, u) is continuous on Sf. Since
J ^ is a compact metric space, if follows that Φl is &(E) x &(SΓ)
measurable. But Φl{x, u) = C7̂ (OJ, ̂ Λ n) \ Ua(x, %)asπ-^oo and there-
fore Φa is &(E) x ^{SΓ) measurable, completing the proof of Theorem
(4.3).

COROLLARY 4.4. Let B e <^{E). Then the map PB: E x ST-+R+ de-

fined by PB(x, u) — \PB(x, dy)u(y) = PBu(x) is &{E) x &{5ίΓ) measur-

able.

Proof. Let H={φe B(E x SΓ): (x, u)-+ \PB(X, dy)φ(y, u) is &(E)
x &(J%Γ) measurable}. Then H contains all functions of the form
Ψι(κ)φ<kώ) where φ1 e B(E) and φ2 e B{J5Γ). Moreover, if {φn} is an in-
creasing sequence of functions in H with φ = lim φn, then the monotone
convergence theorem implies that φ is in H. Hence, by the monotone
class theorem, B(E x J%Γ) c H. Since the function (x, u) —> u(x) is in
B(E x _3T), the result follows.

COROLLARY 4.5. (i) Suppose v ;> 0 is a finite Borel measure
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on £f carried by ,5f~9 and v(x) = \u(x)v(du). Then v e y .

(ii) Suppose v ^ 0 is a finite Borel measure on S^ carried by

3ίΓ and v is an excessive function such that l(v) = \l{u)v(du) for all
/\ r J

I e S?'. Then veS^ and v(x) = \u(x)v(du) for all xeE.

Proof, (i) Note first that the integral makes sense by the
joint measurability of the map (x, u)—*u(x). We have by Fubini's theo-
rem aUa{x, v) = \aUa{x1 u)v{du) <. \u(x)v(du) = v(x) since aUa{x, u)
^ u(x) for all ue<5ίΓ, a ^ 0. Also, since aUa(x, u) \ u(x) as a—> oo
for all u e J%Γ, the monotone convergence theorem implies that aUa{x, v)
I v(x) a s α - > w so that v is excessive. To see that v e S^, use Fubini's

theorem to write

h(v) = Σ 5 5
\ ^ ^ ^ = \h{u)v{du)

since h(u) ^ 1 for all u
(ii) Since pf e S^r for each / e CK(E), we have

[f(x)v(x)dx= [(\f(x)u(x)dx)v(du)

for all feCκ(E). On the other hand, the function v(x) = l^

is in ^ by ( i ) , and for each fe CK(E),

S r r r/r \

f(x)v(x)dx = \f(x)\u(x)v(du)dx= \l\f(x)u(x)dxjv(du)
= \f(x)v(x)dx

and therefore v = v a.e., and hence everywhere since v and v are
excessive.

Consider again our increasing sequence {K3) of compact subsets of
E with KJCKJ, and E = \J5K5. For each j , define ^ : E x . 5 r - > R +

by Ŝ yίa?, ̂ ) = Pjrj(ίc, u), a&(E) x &(3ίΓ) measurable function, and set
Ψ(x, u) — limy I Pκc

3{%, v). From Fubini's theorem, the map u-+

hiΨji^u)) = ΣnCϊΛfJFjix^ujdx is &(J3ίΓ) measurable, and therefore

h(W(., u)) = lim,. 1 h(W3 (., u) is &(3T) measurable. Therefore the set
^ = {ue 3T\ h(W(., u)) = 0} is a Borel subset of 3ίΓ. It is clear that
w e ^ if and only if ueJίΓ and P^.u | 0 a.e., as j-+ε° for all in-
creasing sequences {iΓ,-} of compacts such that Kό c Kj+1 and ί? =
U i ^ . Finally, we put & = e^J^ Π ^\{0} where ea?JT" is the set
of extreme points of the compact, convex set J ^ \ Then & cz {u e
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^*: h(u) = 1}. See Meyer [6, Chap. XI]. We make the following
assumption on ^ , which is valid if & is regular and separating:
(4.6) & is separating and the proportionality axiom holds.

Note that & contains no harmonic elements for if u e & is har-
monic, then u = Ptful 0 a.e., for a sequence {iQ of compacts with
kj c J5Γi+1 and E = \J3-KS. Thus u = 0 a.e., hence everywhere and 0
ί ^ . Therefore, according to Theorem (3.3) and the assumption (4.6),
to each u e & we can associate a unique y e E, the point at which u
has its support. We indicate this relation by setting u ~ uy. Consider
now the map Γ: J* ~-+E defined by Γ(uv) = y. Define 2? = Γ(&) c
£7. Then Γ is one-one onto i?. Moreover, we can give E the topology
which makes Γ a homeomorphism between & and E. It is easily
seen that this topology is given by the metric d: E x E —• i2+ defined
by ώ(x, 2/) = p(ux, uy) where p is the metric on 3ίΓ. In other words,
the topology on E is defined by the family of semi-norms {pf: f e CK{E)}

given for yeE by pf(y) = \fuydx.

Consider now the function u: E x E —> 5 + defined by u(x, y) —
uy(x). This function is &{E) x &(E) measurable since it is the re-
striction of the &(JE) x ^(J^")-measurable map (x, u) —> tt(a?) to the
set Ex& and ^ is Borel in 3ίΓ. We come now to the main result
of this development. Recall that an excessive function p e £f is
called a potential if PK°P10 a.e., for all increasing sequences {Kn}
of compacts such that Kn g Kn+1 and E = ( J Λ

THEOREM 4.7. There is a subset E^E with a metric topology
and a function u: E x E—>R+ which is &(E) x &(E) measurable
and having the property that the function x —> u(x, y) is an extremal
excessive function for each yeE. Each potential p e 6^ has a repre-
sentation of the form

p{x) = γ,{x, y)v{dy)

for some finite Borel measure v >̂ 0 on E.

Proof. The only statement to prove is the last sentence of the
theorem. If pe S^9 then by Choquet's theorem there is a nonnegative
Radon measure μ carried by ex5ίΓ such that l(p) = \ l(u)μ(du) for

u(x)μ(du) by Corollary (3.4). Since & c
S e x 3Γ Γ /\

κu{x)μ{du) + I u(x)μ(du) where J^ = e^_%^\^.

Now I u(x)μ(du) = \ Γ~ί(y)(x)μ o Γ~ι(dy) = \A^(^, y)v(dy) where v

= μ o Γ~ι is a Borel measure on i?.
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It remains to show that \ u{x)μ(du) = 0. Let {Kn} be an in-

creasing sequence of compacts such that Kn c Kn+ι and E = \JnKn.
Then Fubini's theorem yields

Pκcp(χ) = \ Pκcu(x)μ(du) + 1 Pκcu(x)μ{du) .

Now Pκ°j> i 0 a.e., and hence \ lim [ Pκ°nu(x)μ(du) = 0 a.e., or

[ Ψ(x, u)μ{du) = 0 a.e. ^

Using Fubini's theorem again, we can write

0 - (., u)μ(duj) = \ h(W(.f u))μ{du).

Thus μ{uz^\ h(Ψ(., u)) > 0;} = μ{ex^T\β} = 0 and therefore μ is
carried by ^*, completing the proof of Theorem (4.7).

We are going to improve Theorem (4.7), but before this we con-
sider a related notion which is of independent interest.

5* Dual operator and the representation theorem* We intro-
duce now a dual operator associated with the potential operator U.

DEFINITION 5.1. The linear operator U: CK{E) —> C(E) is defined

for feCκ(E) by Uf(y) = \f(x)u(x,y)dx and is called the dual opera-

tor of U.

The fact that Uf(y) is a continuous function on E follows from

the observation that tϊf(y) = \f(x)u(x, y)dx = I f(x)uy(x)dx = P/(y)

where pf is a semi-norm defining the topology on E.
We want to investigate some of the properties of Ό. The results

obtained here are analogus to the case where a dual process exists as in
[2, Chap. VI] or [7, Chap. II]. Now Meyer [5] has shown that £f,
and therefore £f, is a lattice in its own order, i.e., the order defined for
u,v e S? by u < v if and only if there is an s e £f such that v — u + s.
The Choquet-Meyer Uniqueness Theorem [3] then implies that each u
e £f is represented by a unique nonnegative Radon measure carried

by ex3ίΓ.
If v is a signed Borel measure on E having finite total variation,

we denote by Uv(x) the function x—> \u(x, y)v(dy). If v ^ 0 is finite,

then Uve^ from Corollary (4.5).

PROPOSITION 5.2. ( i ) If v is a signed Borel measure on E of
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finite total variation, and if Uv = 0 α.e., then v = 0.
(ii) IfKczEis compact, then the restrictions of the functions

in image (U) to K is dense in C(K).

Proof. ( i ) If v is a such a measure, write v — vx — v2 where

vγ and v2 are finite and nonnegative. Then \u(x, y)vγ(dy) = \u(x, y)v2(dy)

a.e., or Uvι = J7 2̂ a e.. But each of these functions is in £f, hence
Uvι = Uv2. The Choquet-Meyer uniqueness theorem then implies v1

= v2 and therefore v = v1 — v2 = 0.
(ii) Let K c: E be compact. Let v be a Radon measure on ϋΓ

and suppose that I Uf{y)v(dy) = 0 for all continuous functions / with

compact support. Then 0 = I Uf{y)v{dy) = \(\u(x, y)f(x)dx}v(dy) =

(/(αOcfoίiφ, y)v(di/) - \f(x)Uv(x)dx for all / e CK(E). But then ?7v =

0 a.e., and hence by (ii), v = 0. The result now follows from the

Hahn-Banach Theorem.

We now make the following observations: The set E = & c 5ίΓ
is a subset of the compact set .5ίΓ, and therefore F = Ea, the closure
of E in 3ίΓ, is a compact subset of 3ίΓ. Note that 0 g F. We claim
that if feCκ(E), then the function C/jf extends uniquely to a con-
tinuous function on F which we continue to denote by Uf. This
follows from the previously mentioned fact that Uf(y) — pf(uy) and
pf is one of the semi-norms defining the topology on F. Note that

if ueF\E, then Uf(u) = \f(x)u(x)dx. In the terminology of [7], F

is a "Martin Compactification" of the space E. Finally, recall that
M+(F) denotes the nonnegative Radon measures on F, and that any
finite nonnegative Borel measure v on E can be regarded as an ele-
ment veM+(F) by the formula ΰ(B) = v(B Π E) for Be^(F). We
now generalize Theorem (4.7).

THEOREM 5.3. There is a subset E c E, a metric topology on E
making E a dense subset of a compact metric space F, and a function
u: E x E—> [0, oo] having the following properties: The function u is
&{E) x &{E) measurable and for each y e E, the function x —• u(x, y)
is an extremal excessive function. Each potential p e 6^ has a repre-
sentation of the form

p(x) =

for some uniquely determined finite Borel measure v Ξ> 0 on E. For
any feCκ(E), Uf has a unique continuous extension to F.

Proof. According to Theorem (4.7) and the preceding remarks,
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the only part of the theorem to prove is the representation for poten-
tials p e S*. We show that if peS^ is potential, then pe 6^ and
hence the representation holds from Theorem (4.7). But if p e y ,
then pn(x) = (p Λ n)(x) is an element of £f and therefore pn(x) =
\u{x,y)vn(dy) for some finite Borel measure vn ^ 0 on E. Let / e
CUE). Then

, y)vn(dy))dx

Since F is compact and 0 g F, we can find a finite number {/J of func-
tion in Ci{E) such that Σ* P/fa) > 0 f° r all %ef. But pf.(u) =

= ί/ΛW on F and therefore Σ* ίf* > 0 on F. But then

/y* T I ^^ T β / /y» \ /Vl/ /V \ /j OJ <^" CO

as n—> oo. Hence ^(i*7) ^ Λί < oo for some finite Λf >0, and {vn} is
bounded set in M+(F) and hence is pre-compact in the vague topology.
There exists therefore a finite Radon measure v e M+(F) and a sub-
sequence {%'} such that vu,(g) -* v(g) for all ^ e C(F). Since i7/ e C(F)
for feC£(E), we have

S i I T ί O i\Λ ) ί Γi Ί / I I T I /V • /Y\ i /V I /Ύ /V T 1 / / T I Ί / 1 1 J i /i Ί / B •—

Now C//(w) = \ f(x)u(x)dx for w e F and therefore

f(x)p(x)dx — \l\f(x)u(x)dx)v(du) = \f{x)[\u{x)v{du)\dx .

Here we use the joint measurability of the function (x, u) —* u(x) and
Fubini's theorem. Since this equation holds for all feCi(E),

it follows that p(x) = \ u{x)v(du) a.e., and hence everywhere since
JF

each function is excessive by Corollary (4.5). Since v{F) < oo and F
c SΓ, the same Corollary implies that p e S*, thus completing the
proof of Theorem (5.3).

Recall that an excessive function v e S^ is said to be harmonic
if PBv = v whenever B is the complement of a compact subset of E.
Now according to [2, p. 272], each ue S^ has a unique representation
of the form u = p + v where p is a potential and v is an harmonic
excessive function: The reader can easily convince himself that the
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proof given in the cited reference is equally valid under our assump-
tions. If we let <% = {u e exS^: u is harmonic} and P — {u e exS^: u is
a potential}, then the following corollary is an immediate consequence
of the above fact

COROLLARY 5.4. ( i ) Each ueS^ has a unique representation of

the form u(x) = \u(x, y)v(dy) + v(x) where v ^ 0 is a finite Borel mea-

sure on E and v e Sf is harmonic.
(ii) exSf = P U ^ . Of course, PΓ\& = {0}.

REMARK 5.5. In § 3 we introduced the assumption (4.6) and we
now show how to obtain a representation as in Theorem (5.3) under
the single assumption that to each x e E there is at most one u e exS^
having support at x. Define E — {x e E: there is a u e & having
support at x) and write x~y if and only if there is ue^ having
support at x and y. It is easy to see that ~ is an equivalence relation
on E and we put E ~ E/~, the set of equivalence classes of E. We
denote by x the equivalence class containing x. If we define f: E —•
^ by V(x) = the unique u e 3^ having support at x, then Γ is one-
one onto ^ , and the metric d on E defined by d(x, y) = ρ(Γ(xΐ), T(y))9

where p is the metric on ^ , endows E1 with a topology that makes
Γ a homeomorphism between ^ and E. Imitating the proof of Theorem
(4.7) we obtain an analogous representation with the space E replaced
by E. Of course E is no longer a subset of E, but rather a set of
equivalence classes of points of E. Note that &> j s separating if and
only if x~ y implies that x = y.

REMARK 5.6. Denote by E' the subset E a E equipped with the
subspace topology, i.e., the topology induced by E. A natural ques-
tion to ask is if there is any relation between EF and E = & as topolo-
gical spaces. We show that is a dual process exists as in Chapter VI

κ\

of [2], then the map Γ'\ &> —> Ef defined by Γ'(ux) = x is a homeomor-
phism so that E = E' as topological spaces. Now the dual process Xt

has a potential operator £7 of the form Uf(y) = \̂ (a;, y)f(x)dx, and it
follows from [7, Chap. Ill, T7 and T10] that g(x^y) = u(x, y) for ye
E = &. In other words, E = {yeE:x—> g(x, y) is an extremal poten-
tial} and therefore Uf(y) = Uf(y) for all y e E and / e CK{E). If uy%

— uyQ in # , then Uf{yn) = Uf(yn) -> J7/(τ/0) = Uf(y0) for each / e
CK(E). Now it is easy to see that the operator U:CK(E) —> C(E) has
an image which separates points of E so that yn—>y0 in i?, hence E'.
Thus .Γ' is continuous. On the other hand, if yn—>y0 in Ef then
Uf{yn) = tf/(i/Λ) -> !7/(2/o) = ϋ/(2/o) for all / e C^ίί?) by the continuity
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&of Of. Thus u(x, yn) —• u(x, y0) in & and JΓ'"1 is continuous, proving
that 7"" is a homeomorphism.
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AN EXTENSION OF SOME RESULTS OF TAKESAKI
IN THE REDUCTION THEORY OF VON

NEUMANN ALGEBRAS

GEORGE A. ELLIOTT

Briefly, the results in this paper are that both for
measurable fields of von Neumann algebras and for families
of measurable fields of operators, pointwise isomorphism
implies isomorphism.

In the special case when half the measurable fields con-
sidered are constant, these results were established by
Takesaki. If the Borel space on which the fields are defined
is standard, the results can be established by classical means;
in the case considered by Takesaki they are due to von
Neumann.

For the results of the present paper, two new tools seem
to be needed. The first is a measurable choice theorem of
Aumann which generalizes the classical one. This has already
been applied to reduction theory by Flensted-Jensen. The
second is a criterion for a yon Neumann algebra containing
the diagonal operators to be decomposable: it should consist
of decomposable operators. This answers a question of
Dixmier.

We shall use the terminology of reduction theory developed in
[2], Chapitre II.

2. LEMMA (Aumann). Let T be a Borel space and let X be a

standard Borel space. Let G be a Borel subset of TxY such that

the projection of G onto T is all of T. Let there be given a finite

measure on T. Then there exists a measurable map g: T—> X such

that (ί, g{t)) G G for almost all teT.

Proof. See [1]. The proof is by reduction to the case that T

is standard.

3. THEOREM. Let T be a Borel space, and suppose given a

finite measure on T and a measurable field of Hilbert spaces on T

with direct integral H. Let A and B be decomposable von Neumann

algebras in H. If for each teT there is a spatial isomorphism of

A(t) onto Bit) then there exists a decomposable spatial isomorphism

of A onto B. This statement also holds with the word "spatial"

removed.
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Proof. The proof of the first assertion is the same as the proof
of Lemma 2 on page 179 of [2], with the exception that 2 above is
used instead of the more well known measurable choice theorem
for standard measures.

The second assertion is reduced to the first by tensoring with
the scalars on a separable infinite dimensional Hubert space, just as
in Theorem 3 of [4].

4. LEMMA. Let T be a Borel space, and suppose given a finite
measure on T and a measurable field of Hilbert spaces on T with
direct integral H. Then a von Neumann algebra in H containing
the diagonal operators is decomposable if it consists of decomposable
operators.

This answers affirmatively the question on page 174 of [2].

Proof. We may suppose that the field of Hilbert spaces is
constant. By [2], page 178, Corollaire, it then follows that the
algebra of all decomposable operators is spatially isomorphic to Z (g) B
with Z a commutative algebra and B the algebra of all operators on
a separable Hilbert space. Since the algebra of diagonal operators is
countably decomposable (the measure of T is finite), so is Z; therefore
both Z and B and hence also Z (g) B have a countable separating
set of vectors.

Let ξu ζ2i be a countable separating set of vectors for the
algebra of all decomposable operators, such that lΊI^H2 < c>o. Then
for any operator x we have (̂ 711̂ 5̂  l|2)1/2 < °° On the algebra of
decomposable operators this expression defines a norm, which on
bounded sets determines the strong topology. We shall denote this
norm by N.

Let A be a von Neumann algebra containing the algebra of
diagonal operators, and consisting of decomposable operators. To
show that A is decomposable, we must show that A is countably
generated over the algebra of diagonal operators ([2], page 174,
Theoreme 2). Writing as before the algebra of decomposable operators
as Z§§B with Z commutative and B a type In factor, n countable,
let xly x2, be a sequence strongly dense in the unit ball of 1 ® 5 .
For each k = 1, 2, let yk be an element of A which is at minimal
distance from xk with respect to the norm N of the preceding
paragraph (such yk exists because bounded weakly closed sets of A
are weakly compact, and N is weakly lower semicontinuous). Then
Vi, V2y * generate A over the algebra of diagonal operators. For if e
is a diagonal projection then for each k = 1, 2, the distance from
eyk to exk with respect to N is minimal. Hence, if eu * ,ep are
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diagonal projections with sum 1, and if kx, , kp = 1, 2, then the
distance of exykι + + epykp to eγxkι + + epxkp with respect to
N is minimal. The assertion follows, because the operators
01^*! + + epxkp as above are strongly dense in the unit ball of
decomposable operators, and the strong topology on this unit ball is
metrized by N.

5. THEOREM. Let T be a Borel space, and suppose given a
finite measure on T and a measurable field of Hilbert spaces on T
with direct integral H. Let (Xi) and (y{) be families of decomposable
operators in H. If for each teT the families (Xi(t)) and (Vi(t)) are
simultaneously unitarily equivalent, then (xt) and (^) are simultane-
ously unitarily equivalent, with the equivalence implemented by a
decomposable unitary operator.

Proof. Suppose first that the families fa) and (yτ) are countable.
Then the conclusion may be deduced as in A 82, page 348 of [3],
using again 2 instead of the classical measurable choice theorem.

If the families (xt) and {y^ are not countable, by 4 it is still
true that the von Neumann algebra A generated by the x{ and
the diagonal operators is decomposable. It follows that there exists
a countable family wl9 w2, in A generating A over the diagonal
operators. We may suppose that the x{ form a sub involutive algebra,
containing the diagonal operators. Then the x{ are strongly dense
in A, and the x{ of norm ^ 1 are strongly dense in the unit ball of
A. As shown in the proof of 4, the strong topology on the unit
ball of A is metrizable. We may suppose that wu w2, lie in
the unit ball of A. Then there exists a countable subfamily of (x^)
which generates A over the diagonal operators (namely, the union
of sequences converging strongly to each wk, k = 1, 2, •••)• By the
first paragraph of the proof this countable subfamily of (xτ) is
simultaneously unitarily equivalent to the corresponding subfamily
of (yd, by a decomposable unitary operator, say v.

We claim that vx&* = yt for every i. The subfamily of (#<)
such that vxfl* = Vi contains the diagonal operators and also a set
(the above countable subfamily) which generates A over the diagonal
operators. It therefore contains a sub involutive algebra dense in A.
By metrizability of the strong topology on bounded sets, this sub-
family is closed under strong limits (use Proposition 4, page 160 of
[2]). It follows that vxtv* = Vi for all i.

6. REMARKS. Once 5 has been reduced by use of 4 to the case
that the families are countable, the proof can also be finished by a
variant of the method of Takesaki, in [4] (in which not just a measur-
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able choice but a Borel choice is made).
On the other hand, although Takesaki was able to prove his

special case of 3 by a Borel choice argument, the author does not see
how to extend this approach and was forced to be content in the
proof of 3 with making a measurable choice.
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DIRECTED GRAPHS AS UNIONS OF PARTIAL ORDERS

PETER C. FISHBURN AND JOEL H. SPENCER

The index of an irreflexive binary relation R is the
smallest cardinal number a(JEt) such that R equals the union
of σ(R) partial orders. With s(ri) the largest index for an
R defined on n points, it is shown that s(n)/log2 w —»1 as
n->ooφ The index function is examined for symmetric R's
and almost transitive R's, and a characterization for
σ(R) ^ 2 is presented. It is shown also that

inf {n: s(ri)>3} ^ 13 ,

but the exact value of inf {n:s(ri) > 3} is presently unknown.

1* Introduction* A binary relation on a set X is a subset of

ordered pairs xy in X x X. A directed graph (hereafter digraph1)
G = (X, R) is a nonempty set X and an irreflexive (xx £ R) binary
relation Jϊ on X. If ^ c Γ g l then G \ Y is the digraph obtained
from G = (X, R) by deleting all points in X-Y.

A partial order P on X is an irreflexive and transitive {xy e P &
yzeP=>xzeP) binary relation on X. A digraph G = (X, R) is
resolved by a set of partial orders on X if and only if R equals the
union of the partial orders in the set. Since {xy} is a partial order
when xy e R, every G is resolved by some set of partial orders.

The index2 of a digraph G = (X, R) is the smallest cardinal
number σ(R) such that R is resolved by σ(R) partial orders on X.
Clearly σ(R) = 1 if and only if R is a partial order. σ({ab, ba}) = 2,
and σ(R) = 3 for the cyclic triangle R = {ab, be, ca). The smallest X
that we know of that admits an R with σ(R) = 4 has 13 points. (See
Figure 1.) In connection with a later characterization of σ ^ 2 we
present an R with σ(R) = 2 where R cannot be the union of two
disjoint partial orders.

Our definition of σ(R) is motivated by Dushnik and Miller's de-
finition [2] of the dimension of a partial order P on X as the smal-
lest cardinal number D(P) such that P equals the intersection of D(P)
linear orders on X. A linear order L on X is a complete
(x Φ y=*xy e L or yxe L) partial order, and a chain in X is a linear

1 We shall sometimes refer to a binary relation as a digraph, omitting explicit
mention of the set on which the relation is defined.

2 It is tempting to use "dimension" instead of "index," but since the former
term is used for a number of other concepts in the theory of binary relations we
favor the latter here. It would be proper to write σ(G) instead of σ(R), but since
<r(R) = o(R') if R is isomorphic to R' the specific omission of X will cause no problems.
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order on a subset of X. A number of facts about D(P) are sum-
marized in [1], which gives other references.

This paper examines the index function σ for digraphs. The
next section focuses on large values for σ{R). Our first theorem,
based on a theorem in Folkman [4], shows that σ{R) can be arbitrarily
large for both symmetric (xy e R=^yxe R) and asymmetric (xyeR=>
yx $ R) digraphs. The second theorem examines the behavior of σ
in the following way. Let

s(n) = sup{σ(R): R is an irreflexive binary relation on n points} ,

the largest σ for a digraph with n points. When u is a real-valued
function on {1,2, •••} and u(n) remains bounded as n gets large, we
write u = 0(1) according to popular convention. Theorem 2 states
that

1 S
log2n — — log2log2w + 0(1) ^ s(n) ^ log2n log2log2w - 0(1) .

2 2
This gives another proof that σ can be arbitrarily large, and shows

that s(ri)/log2(n) approaches 1 as n gets large.
The rest of the paper is mostly concerned with small values of

σ. Section 3 presents an (X, R) with \X\ = 13 and σ(R) = 4. We
do not presently know the smallest X that admits an R with
σ(R) = 4.

Symmetric digraphs (X, S) are examined in § 4, where we give
a necessary and sufficient condition for σ(S) ^ 2. Suppose that P is
a partial order on X and

S = {xy: xyeXxX&x^y & xy $ P & yxg P} .

Then S is a symmetric digraph. We note that when S is defined in
this way, then D(P) ^ 2 if and only if σ(S) ^ 2, and

D{P) ^n^ σ(S) ^ 2(n - 1) .

The question of whether σ(S) ^ n => D(P) ^ f(n) for some function
/ is presently open.

A binary relation R is almost transitive3 if and only if (abeR
& bee R & a Φ c) ̂ ace R. Section 5 proves that σ(R) ^ 2 when R
is an almost transitive digraph.

Section 6 then gives a general characterization of σ(R) <g 2 that
is stated in terms of a partition of the subset of R whose elements

3 Harary, Norman and Cartwright [7, p. 7] call this transitivity, but we use the
modifier to distinguish it from the more common use of "transitivity" in which a, b
and c do not have to be distinct.
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are involved in nontransitive adjacent pairs such as xy, yze R &

2. Digraphs with large indices*

THEOREM 1. If n is a positive integer then there are asymmetric
and symmetric digraphs whose indices exceed n.

Our proof is based on a specialization of Theorem 2 in Folkman
[4]. A graph (X, E) is a nonempty set X and a set E of unordered
pairs {x, y) with x, y e X and x Φ y. A triangle of (X, E) is a set
{{α, &}, {6, c}, {a, c}} g E. A partition of X is a set of mutually dis-
joint subsets of X whose union equals X.

LEMMA 1 (Folkman). Let m be a positive integer. Then there is
a graph (X, E) that includes no triangles, and every partition
{Cu , Ck) of X with k ^ m contains a d such that a, b e d for
some {α, 6} e E.

Proof of Theorem 1. Let (X, E) be such a graph for m = 2*. Let
(X, R) be any digraph for which xyeRoryxeRiί and only if {x, y) e E.
Suppose that R is the union of partial orders Pu •••, Pn on X. Since
E has no triangles, any subset of a P< is a partial order and hence
we can assume P< Π P5 = 0 when i ^ i. Letting A(x) — {i: for some
y e X, xy e Pi}, partition X so that x and # are in the same element
of the partition if and only if A(x) = A{y). The number of elements
in the partition does not exceed 2n. Thus, by Lemma 1, the partition
contains an element Y with x, y e Y and {x, y) e E. Then A(x) =
A(y). Since xyeRoryxe R, take xy e P3 for definiteness with j e A(x).
Since j e A(y) also, there is a ^ e l such that yz e Pό. Transitivity
then implies that xz e Pά and hence that E includes a triangle,
which contradicts our initial hypothesis. Therefore o(R) > n. By
the definition of R it can be taken to be either asymmetric or sym-
metric (or neither).

Henceforth in this section all logarithms are to base 2 unless
indicated otherwise. [r] = (largest integer <̂  r) and {r} = (smallest
integer >̂ r).

THEOREM 2. log n - 1/2 log logw + 0(1) >̂ s(n) ̂ \ogn~ 3/2 log log n
-0(1).

We show first the upper bound, using two preparatory lemmas.
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LEMMA 2. In any digraph G = (H, R) with \ H | = m there exists
D^H such that \D\^ {log4m} = {1/2 log m) and σ(G\D) ^ 2.

Proof. We use induction on m, the lemma being obvious for
small values of m. Fix x e H. Split H* — H — {x} into four parts:

T, = {ye H*: xyίR & yx£R) S, = 0

T2= {ye H*: xyeR & yx$R} S2= {x} x A

T3 = {v e H*: xyZR & yxeR} S3 = A x M

T4= {ye H*: xyeR & yxeR} SI = M x A ,

sr= A x M .
Some I Ti \ ̂  {(m-l)/4} By induction find A S ϊ7* with

I A I ̂  {log41 T, |} ^ {log4 {(m-l)/4}} - {log4m} - 1

and G\ A = Pi U P 2 Then set i) = A U W G\D = (P.U Si)U(P2ΌSi)
except for i = 4 when G | D = (Pi U SI) U (P2 U SΓ)

LEMMA 3. /^ απ?/ digraph G = (X, 2?) with \X\ = n there is a
partition {A, , A} o/ X such that t < 3^/log n and σ(G \Di) ^2
for each i.

Proof. Given G, by Lemma 2 find A such that

I A I = χi ^

By induction find A such that

From elementary calculus we can show Σ- = ] xt ^ n for

We now show the upper bound for Theorem 2 Let G — (X, R)
with \X\ = n. Take A , •••, A as in Lemma 3. Let {Af, Bf) be a
partition of {1, , t) for i = 1, , s such that for all 1 ̂  j Φ k ̂  ί
there exists i, 1 ̂  i ^ s, such that j e Af & A: e Bf. By Spencer [12]
we may take

s = log t + 1/2 log log ί + 0(1) ^ log n - 1/2 log log n + 0(1) .

{A*, Bf} induces a partition {Aiy BJ of X with

i ^ U A , A = U A
jeA? jeB?
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Then set

Pi = {%V- x e Ai & y e Bi & xy e R} for i = 1, , s .

Since σ(G | A) ^ 2, G | A = PI U P". Set

Pf = U Pό P" = U P"

Then i2 = P' (J P " U Pi U U P s, giving the upper bound of Theorem
2.

We turn to the lower bound of the theorem, again using two
preliminary lemmas. A complete asymmetric digraph is a tournament.4

We shall show that a " random " tournament T — (X, R) with | X | = n
has 6r(Γ) ^ logw — 3/2 log log w — 0(1). Intuitively speaking, we show
that all P gΞ T are essentially bipartite.

Let T" be the set of tournaments with X= {1,2, « ,w}. We
say that T = (X, i?) e Tw has property a if and only if there are A,
B g l with | A \ = | B \ ̂  3 log n and i x S g β . Γ has property β
if and only if there is an 4 g l and a linear order L on A such
that IA I ̂  (log w)2 and

LEMMA 4. For n sufficiently large there exists T e Tn satisfying
neither property a nor property β.

Proof. If TeTn has property a, there are i , B g I with
IA I = I B I - [3 log n] and A x B s .K. Set £ = [3 log w]. For fixed
A and 5, 2~ί2 is the proportion of T eTn that satisfy this condition.
There are less than n2t choices of A and B, so less than nu2~~t<λ of
the Te Tn satisfy a. n2t2~t2-+0 as w-> oo.

If TeTn has property /3, there exists 4 g l and L on A such
that IA I = [(log w)2] and (*) holds. There are less than ?^(log n)2 choices
of A and then [(log rif]! choices of L. Given A and L, the propor-
tion of T eTn satisfying (*) is the probability of at most (£)/3 heads
in (2) flips of a fair coin where t — A ~ (log rif. This probability is
approximately p~{^ where p = 31/3 (3/2)2/3 > 1. Thus the proportion
of T e Tn satisfying β is less than

n
( l o s n)2 [(log ri)2]! p-Φ, which >0 as

Thus for n sufficiently large some TeTn can satisfy neither a
nor β.

4 See Moon [9] for extensive discussion of tournaments. See also [3, 10, 11] for
resulted to the present paper.
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LEMMA 5. // Tu •••, Tn s {1, •••, s} then there are n/(s%) T{

which are mutually comparable.6

Proof. We use a technique due to Lubell [8]. There are s !
maximal chains of subsets of {1, •••,§} under the ordering of c .
If I Γ< I = a then Tt is in α ! (s-a)\ ^ (s/2)!2 = s!/(s

s

/2) maximal
chains. Thus some maximal chain must contain n[sl/(s%)]/sl T{.

In the following proof of the lower bound of Theorem 2 we use

the fact that 1/Q2) ~ Vπβ V~s 2~s.
Let G = (X, R) be a tournament that satisfies neither a nor β

(Lemma 4). Suppose that R = P1 U U Ps- Define

W{ = {x e X: \{y eX:xyePi}\>S log n)

Li = {xe X: \{y eXiyxeP^yS log n}

R{ =X- Wi-Li

for 1 ̂  i ^ s. (We split X into winners, losers, and the rest.) By-
Lemma 4, Wi Π I/i = 0 . For a? e X set

Γ β = { i i α e T ^ U Λ J e t l , « , s } .

By Lemma 5 find F g X such that \V\^n i/τr/2 l / T 2"-s and Tx g Γ^
or Γ^ g T^ whenever x, 7/ e V. Induce a linear order L on F by set-
ting X I / G L if TxczTy: when Tx = Ty, L is defined in any fixed
manner.

Now assume s < log n - 3/2 log log n -1. Then | F | ^ 27 i/i/2
(log nf. Set

Given xyeZi9 TxξΞ: Ty so that we cannot have # e W{ & y e L{. And
since Wi Π L^ = 0 we cannot have xeL^ & 2/e TΓi Therefore

Zi = {xyeZiix or ye R{} [J {xye Z{: x,ye Wi} U {xy e Z{: x, y e L J .

There are a t most 6 logw | V\, 3 l o g ^ \V\ and 3 l o g ^ \V\ ordered
pairs in the first, second and third p a r t s respectively of this decom-
position of Zi. Thus \Zi\^ 12 logn \V\. Since G does not have
property β it follows t h a t

and hence that | F | ^ 72 (log n)2 + 1. Since this contradicts | F | ^ 27

l/τr/2 (log n)2 it must be true that s ^ log ^ — 3/2 log log n — 0(1).

5 Ti and Tj are mutually comparable if and only if TiQTj or Tj^
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This completes the proof of Theorem 2.
If a sufficiently good bound could be placed on

{xy e Pi. x or ye R{ or x, y e W{ or x, y e LJ

then one could prove s(n) = logn- 1/2 log log n + 0 (log log n). One
might even show that s(n) = \ogn- 1/2 log log n + 0(1).

3. A digraph with σ = 4 and | X \ = 13. Although the
theorems of the preceding section show that there are digraphs with
large indices, they are of little use in attempting to discover the
smallest X that admits an R for which σ(R) = n. Figure 1 shows
the smallest X that we know of for which σ(R) = 4.

FIGURE 1

Assume that σ(R) = 3 for Figure 1, with A, B and C three partial
orders whose union equals R. Then one of A, B and C must contain
exactly one of aβ, βy, yδ, δμ and μa and the other two must each
contain exactly two of these ordered pairs in alternating fashion.
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Suppose for example that aβ eA,βye B, yδ eC, δμe B, μa e C. Then
yet, δβ, μy, aδ, and βμ must be respectively in C, A, A, A, and B.
Then ybeC and δf, fμ e B. Since ybeC and fμ eB, bfe A. Since
bfeA and δfeB, feeC. By the cyclic triangle {fe,eδ,δf}, eδ
must be in A. But since δβ e A this implies eβ e A, which is false.
A similar contradiction to σ = 3 is obtained when any alternative
assignment is made for aβ, βy, , μcc.

4. Indices of symmetric digraphs* In this section we consider
symmetric (xyeS=>yxe S) digraphs (X, S). For any binary relation
R, iϋ* = {xy: yxe R}, the converse or dual of R.

A graph (X, E) is a comparability graph if and only if there is
a partial order P on X such that {#, y) e E if and only if αψ e P U P*.
Ghouila-Houri [5] and Gilmore and Hoffman [6] provide characteriza-
tions of comparability graphs. When (X, S) is a symmetric digraph,
(X, JS'(S)) will denote the graph in which {x, y) e E(S) if and only if
xyeS.

THEOREM 3. Suppose that (X, S) is a symmetric digraph. Then
σ(S) ^ 2 if and only if (X, E(S)) is a comparability graph.

Proof. If (X, E(S)) is a comparability graph then S = P U P* for
a partial order P, and thus σ(S) ^ 2. Conversely, if S = Pi U P2

with Pi and P2 partial orders, then P2 = Pf.
In [1] it is shown that if (X, P) is a transitive digraph (so that

P is a partial order) and if S= {xy: xΦy & xygPuP*} then
D(P) ^ 2 if and only if (X, E(S)) is a comparability graph. Hence,
as a corollary to Theorem 3 we have D(P) ^ 2 if and only if σ(S) ^ 2.
Our next theorem extends this in one direction.

THEOREM 4. Suppose that P on X is a partial order and let
S = {xy: xΦy & xygPU P*}. Then D{P) ^n=* σ(S) ^ 2(^-1) for
n > 1.

Proof. The theorem is true for n — 2. Using induction, assume
it's true for all n < m and suppose D(P) = m with P = OΓ-̂ * where
each Li is a linear order. Let P ' = ΠΓ^; and

S' = {£7/: ^ | / & ^ ί P ' U (P')*}

Since JD(P') ^ m — 1, the induction hypothesis gives σ(S') ^ 2(m —2).
Clearly S r g S a n d S - S ' - (P' n L*) U ((P')* Π Lx). Since P ' n Lf
is a partial order (the intersection of two partial orders) and (P ' )*nl i
is a partial order, σ(S) ^ σ(S') + 2 ^ 2(m-2) + 2 = 2(m-l).
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5* Almost transitive digraphs* The proof of the next theorem
has several similarities to Szpilrajn's proof [13] of the theorem that
any partial order P on X can be extended to a linear order L with
P s L. We recall that R is almost transitive if and only if (ab e R
& bceR & aΦ c)=>aeeR.

THEOREM 5. σ(R) ^ 2 if (X, R) is an almost transitive digraph.

Proof. Assume that (X, R) is an almost transitive digraph. Let
A = {ab: abeR & ba£R), the asymmetric part of R. Let A+ =
{ab: ab e A or {aau α^, , anb} g A for distinct au , an in X that
are different from a and 6}, the almost transitive closure of A.
Clearly A+ g R and A+ is almost transitive.

To show that A+ is a partial order it suffices to show that it is
asymmetric. To the contrary suppose that xy e A+ and yxe A+.
Then from the definition of A+ and almost transitivity for R it fol-
lows easily that there is a c e X for which ex e A and xe e R, which
contradicts the definition of A. Hence A+ is a partial order.

Let & = {P: P is a partial order on J & 4 + g P g i ? } . It fol-
lows easily from Zorn's lemma that there is a P * e ^ such that
P * c P for no Pe&>. Letting P* be maximal in this sense we now
prove that

ab, baeR=>abeP* or ba e P* .

To the contrary suppose that each of ab and ba is in R and neither
is in P*. Then let

W = {&#: x =£ y & (xa e P* or x = α) & (6τ/ e P* or $/ = b)} ,

and let V= P* U TΓ, so that P* c F. We show that F is a partial order
(clearly A+ £ V g i ί ) , thus contradicting the maximality of P*. F
is irreflexive since P* and W are irreflexive. For transitivity take
xy, yze V. If both xy and 2/2 are in P* then xzeP* by the transi-
tivity of P*.

Suppose next that xy e P* and yz e W. The latter gives (ya e P*
or y = α), from which xaeP* follows, and it gives also (bzeP* or
2 — 6), from which xze V follows unless x — z. But if x = z we have
xαeP* and (6xeP* or x = 6), which give όαeP*, contradicting the
hypothesis that bagP*. Hence xyeP* & yze W=>xze V. Similarly,
xyeW & yzeP* => xz e V.

The final case for transitivity is xy, yze W. Then (xaeP* or
x = a) and (bze P * or 2 = b) so that xzeW unless x — z. But if
x = z then [(#α e P * or a? = α) & (bx e P * or x = b)] => (&α e P * or 6 = α),
which is false. Hence F is a partial order, a contradiction to the
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maximality of P*, and therefore

αδ, baeR = * ab e P* or baeP* .

Finally, let Q = R - P* so that # = P* U Q. Q is irreflexive
since ϋ! is irreflexive. Suppose that xy, yz e Q. Then, since both xy
and yz are in R but not A, yx and 23/ are in R and must be in P*
by the preceding analysis. Therefore zxeP* and z ^ £. Then, by
almost transitivity of i2, xzeR and thus #2βζ) since P* is asym-
metric.

Thus R = P * U Q, the union of two partial orders.

6* A partition characterization for σ <£ 2* Given a digraph
(X, JR) let K be the set of all ordered pairs of pairs in R that deny
transitivity, so that

xyKyz if and only if xy e R & yze R & xz$ R ,

and let V be the subset of R involved in these intransitivities so
that

V = {xy: xyKyz or zxKxy for some ^ e l } .

Suppose that σ(R) <£ 2. If xyKyz then XT/ and 7/2 must be in different
resolving partial orders, so that the digraph (F, K) must be bipartite
or 2-colorable. Moreover, if xy and yz are in V and in the same
resolving partial order and if xze V also, then transitivity requires
that xz be in this partial order. These two necessary conditions for
σ(R) ^ 2 are reflected in Al and A2 of Theorem 6. Their insufficiency
for σ(R) ^ 2 is noted later. (Note that σ(R) = 1 if and only if
V= 0.)

THEOREM 6. Suppose that (X, R) is a digraph and V Φ 0 . Then
a(R) = 2 if and only if V can be partitioned into VΊ and V2 so that

Al. xyKyz => xy and yz are in different VΊ ,
A2. xy, yze Vi & xze V =>xze F« ,
A3. xyeR — V=>(1) and (2) do not hold simultaneously:

(1) (yze V2& xze Vt) or (zx e V2& zye VΊ), for some ze X ,

(2) (yw e V1 & xw e V2) or (wx e F : & wye V2), for some w e X .

If R = Px U P 2 then Vi = Pi Π F for ΐ = 1, 2 are easily seen to
satisfy Al through A3, and V1Γ\V2=0.

Before proving sufficiency we show that Al and A2 are not suf-
ficient for σ = 2. All directed edges in the 13-point asymmetric
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FIGURE 2

digraph of Figure 2 are in V except for xy, rs and tv, and Al and
A2 hold. Labels 1 and 2 for Pι and P2 are assigned to the edges in
V in the only way consistent with Al and A2, beginning with Pί in
the upper left corner. For σ(R) = 2 we require rs and tv in both P1

and P2, but xy violates A3 and cannot be assigned either

Pί [rx eP.&ryί PJ or P2 [tx eP2&ty£ P2] .

By deleting the edge xy from Figure 2 we obtain an R with
σ(R) = 2 where R is not the union of two disjoint partial orders.

Sufficiency Proof for Theorem 6. With V Φ 0 let Al, A2 and
A3 hold. For i = 1, 2 let

Si = {xy: xyeR - V & (i) holds} .

Let R° = R - V - S, - S2 and for ϊ = 1, 2 define Pi by

Pi = ^ U Si U i2° .

Since P^ gΞ i?, it is irreflexive. We now prove that P1 is transitive.
The proof for P 2 is similar.
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Assume that xy, yz e Px. Then xz e R, for if both xy and yz are
in Fi then xzeR by Al, and if one of xy and yz is in & (J -B0 then
xze R by the definitions. Thus #2e Pi unless ^ e F 2 U S2. XZ e V2 is
contradicted in all cases:

1. xy, yzeV1=*xz$ V2, by A2;
2. xyeV1 & yzeS, =>xzg V2J by A3;
3. xyeV, & yzeR°=>xz£ V2, by A3;
4. xy, yzeSiU R°. Then axeR=>ayeR=>azeR and

za e R => ya e R => xa e R. Hence neither axKxz nor xzKza can hold.
It remains to show that #2 g S2. Assume #2 e S2 to the contrary and
for definiteness take zw e V1 and xwe V2 (Figure 3). We note first

R-V

FIGURE 3

that yw ί F2, for yw £ V2=*yze S2. Moreover, yw $ V19 for yw e V1

& xyeV1 contradict A2, and yw e VΊ & xyeS^R0 contradict the
definition of S2 along with A3. Hence yw e R — V. Now if
2ixeV1 then ayeR and hence (since yweR—V) aweR; and if
wae VΊ then zae R and hence (since xze R—V) xae R. Since xw e V2

requires either axKxw with ax e Vγ or xwKwa with wa e Vly and
since ax e V1 contradicts axKxw (since aw e R) and wae V1 contradicts
xwKwa (since xaeR), the proof is complete.
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ZERO DIVISORS IN DIFFERENTIAL RINGS

HOWARD E. GORMAN

Let R be a commutative ordinary differential ring with 1.
Let A be a commutative differential i?-algebra satisfying the
ascending chain condition on radical differential ideals. Let
M be a differentially finitely generated iϋ-module. We obtain
the following results on the zero divisors of A and M in R.
(i) If R satisfies the ascending chain condition on radical
differential ideals and if A has zero nilradical, then the
assassinator of A in R is finite and consists of differential
ideals; it is contained in the support of A in R, and the
minimal members of each set comprise exactly the minimal
prime ideals which contain the annihilator of A in R; (ii) If
R Q A and / is a radical differential ideal of A, then we
obtain the assassinator of A/1 in R from the assassinator of
All in A by intersecting with R; (iii) If R is noetherian,
then the set of zero divisors of M in R is a unique union of
prime differential ideals of R, each of which is maximal
among annihilators in R of nonzero elements of M; (iv) If /
is the annihilator or power annihilator of M in R, then any
prime ideal of R minimal over I is the annihilator of a
nonzero element of M. In the above, (iii) and (iv) require an
additional hypothesis to be made explicit later.

These results (except (ii)) are well known for finite modules over
noetherian rings.

2* Preliminaries* In what follows, all rings are commutative
and all modules are unitary. R will always be a differential ring

with 1, with fixed derivation denoted by " ' " . By a differential

module M over R, one means an i?-module M together with an addi-

tive map from M to M, again denoted by " ' ", which satisfies (rm)' =

r'm + rm' for each reR and me M. If xe M, the successive deriva-

tives of x will be denoted by x',x", •• ,x(%), ••• . By a differential

algebra A over R, one means a differential module A which is a ring

and for which the module derivation is a ring derivation. By an

ideal of A, we always mean an algebra ideal.

Let M be any jR-module and T g M a subset. We denote the

zero divisors of T in R by %Έ(Ί) and the annihilator of T in R by

jχfR{T). The assassinator of M in R, written Ass^ M, is the set of

prime ideals of R which are the annihilators of nonzero elements of

M. The support of M in R, written Supp^ M, is the set of prime

ideals P of R such that MP Φ 0.

Now let R be a differential ring and M a differential iϋ-module.
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Denote by [T]/R the smallest differential submodule of M containing
T. We call M d-finitely generated if there exists n ^ 0 and xί9 •••,
xn in M such that M = [xlf , &J/.B.

Let S £ iϋ be a multiplicatively closed set with 0 g fif. Then the
derivations on R and ikf extend by the usual quotient formula to
make Ms into a differential i?s-module. (See [2; Lemma 1].)

Assume, in addition, that M is a differential i?-algebra. Denote
by {T}/M the smallest radical differential ideal containing T. The
following fact is a trivial consequence of [5; Lemma 1.3]. Let Rad
M = 0 (i.e., M has zero nilradical), and let T be a subset of either
R or M. Then J^(Γ) and S^M{T) are radical differential ideals.

3* The assassinator* We begin by stating the first main theorem.

THEOREM 1. Let R be a differential ring and A a differential
R-algebra. Let R and A satisfy the ascending chain condition on
radical differential ideals, and let Rad A = 0. Then AssΛ A is finite,
consists of differential prime ideals, and is contained in Supp^ A.
The minimal members of each of these sets are the same and coincide
with the prime ideals of R minimal over

Before proving Theorem 1, we need a series of lemmas.

Lemma 1. Let R be a differential ring satisfying the ascending
chain condition on radical differential ideals. Let A be a nonzero
differential R-algebra with Rad A = 0. Then AssR A Φ 0 .

Proof. For any nonzero ae A, %Έ{a) is a proper, radical differen-
tial ideal of R. By hypothesis, there are ideals of R maximal among
annihilators of nonzero elements of A. That these ideals are prime
is well known [4; Theorem 6].

LEMMA 2. Let R be a differential ring, and let M be a differential
R-module. Let T be a subset of M, and suppose that SfR{T) is a
differential ideal. Then:

(i) J^i(Γ) = j^([Γ]/Λ);
(ii) if M is a differential R-algebra, then J^R{T) =

if, in addition, Rad M = 0, then SsfR{T) =

Proof. Let ye^fR(T). Then, since xy' + x'y = 0 for any xeT,
and yf eSsfR(T), we see that x'y = 0. Hence, x"y + x'y' = 0. The
above argument applied to y' instead of to y would have resulted
in xfyr = 0. Hence x"y — 0. Continuing in this way, we see that
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x{k)y = 0 for each nonnegative integer k. Now since an arbitrary-
element of [T]/R has the form Σ*,i ca,j^j{ί)i and an arbitrary element
of [x]/M (when M is an iϋ-algebra) has the form Σ*,i ^i^f + Σ;,:AA (ΐ)>
for bi:jeM and α ί y, ci3 eR, for every i and i, we see that St/R(T) <Ξ
SsfR([T]/R) and J ^ ( T ) § SsfR([T]/M). Since the opposite inclusions
are clear, we have equality.

Now assume that M is an i?-algebra and that Rad M = 0. By
the above, we will be through once we show that s/J\T\/M) gΞ
SsfR({T}/M). Now J^i(J^([Γ]/Λf)) is a radical differential ideal of
M. Since it contains T, it contains {Γ}/Λf; i.e., {T}/M annihilates
j^R([T]/M); therefore, jtfB([T]/M) annihilates {T}/M. This completes
the proof.

LEMMA 3. Let R be a differential ring, and let Abe a differential
R-algebra satisfying the ascending chain condition on radical differential
ideals, and such that Rad A = 0. Let P be a prime ideal of R con-
taining j%?R(A). Then P e S u p p ^ A .

Proof. Since A satisfies the ascending chain condition on radical
differential ideals, there must be a19 , ar in A such that A = {aly

•• ,αr}/A. Suppose that AP = 0. Then there are SiβR—P such
that Sitt* = 0 for each i. Let s = Πί=i s ; Then sα^ = 0 for each i.
Since Rad A = 0, %Ά{s) is a radical differential ideal of A containing
each ai9 and so must equal A. But then sA = 0; i.e., s e ^fR{A), which
contradicts si P. This completes the proof.

LEMMA 4. Let R be a differential ring satisfying the ascending
chain condition on radical differential ideals, and let Abe a differential
R-algebra with Rad A = 0. Then AssR A gΞ SuppΛ A, and each member
of SuppΛ A contains a member of AssR A. In particular, both sets
have the same minimal elements.

Proof. That Ass^ A g SuppΛ A is just [1; § 1, °3, Prop. 7(i)].
Now let QeSupp^ A. Then AQ Φ 0 as an iϋ^-algebra. By Lemma 1,
AssΛ<2(Aρ) Φ <Z>. Let P x e AssΛ ρ(Aρ) with PL = %*RQ (a/1). Since Rad
(AQ) = 0, P : is a differential ideal. Let P = {r e 1 |r/l e P,}. Then P is
a prime differential ideal of R and P ^ Q. We claim that P e Ass^ A.
By hypothesis, P = {px, , pj/iϋ for some pί , pn e R. Since p^/1
= 0, there are s^R — P such that p ^ α = 0 for each i. Hence, if
s = Π?=i sί> PiG -^(sα) for each ί. Since ^ ( s α ) is a radical differential
ideal of R, P g= %*R(sa). On the other hand, if xe^R(sa), then
α?α/l = 0; i.e., x/1 e Px; i.e., xe P. Hence P = %*B(sa) e Ass^ A, and we
are done.
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LEMMA 5. Let R be a differential ring, and let A be a differential
R-algebra satisfying the ascending chain condition on radical differential
ideals. Assume that Rad A — 0. Then A has a normal series

A = 4, 3 4i2 B An = 0

where
(i) Ai is a radical differential ideal of A for each i;
(ii) j^R(Ai^JAi) = Ass^ (Ai-JAi) for each i, and both consist of a

single prime differential ideal Pi of R.

Proof. Let B Φ A be a radical differential ideal of A. Then A/B
is a differential R-algebra satisfying the ascending chain condition
on radical differential ideals, and Rad (A/B) — 0. Since A/B Φ 0, we
are guaranteed by Lemma 1 that there exists in AssΛ (A/B) a differ-
ential prime ideal P~ %'R(x)(xe A/B and nonzero) which is maximal
among the annihilator of nonzero elements of A/B. Let Bλ — φ^dx}/
(A/B)) where φ is the canonical homomorphism of A onto A/B. Then
Bί is a radical differential ideal of A, B £ B1 and BJB = {x}/(A/B) sα
that j^R(BJB) = P by Lemma 2. Now suppose that Qe AssR(BJB).
Then ζ) = ^ ( δ j for some δ: e 5x/5. Since Pδx = 0, P £ Q; hence, by
the maximality of P, P = Q and AssΛ (BJB) consists of the single
prime P.

Starting with B = 0 and using the above method, we construct
an increasing chain of radical differential ideals of A satisfying the
conclusions of the lemma. By hypothesis, this chain must stop; i.e.,
at some stage, Bt = A, and we are done.

Proof of Theorem 1. We follow the notation of Lemma 5. By
[1; §1, °1, Prop. 3],

AssΛ A s U U Ass^ (Ai-JAi) = {Plf , Pn}

so that Ass^ A is finite and consists of differential ideals. By Lemma
4, Assj; A £ Supp^ A, and each has the same minimal elements. (In
fact, since P{ e Supp^A^JAi) by Lemma 4 and since 0 Φ (A^JA^p. =
(Ai_ί)p./(Ai)P. each Pt e Supp^ A{^ s Supp^ A.) That these minimal
elements coincide with the prime ideals of R minimal over
follows from the following two facts: The minimal elements of AssΛ

and so of Supp^ A, contain j^R(A)\ the primes minimal over
are members of SuppΛ A by Lemma 3. This completes the proof.

COROLLARY. Let the hypotheses be as in Theorem 1. Then SuppΛ A
consists of exactly the prime ideals of R which contain
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We remark that if R contains the rational numbers and satisfies
the ascending chain condition on radical differential ideals, then any
quotient by a differential ideal of the differential polynomial ring over
R in a finite number of differential indeterminates also satisfies the
ascending chain condition on radical differential ideals.

If we assume that R s A, we get the following result with no
chain condition assumptions on R.

THEOREM 2. Let R be a differential ring contained in the dif-
ferential R-algebra A. Assume that A satisfies the ascending chain
condition on radical differential ideals. Let I be a radical differential
ideal of A. Then: (i) I can be written uniquely as I — Γ) ?=i P< where
the Pi are prime differential ideals of A; (ii) if Qi = Pi Pi R, then

AssA(A/I) = {P19 , Pn) and AssB(A/I) - {Q19 , Qn}.

Proof. We note that (i) is well known and proved more directly
in [5; Theorem 7.5]. Now A/1, viewed as an A-algebra, satisfies the
hypotheses of Lemma 1 and Theorem 1. Let P19 , Pn be the unique
elements of Ass4 (A/1) minimal over J^(A/J). Since le A, s*fA(A/ΐ) =
/, and since I is a radical ideal, I ~ Π?=iP<. This proves (i).

Since the P< are minimal over j^A(A/I), they are minimal members
of Ass^ (A/I) by Theorem 1. On the other hand, let P = %Άβn) £
AssA (A/1), with a1eA/I. Let aeA be mapped to α1# Then aφPό

for some j = 1, , n. But P α g / g P y , so that P g Pd; i.e., P =
Pό. Hence Ass4 (All) = {Plf , Pn}.

Now let Pi = gTjfai), at e A/I for each i. Then Qi = P 4 n -K must
be ^ ( α i ) for each ΐ; i.e., Q̂  6 Ass^ (A/I).

To complete the proof, we must show that any Q e Ass^ (A/1) is
one of the Qim Localize A and R at ζ). Then AQ is an jBρ-algebra
satisfying the hypotheses of the theorem and IQ is a radical differen-
tial ideal of AQ. Further, IQ is a proper ideal of AQ for, since Id
RS Q, we see that (/ Π R)Q = IQΠ RQS QQ\ i.e., RQ ^ Iρ Since each
Pi is prime, IQ — (Π?=iPi)ρ = ΓΊΓ=i(Pi)ρ where we have assumed that
Pu , Pr are exactly those among Ply , Pn such that (P^)Q Φ AQ.
Note that r > 0 by Lemma 1 since AQ/IQ Φ 0. By the initial argument
in this part of the theorem, AssRQ (AQ/IQ) = {(P^, •• ,(Pr)e}. Since
Qρ S ^RQ(AQ/IQ), QQ S (Pi)Q Π i?ρ = (Q<)ρ for some i. Since Qρ is maxi-
mal, QQ = (Q<)Q; i.e., ζ) = Q<f and the proof is complete.

4* The case for modules* The situation for modules is less
complete. However, under the restriction given below, we can gain
some information about Ass^ (M) when I is a d-finitely generated
iϋ-module.
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We say that the differential R-module M satisfies the property (#)
if ideals of R maximal among the annihilators of nonzero elements
of M are differential ideals. We say that M satisfies the property
(##) if M/N satisfies the property (#) for every differential submodule
N of M.

THEOREM 3. Let R be a noetherίan differential ring and M a
nonzero, d-finitely generated R-module which satisfies the property (##).
Then AssR M is finite.

Proof. The assassinator of nonzero modules over noetherian rings
is never empty. Using the condition (##) and Lemma 2(i), we modify
the proof of Lemma 5 to prove an analogue of Lemma 5 in which
the A{ are replaced by differential i?-modules. The result now follows
as in the first part of Theorem 1.

Further progress in this direction is limited by the fact that
prime ideals of R containing s%fR{M) need not be in Supp^ M. The
correct modification is given in Lemma 7. (For example, let R = Z,
the integers, with the trivial derivation. Let M be generated over
Z/2Z by 1 and the set {x/2n} for n = 0,1, 2, , and have derivation
defined by (x/2n)' = x/2n+1. Then M= [1, x]/Z. Now j*z(M) = 0; but
if P = 3Z, MP = 0.)

The following discussion indicates what is still true if we assume
only the condition (#). We shall need the result [2; Th. I ] : 1

THEOREM A. Let R be a noetherian differential ring, and let M
be a definitely generated R-module. Then M satisfies the ascending
chain condition on differential submodules.

We can now prove

THEOREM 4. Let R be a noetherian differential ring and M a
d-finitely generated R-module which satisfies the property (#). Then
%ίR{M) is expressible uniquely as the union of a finite number of
differential prime ideals, each of which is maximal among the annihi-
lators of nonzero elements of M.

Proof. Each nonzero xe M has an annihilator ideal, and
is clearly their union. Each such annihilator is contained in a max-
imal one which is prime, and differential by assumption. Let {Pχ}χeΛ

be the set of these maximal annihilators, and let Pλ — ̂ R(xχ), xλeM
1 This theorem, in different language, is originally due to J. Johnson, Differential

dimension polynomials and a fundamental theorem on differential modules, Amer. J.
Math., 91 (1969), 239.
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for each XeΛ. The differential submodule N of M generated by the
xλ*8 is d-finitely generated by Theorem A. Let N = [xL, , xn]/R,
with the xL, •••,#» chosen from among the x/s. Then, for any λ,
®χ = Σ<,i rijχij)y with r^ e 2? for each i and i, and only a finite number
of values for j appearing. Since, by Lemma 2, P< = StfR([Xi\) for each
i = 1, 2, , n, this implies that Pλ 3 Π ?=1 P<. This implies, by maxi-
mality, that Pj is one of the P/s. Hence, ^ ( M ) = U ?=1 P<.

To show uniqueness, we remark that if ζ) were a member of
another such union, then Q £ U?=iP» implies that Q equals one of the
P/s [4; Th. 8]. This proves the theorem.

For any i2-module M, define ^j^(ikΓ), the power annihilator of
M in R, to be the set of r in R such that for every me M, there
is a positive integer n with rwm = 0. Then ^sfR{M) is an ideal
which contains both j^fR(M) and its radical. (If M is finitely gen-
erated, it equals this radical.)

LEMMA 6. Let M be a differential R-module. Let ae M and r e
R, and suppose that ra = 0. Then, for every nonnegative integer n,
we have rn+1a{n) = 0.

Proof. We proceed by induction, the case n = 0 being satisfied
by hypothesis.

If rna{n-1] = 0, then rna{n) + nrn~ιrfa{n~ι) = 0.

On multiplying through by r, we have the result.

LEMMA 7. Let R be a differential ring M a d-finitely generated
R-module. Let P £ R be a prime ideal containing &s^R(M). Then
MP Φθ.

Proof. Let M= [m19 , mr]/R, and assume that MP = 0. Then
there is an se R — P such that sm{ = 0 for each i. By Lemma 6,
skmik~1) = 0 for each i and k, and so, for every me M, there is a
positive integer t with s*m = 0; i.e., se ^s*fR{M). This contradicts
si P.

LEMMA 8. Let M be any R-module. Let I = j^(Λf) (resp., 1 =
έ?S%fR{M)), and let P be a prime ideal of R containing I. Assume
that MP Φ 0. Then IP £ jyRp{MP) g PP {resp., IP s ,^j^Rp(MP) s P P ) .

Proof. The first inclusion is clear in both cases. We prove the
second inclusion, ^s$fRp{MP) g PP. Let a /ί e ̂ J ^ p ( A f P ) with xeR
and teR — P, and let m e Λf be such m/1 =£ 0. If (x/t)rm/l = 0, then
there is an s e R - P with sxrm = 0. If & g P, then sxr e R — P, so
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that sxnm = 0 implies that m/1 = 0, a contradiction. Hence, xeP,
and we are done.

If M is any i?-module, it is well known that any prime ideal of
R minimal over J^(Λf) is contained in %TB{M) (See [4; Th. 84]). A
minor variant of the proof in the reference proves.

LEMMA 9. Let M be any R-module. Let P be a prime ideal
minimal over ^S*fR(M). Then P g %Ίι(M).

THEOREM 5. Let R be a noetherian differential ring and M a
d-finitely generated R-module. Let I = SfR(M) (resp., &J&R{M)), and
let P be a minimal prime ideal over L Assume that MP Φ 0 {note
Lemma 7 in this regard) and that MP satisfies the property (#). Then
P is a differential ideal and P e AssΛ M.

Proof. MP is a nonzero, d-finitely generated module over RP.
Since P is minimal over I, Lemma 8 implies that PP is minimal over
j^Rp{Mp) (resp., &*J#RP{MP)). By Lemma 9 and the remark preceding
it, PP £ %*Rp(MP). It follows from Theorem 4 and the maximality of
PP that there is an xe M such that PP = %*Bp(x/l). Further, PP is
a differential i?P-ideal. Since P= {reR\r/lePP}, P is a differential
ideal also. Since PP is finitely generated, this implies the existence
of an se R - P such that sPx = 0. But then P = %TR{sx). For if
ysx = 0, for some y e R, then (y/ΐ) (x/1) = 0; i.e., y/lePP. It follows
that yeP, and we are done.

EXAMPLE. Let S be a noetherian ring containing the rational
numbers and equipped with the trivial derivation. Let R be the ring
of formal power series over S in the indeterminate z, equipped with
the derivation defined by z' = z. Since every prime ideal of R is of
the form PR or PR + zR, where P is a prime ideal of S, R satisfies
the condition (##) for any iϋ-module. Let x be an indeterminate, and
let M1 — R[x~% viewed as a differential .R-module by the derivation
(x)f = r for some unit reS. Since x~{n+1) — (x~ι){n) times a unit of
S, Mι is d-finitely generated over R by 1 and x~\ Let M be any
quotient module of Mx by a differential submodule. Then M and R
satisfy the hypotheses of Theorems 3, 4, and 5. Notice that if M1 is
considered as a ring, Rad Mλ need not be zero.
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A NOTE ON THE LOWNER DIFFERENTIAL
EQUATIONS

MAURICE HEINS

Charles Lόewner in Memorίam

The object of the present note is to indicate a derivation
of the Lδwner differential equations [1] based on the derivation
of an associated differential equation for Green's function of
the variable region relative to the defining parameter. Deci-
sive in our treatment is the use of a certain normalized
minimal positive harmonic function on the variable region.
In fact, our starting point was the feeling that the Poisson
kernel asserted its presence so strongly in the Lowner differen-
tial equations that the concomitant presence of a normalized
minimal positive harmonic function on the variable region
should appear naturally in the study of the question. We
shall see that this is the case. A technical advantage of the
present approach is that the "tip" lemmas of the classical
proof are dispensed with.

It would be of interest to see whether the indicated method,
which is available for other families of harmonic functions monotone
justifying in a parameter, has useful applications to the theory of
harmonic functions.

2* Let 7 be a Jordan arc with parametric domain [0, T] such
that 0 < |τ(ί)l < 1 for 0 ^ t < T and \y(T)\ = 1. Let At denote the
complement of the set y({t ̂  s < T}) with respect to the open unit
disk, 0 <^ t ^ T. Let gt denote Green's function for At with pole at
0. The continuous dependence of gt on the parameter t is an ele-
mentary matter (minimal property of Green's function, the Phragmen-
Lindelδf boundary maximum principle). We let a(t) denote lim^0

[gt(z) + log-1 |̂]. We note that a:t—>a(t) is an increasing continuous
function which satisfies a(T) = 0. We reparametrize 7, as in the
original Lowner argument, by composing 7 with

t > inv a[t + a(0)], 0 ^ t ^ - a(0),

so that for the new 7 we have T = — #(0) and a{t) = a(0) + t. [The
notation "inv" is used to denote the inverse of a univalent function.]

We let G be defined by

G(z, t) = gt(z), zeAt,0^t^T.

173
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Given a function F having as domain a subset of C x R, we denote
by D2F(a, b) the derivative of ί —> F(α, ί) at δ and by DxF{a, b) and
Dj^Fia, b) the complex differential coefficients of z —> 2̂ (2, δ) at α, the
obvious conventions holding. Our first step is to establish the ex-
istence of D2G and to obtain information about it. We remark that
the logarithmic singularity of gt at 0 is harmless. The difference
quotient

(1) CKz,t) - CKz, s) t 0 ^ s < t ^ T ί

t — s

defines a positive harmonic function on As which takes the value 1
at 0 and vanishes continuously at each point of the frontier of At.

To control the limiting behavior of (1) as (s, t) —• (σ, σ), 0 ^ σ <£
T, we make use of the boundary behavior of the Riemann mapping
function for a simply-connected Jordan region and the following
standard lemma of Harnack type.

LEMMA. Let m(z) = (1 - \z\) (1 + |z |)- 3 and M(z) = (1 + \z\)
x (1 — I z |)~3. Let a and b be points of the semi-circular disk {Im z >

0, \z\ < 1}. Let u be nonnegative and harmonic on this set and vanish
continuously on the diameter. Then

[A proof of this lemma is readily given with the aid of Schwarzian
reflexion and the Poisson integral for a circular disk.]

Suppose that (sΛ, tn) —• (σ, σ), where 0 <£ sn < tn ^ 1. Then some
subsequence of the sequence of difference quotients (1), given by
s = sn and t = tn, converges, uniformly on compact subsets of Aσ, to
a positive harmonic function on Aσ which takes the value 1 at 0.
Using the boundary behavior of the Riemann mapping function when
a Jordan boundary lies at hand and the stated lemma, we see that
the limit function in question vanishes continuously at each point of
the frontier of Aσ, the "tip" j(σ) excepted.

We introduce the normalized Riemann mapping function ftf

mapping the open unit disk onto At and satisfying ft(0) = 0, /J(0) >
0. From the continuity of t —* gt, we infer the continuity of t —* invft

and thence the continuity of t-+ft. Of course, the term "con-
tinuity" is to be construed in the sense of uniform limits on compact
subsets. We let tc(t) denote the unique preimage of y(t) with respect
to the continuous extension of ft to the closed unit disk. If A is a
positive harmonic function on At taking the value 1 at 0 and vanish-



A NOTE ON THE LOWNER DIFFERENTIAL EQUATIONS 175

ing continuously at each point of the frontier of At, the "tip" τ(t)
excepted, then

(2)

It follows that there is at most one h having the stated property.
Using (2) as a defining condition for h, we see that such h exist.
We denote the unique h in question (which is a normalized minimal
positive harmonic function on At) by ht.

Combining the results of the preceding two paragraphs we
conclude that the difference quotient (1) tends to hσ as (s, t) —> (σ, σ)
and that, in fact, the uniformity of the limit process holds on compact
subsets of Ao. We let H be defined by

H(z,t) = ht(z), zeAt, O^t^T.

We see that the following differential equation, which will serve as
a basis for the derivation of the Lδwner differential equations, holds:

(3) D2G = H.

Continuity of t~+ht and /c:t-+fc(t). A second application of the
boundary behavior of the Riemann mapping function for Jordan
regions and the lemma yields the continuity of t —+ht, 0 ^ t ^ T. It
suffices to establish the fact that if tn --> σ, then some subsequence
of (htn) tends to hσ. Using the continuity of t-+ht, the continuity of
ί —>/«, and (2) we shall now conclude the continuity of K. Indeed,
if tn-^σ and κ(tn)—+a, we obtain, using (2), the equality

and hence a — κ(σ). The continuity of fc follows.

3* The Lδwner differential equations* The equations bear on
the functions F, Ψ, and Θ, which will now be introduced.

F. We define F by F(z, t) = ft(z), \z\ < 1, 0 ^ t g T. I t is
convenient to have available Φ defined by Φ(z, t) = inv ft(z), zeAt,
0 ^ t ^ T. Its role is auxiliary. The function Φ is useful as a link
between F and G = - log \Φ\.

Ψ. The function Ψ is defined by Ψ(z, t) =

inv ft[fo(z)], \z\ < 1, 0 ^ t ^ T. This is the first function studied by
Lowner in his classical paper. There is an identity involving Φ and Ψ:

(4) Ψ(z, t) = Φ[fo(z), t].
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Θ. The function Θ is specified by the requirement that, z—>
θ(z, t) is the inverse of z-+Ψ(z, t), \z\ < 1, 0 ^ t ^ T. From

z = Ψ[θ(z, ί), ί] - inv / t {fo[θ(z, *)]}

for (2, ί) in the domain of 0, we obtain for such (z, t) the identity

(5) F(z, t) = ft(z) = fo[θ(z, «)].

The equation (3) yields a corresponding equation for Φ. Indeed,
let ht denote the analytic function with domain At satisfying ht(0) =
1, Re ht = hu and let H be defined by H(z, t) = ht(z), zeAt, 0 <£ t ^
T. Clearly, the function H is continuous on its domain. To derive
an equation bearing on Φ, we introduce G1 having the same domain
as G which satisfies Gx{z, t) = G(z, t) + log \z\, z Φ 0, d(0, ί) = a(0) +
t, and thereupon Gj. with the same domain and satisfying the condi-
tion that z —> Gi(2, ί) is the analytic function with real part z -+ G^z,
t) satisfying G^O, t) = G^O, ί) It is readily verified that

the limit process being uniform in the sense indicated above. It
follows, in view of the normalization made on G19 that

DA = H.

Using the relation

Φ(z,t) = z exp [ - G ^ ί ) ] ,

we are led to the equation

(6) D2Φ = - HΦ.

From (4) and (6) we obtain

DtΨ(z,t)= -H[fo(z),t]Ψ(z,t)
= ~ ht[f0(z)]W(z, t)
= - [(htoft)o{mv ftof0)(z)]Ψ(z, t),

and, consequently, the Lowner equation

DJΓ{Z' t ) =

 K(t) - Ψ(z, t)

(z, t) in the domain of Ψ.
The equation for F. From (6) and the continuity of H, Φ, ΌXΦ,

Dφ (trivially, since it vanishes), we conclude that Φ has the C
property and so is differentiate. Since F is continuous on its domain,
ΌXΦ is nowhere zero, and the identity,
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Φ[F(z, ί), ί] = z,

\z\ <l,0 <^ t ^ T, prevails, it is a standard matter of the differential
calculus to conclude the existence of ΏJF and the identity,

DxΦ[F(z, ί), t]D2F(z, t) + D2Φ[F(z, t), t] = 0,
w \z\ < 1,0 ^t^T.

It is elementary that

(9) DxΦ[F(z, ί), t]DtF(z, t) = 1,

for the same (z, t). From (8) and (6) we obtain

, t), P Λ ί) -

and thereupon using (9) the equation

D2F(z, t) = DxF(z, t)z
κ(t) - z '

That Θ satisfies the equation (10), θ replacing F, on its domain,
is immediate from (10), and the identities obtained from (5) by differen-
tiation. The G property of F follows from the continuity of Dφ,
D2Φ and F on their respective domains and the identities (8) and (9)
as well as the non-vanishing of DXΦ. The G property θ is now
concluded with the aid of (5).
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SEMI-ORTHOGONALITY IN RICKART RINGS

Louis HERMAN

This note initiates a study of the semi-orthogonality rela-
tion on the lattice of principal left ideals generated by idem-
potents of a Rickart ring. It will be seen that two left ideals
in a von Neumann algebra are semi-orthogonal if and only
if their unique generating projections are non-asymptotic.
Connections between semi-orthogonality, dual modularity, von
Neumann regularity, and algebraic equivalence will be es-
tablished; those Rickart rings with a superabundance of semi-
orthogonal left ideals will be characterized.

A regular ring is a ring A with identity in which each element
aG A is regular in the sense that aba — a for some element be A. A
Rickart ring is a ring A with identity in which the left (and right)
annihilator of each element is a principal left (right) ideal generated
by an idempotent. Regular rings and Baer rings, as defined by
Kaplansky [4], are special cases of Rickart rings: in particular, then,
a von Neumann algebra is a Rickart ring. Rickart rings are called
Baer rings in [2]. Throughout this note, A will denote a Rickart ring,
L(M) and R{M) will denote respectively the left and right annihilators
of a subset M of A. The letters e,f, g, h and k will denote idempotents
and the letters E, F, G, H and K will denote the left ideals they gen-
erate.

Ordered by set inclusion, the set L(A) of principal left ideals gen-
erated by idempotents forms a lattice. If E and F form a modular
pair in L(A), we shall write {E, F)M; if E and F form a dual modular
pair in L(A), we shall write (E, F)M*. Following S. Maeda [6], we
shall say that two left ideals E and F in L(A) are semi-orthogonal,
E# F, if they are generated by orthogonal idempotents. Maeda shows
that the semi-orthogonality relation # on L(A) has these properties:
(1) If E# E, then E = (0); (2) It E#F, then F% E; (3) lίE^E and
E% F, then E, # F; (4) If E% F and E V F% G, then E#FVG; (5) If
E ^ F, then there is a left ideal G in L(A) such that E V G = F and

The results herein form a portion of the author's dissertation,
submitted to the Graduate School of the University of Massachusetts
and directed by Professor D. J. Foulis.

2* Semi-orthogonal left ideals* In this section, we give geo-
metric meaning to Maeda's canonical semi-orthogonality relation in
L(A).
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THEOREM 1. Let E = Ae and F = Af. Then the following con-
ditions are equivalent:

(1) E%F.
(2) Ef]F = (0) and e(l - f) is regular in A.
(3) E®F = EVFin L(A).

Proof. The proofs of (1) implies (2) and of (3) implies (1) are
routine. To see that (2) implies (3), we suppose that e(l — f)xe(l —
/) = e(l - f) for some x e A. Put g = (1 - f)xe(l - / ) . Then fg =
0 = 0/ and eg = e(l - f)xe(l - /) = e(l - f) = e - ef. Then g2 =
(1 - f)xe(l - /)ur = (1 - f)xeg = (1 - / ) ^ ( 1 - /) = g and (/ + </)2 =

We claim that Eζ&F= A(f + g). But f = (f + g) - g(f + g) e
A(f + flr) and β = ef + e^ = e(/ + g) e A(f + g). Thus E@F^ A(f +
g). Conversely, f + g = f + (l- f)χe(l - f) = (1 - /)α?e + (1 - xe +
/a?e)/ 6 £ 0 F . Hence B φ F = 4 ( / + (/)G L(A).

We can find perspicacious geometric and topological interpretations
for each of these equivalent conditions in the ring of bounded opera-
tors on a Hubert space or, more generally, in any von Neumann alge-
bra. In such a ring, any left annihilator is a principal left ideal
generated by a unique projection (= self-ad joint idempotent). Let e
and / denote the unique generating projections of E and F respec-
tively: we shall identify these projections with their ranges.

If e A f = 0, e and / are said to be asymptotic if sup|<α:, /3)>| =
1, where \\a\\ = 1 = \\β\\,aee, βef; otherwise e and / are said to be
non-asymptotic. It is known [5, p. 166 and pp. 172-174] that these
conditions are equivalent: (1) e and / form a non-asymptotic pair; (2)
The projection map of the subspace e 0 / onto e is continuous; (3)
The vector sum of e and / is a closed subspace; (4) (e, f)M* in the
projection lattice of the ring of all bounded operators on the underlying
Hubert space. The relation of semi-orthogonality to non-asymptoticity
is provocative; for, by modifying results of Jacob Feldman [1, pp. 12-
14], it is easy to verify that E% F if and only if e and / form a non-
asymptotic pair.

Our next result, though appearing an immediate consequence of
Theorem 1 (2), seems to require a measure of prestidigitatorial skill
with idempotents.

COROLLARY 1. ef is regular if and only if (1 — /)(1 — e) is regu-
lar.

Proof. We prefer to demonstrate the obviously equivalent state-
ment: If e(l — /) is regular, then so is / ( I — e). To this end, choose
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an idempotent h with Ah = Ae Π A/. Put e1 = e + h — eh and / t =
f + h — fh. Then ^ and / x are idempotent generators for Ae and
Af respectively and h ^= he1 = eji = /&/,. = /Ίfc. By direct computa-
tion, we have β l(l - Λ) = e(l - /)(1 - Λ) and Λ(l - e2) - /(I - e)(l - λ).
Since e(l - /) is regular, e(l - f)xe(l - f) = e(l - /) for some x e A.
Then, an easy computation shows ex{l — /^[(l — / ) φ i ( l — f) = e^l — / x ) ;
thus ex(l — /O is regular.

P u t e0 = e,(l - h) and f0 = / x ( l - Λ). Then eo(l - f0) = e^l - f,)

is regular. Moreover, if z e Ae0 Π Af0 ^ Ae1 Π A/i = Ah, then z = zh
(zeo)h = ze.il-h)h = 0; so Aβ0 Π A/o = (0). Then by Theorem 1 (2), we
have Aeo$Afo*

Consequently, /(I - e)(l - h) = fx{l - e,) = /0(l - e0) is regular.
Then /(I - e)(l - Λ)y/(1 - e)(l - Λ) = /(I - e)(l - λ) for some ele-
ment ye A. But this means that /(I — e)(l — h)yf(l — e) — /(I — e) —
/(I _ e)(l - h)yf(l - e)Λ - /(I - e)λ is an element of A(l - e) f) Ah =
A(l -e)ΠAeΠAf= (0). Thus /(I - e)[(l - h)y]f(l - e) = /(I - e)(l -
h)yf(l — e) — /(I — e), showing that /(I — e) is regular in A.

COROLLARY 2. If E$F, then {E, F)M and (E, F)M* in L(A).

Proof. A proof that E and F form a modular pair is given by
Maeda [6, Lm. 1]. Now suppose that Ae%Af with Af ^ Ag ^ A e φ
A/. Then g = xe + yf for some elements x and ?/ in A. Then xe =
# — 2// G Ae Π Aflr and we have g = xe + yf e (Ae Π Ag) 0 A/. Thus
Ag ^ (Ae Π Ag) 0 Af. Since the opposite inclusion is evident, Ag =
(Ae n Ag) 0 A/. Hence (Ae, Af)M*r*

3* Equivalence of left ideals* Two left ideals E and F in L(A)
are semi-orthogonally perspective via G, G: E ~ F, iί E(£)G = E V F =
G 0 F with S # G and G # F. The importance of this relation is ex-
emplified in the following result:

THEOREM 1. If G: E ~ F, then the mapping Eo —> φ(E0) = (Eo 0
G) f] F is a lattice isomorphism of the principal lattice ideal generated
by E in L(A) onto the principal lattice ideal generated by F in L(A).
Under this mapping, moreover, semi-orthogonal left ideals contained
in E correspond with semi-orthogonal left ideals contained in F.

Proof. The proof is entirely lattice theoretic. Define a mapping
ψ by Fo —> (G 0 Fo) n E for each FQ ̂  F; clearly both φ and ψ are
isotone maps. By Corollary 2.2, we have (F, G)ikf* and (G, E)M.
With these modularity relations, it is easy to compute (ψ o φ)(E0) —
Eo for all EQ ̂  E. Similarly (φ o φ) (Fo) = Fo for all Fo ̂  F. Thus φ
is a lattice isomorphism with ψ its inverse mapping.



182 LOUIS HERMAN

Now suppose E1,E2^E with Eι#E2. Since
also Then E1®G$E2 and we may compute <p(Ej) φ G = [(2^ φ G) Π
f ] 0 e = (JS?iφ(?) n ( F φ G ) - ( ^ φ G ) n (#©G) = ^ e ^ t ^ since
(F, G)M*. Thus ?>(JBi) # £72 0 G, so that (̂JSΊ) # ?>(#,). Conversely, if
FlfF2^F with i^ # F2, a similar argument shows

LEMMA 1. [7, Th. 2]. Let eA = a A and Af = Aa. Then there
exists a unique element a+ e A such that

(1) aa+ = e.
(2) / α + - a+.

Moreover,
(3) α+α = / .
(4) Ae - ^ α + .
(5) /A = α+A.
(6) a = αα+α.
(7) α+ = α+αα+.

Two idempotents e and / are algebraically equivalent via α and
6(α, b:e~f) if e = ab,f= ba, a e eA/ and 6 e /Ae. This is easily seen to
be an equivalence relation. The idempotents e and / are algebraically
equivalent if and only if Ae and Af are isomorphic A-modules; more-
over, in that case, the mapping x —• bxa is a ring isomorphism of eAe
onto fAf [4, pp. 21-23].

Notice that by Lemma 1, if eA = αA and A/ = Aα, then e and
/ are algebraically equivalent via α, a+. This observation enables us
to relate algebraic equivalence in A to semi-orthogonal perspectivity
in L(A).

THEOREM 2. If Ae ~ Af, then e ~ f.

Proof. Suppose Ag: Ae — Af. Put a = e(l — #) and 6 = / ( I — g);
then α and 6 are regular by Theorem 2.1 (2). An easy computation
shows eA = RL{e) = i2L(e(l — g)) = EL(a) = αA and similarly /A =
bA. Moreover, Ae φ A</ = Ag φ A/ implies R(a) = R(b); thus Aα =
LR(a) = LR(b) = A6. Choose an idempotent A with Ah — Aa = Ab»
Then by our observation above, e — h and h ~ / . Hence e ~ f.

For semi-orthogonal left ideals, the converse of Theorem 2 is also
valid. We prove this as a first consequence of Lemma 2. With
Ae # A/, this fundamental lemma establishes a bisection of eA/ onto,
what might be termed, the set of relative semi-orthocomplements of
Af in Ae 0 Af.

LEMMA 2. Let E = Ae αm£ F = Af with E%F.
(1) IfG®F=E@F with G e £(A), ^ew G = A(e - a) for some
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unique aeeAf.
(2) If ae eAf, then there exists a left ideal G e L(A) such that

( i) G = A(e - a).
(ii) G®F= E®F.
(iii) EVG=E® LR(a).
(iv) EΓi G = Ef]L(a).

Proof. To prove (1), let g be an idempotent generator for G.
Choose w and x in A such that e = wg + xf. Then e = ewg + e#/
Put a = exf. Then e — a = ew# e G; so A(e — α) ^ G. Conversely,

g = y e + zf = y(e — a) + ya + zf = yewg Λ ya Λ- zf for some y,2 e A.
But # — yewg = ya + zfe GnF — (0), so that g = yewg = j/(e — α).
Hence G = Ag <Ξ A(e — α).

If also beF = Af with β — δe G, then α — 6 = (e — b) — (e — a) e
G Π F = (0); so α = δ. This establishes the uniqueness of α.

To prove (2), let e0 and/ 0 denote orthogonal idempotent generators
for E and F respectively. Put g = e0 — eQa and G = Ag. Since aeQ =
afe0 = α//oeo = 0, we find that g = #2. Thus GeZ/(A). Now # =
βo(e — a) and e — α = e(e0 — eoά) = e# implies G -= Ag — A(e — a), proving
( i ) . The remaining parts of (2) are straightforward computations.

THEOREM 2. Let Ae # Af. Then Ae ~ Af if and only if e — f.

Proof. Suppose a,b:e~ f. Put G = A(e — a) and H = A(f — b).
Then by Lemma 2 (2), G 0 Af = Ae © Af = Ae 0 H. But e - a =
αδ — α = a(b — f) — — a(f — δ) and / — δ = δα — δ = δ(α — e) = — b(e —
α), showing that G = A(e - a) = A(f - b) = H. Thus Ae(&G =
Ae@Af =

4. Regularity* In this section, we characterize those Rickart
rings A in which E Π F = (0) implies E% F for all £7 and F in Z,(A).
It will be convenient in the two lemmas and in Theorem 1 to adopt
some notation. Let a and δ denote regular elements with Ae = Aa
and fA = bA. Choose a+ and δ+ by Lemma 3.1 so that a+a — e and
δδ+ = / ; choose idempotent generators g and h of LR(ab) and RL(ab)
respectively. In the context of Rickart *-semigroups, Theorem 1 is
due to D. J. Foulis [2].

LEMMA 1. If eb or af is regular, then so is αδ.

Proof. Suppose eb is regular. Choose an idempotent generator k
for Aeb and choose (eδ)+ so that (eb)+eb = k. Put x = (eb)+a+h. Then
xαδ = (eb)+a+hab = (eb)+a+ab = (eb)+eb = fc. Then αδa αδ = αδfc = (αe)δfe =
α(eδ)& = α(eδ) = (αe)δ — αδ, showing that αδ is regular. The argument
for af is similar.
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LEMMA 2. / / ab is regular, so are eb and af.

Proof. Choose (ab)+ so that ab(ab)+ = h. Let k denote an idem-
potent generator of LR(ef) and put x = kb(ab)+. Then afx = afkb(ab)+ =
(ae)fkb(ab)+ = a(ef)kb(ab)+ = a(ef)b(ab)+ = (ae)fb(ab)+ = afb(ab)+ =
ab(ab)+ = Λ. Hence afxaf — ftα/ = fcαδδ+ = αδδ+ = α/, showing that
α/ is regular. Similarly eδ is regular.

THEOREM 1. αδ is regular if and only if ef is regular.

Proof. If αδ is regular, then so is eb by Lemma 2. Since eδ is
regular, so is ef by Lemma 2 again, applied with α = e.

Conversely, if ef is regular, then so is eb by Lemma 1, applied
with a — e. Then since eb is regular, so is ab by Lemma 1 again.

THEOREM 2. These conditions are equivalent:

(1) ef is regular for every idempotent e and f.
(2) / / a and b are regular, then so is ab.
(3) If EOF = (0), then E%F.

Moreover, if A is a matrix ring, we may add
(4) A is a regular ring.

Proof. The equivalence of (1) and (2) is a consequence of Theo-
rem 1. That (1) implies (3) is a consequence of Theorem 2.1 (2).
Using the notation of the proof of Corollary 2.1, we may show that
(3) implies (1); with E = Ae and F = Af, we have Ae0 Π Af0 = (0) as
before. Then by (3), Ae0 # Af0. Consequently, eL(l — f,) = eo(l — f0) is
regular by Theorem 2.1, and hence e(l — f) is regular. Thus (3)
implies e(l — f) is regular for every idempotent e and / , and this is
evidently equivalent to (1).

Let us now suppose that A is a Rickart matrix ring of order 2> 2.
If A is a regular ring, then E Π F = (0) implies E%F for all E and
F in L(A) by Theorem 2.1. Conversely, if this condition holds for all
E and F in L(A), we show that A is a regular ring. To this end,
let eij9 1 ^ i, j ^ n, be a family of matrix units for A. We shall show
that enAen and hence A, which is isomorphic to the n x n matrix ring
over enAen, is a regular ring.

Let enxen denote an arbitrary element in enAen; put a = enxe12 and
choose idempotent generators e and / for RL(a) and LR(a) respec-
tively. Since R{f) = R(a), aeu = 0 for i Φ 2 implies feu = 0 for i Φ 2;
since L(e) = L(a), e22a = 0 implies e22e = 0. Thus fe = f(Σeu)e =
(Σfea)e = (fe22)e = f(e22e) = 0, showing that Ae Π A/ = (0). Moreover
/ ( I _ e) = / is regular. Hence Ae # Af.
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Now let e0 and f0 denote orthogonal idempotents generating Ae and
Af respectively. Put g = e0 — eQa. Then, as in the proof of Lemma
3.2, a = e(l — g) and Ag = A(e — a). Thus Ae f] Ag = Ae Π L(a) =

Ae Π I/(e) = (0). Then by hypothesis, Ae$Ag. But this means that
a = e(l — 0) is regular in A. Choose an element b in A with aba = α.

Then

( i i w ) ( 1 1 1 2 ) = α = e u f l je 1 2

or equivalently

(enxe12)b(enxen) = ena?eu.

Thus

(enxen)(ei2ben)(enxen) = e u £ e n ,

showing that e^βn is a regular element of enAen.
Hence enAen is a regular ring.
Recall that two left ideals in a von Neumann algebra A are semi-

orthogonal if and only if their unique generating projections are non-
asymptotic. Therefore, a von Neumann matrix algebra with no asymp-
totic pairs of projections must be regular and hence finite dimensional
[8, pp. 85-87]. The definitive result in the general case is due to D. M.
Topping [9]. Topping shows that in a von Neumann algebra these
conditions are equivalent: (1) A has no asymptotic pairs of projections;
(2) A contains no infinite orthogonal sequence of non-abelian projections;
(3) A is the direct sum of an abelian subalgebra and a finite dimen-
sional subalgebra. As a consequence of this result, a type IIγ von
Neumann algebra may contain asymptotic pairs of projections, although
its projection lattice is necessarily modular. Thus semi-orthogonality
and dual modularity are in general distinct concepts. Using Foulis'
characterization of dual modularity in terms of range-closedness, this
same example shows that the product of two projections in a von
Neumann algebra may have a closed range without being ^-regular.

A simple proof, in the spirit of this paper, of (1) implies (2) in
Baer *-rings would be worthwhile; for this would show that a complete
^-regular ring can contain no infinite orthogonal sequence of non-abelian
projections and hence no infinite orthogonal sequence of equivalent pro-
jections. A complete *-regular ring must, therefore, be of finite type.
This is a difficult step in Irving Kaplansky's proof [3] that an ortho-
complemented complete modular lattice is a continuous geometry.
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ON THE SOLUTION OF LINEAR G.C.D. EQUATIONS

DAVID JACOBSON AND KENNETH S. WILLIAMS

Let Z denote the domain of ordinary integers and let

m ( ^ l ) , w ( ^ l ) , ί»(i = l, •••, m), Z<Xΐ=l, * ,m; j = l, - ,n)eZ.
We consider the solutions xeZn of

, G.C.D. (ZnίB! + + hnXn + h, ,

where e(=£ 0), d(^l)eZ and G.C.D. denotes "greatest common
divisor". Necessary and sufficient conditions for solvability
are proved. An integer t is called a solution modulus if
whenever A; is a solution of (1), x + ty is also a solution of
(1) for all y e Zn. The positive generator of the ideal in Z
of all such solution moduli is called the minimum modulus of
(1). This minimum modulus is calculated and the number of
solutions modulo it is derived.

!• Introduction* Let Z denote the domain of ordinary integers
and let m ( ^ 1), n(^ 1), Z<(i = 1, , m), liS(i — 1, , m; j = 1, ,
n) e Z. We write I = (ll9 , lm) and for each i = 1, , m we write
/. = (liu . . . , lin) and /• = (lil9 , lin, k) so that / e Zm, each l{ e Zn, and each
Γi e Zn+1. If x = (xu ' * , xn) e Zn we write in the usual way Ẑ  x for the
linear expression l^x^ + . . . + linxn. We let L denote the m x n
matrix whose ith row is U and U denote the m x (n + 1) matrix
whose ίth row is /••

Henceforth in this paper we will write the abbreviation G.C.D.
for "greatest common divisor" of a finite sequence of integers, not
all zero, and consider the solutions x e Zn of

(1.1) G.C.D. (lrx + ll9 •••,**•* + lm, c) = d,

where c(^ 0), d(^l) e Z. A number of authors have either used or
proved results concerning special cases of this equation (see for
example [1], [5]) so that it is of interest to give a general treatment.
This equation is clearly connected with the system

(1.2) li'X + k = 0 (mod d) (i = 1, , m) .

If we denote the number of incongruent solutions modulo d of (1.2)
by N(d, Z/), then N(d, L') > 0 is a necessary condition for the solva-
bility of (1.1). A complete treatment of the system (1.2) has been
given by Smith [4]. Let Όι = greatest common divisor of the deter-
minants of all the i x i submatrices in L (ί — 1, , min(m, n)), Ώ\ —
greatest common divisor of the determinants of all the i x i sub-
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matrices in Lf (ί — 1, , min(m, n + 1)), 7* = greatest common divisor

of d and ^ p ~ , i = 1, , min(m, ri), where Do = 1, and Ί\ — greatest

J9
common divisor of d and -JFJΓ-* i — 1, •••, min(m, ri), where DO = 1.

Smith has shown t h a t (1.2) is solvable if and only if

min(m, n) min(m, n)

τι Ύi= π v'i
i=ί i=l

and

D'
-=^r = 0 (mod d), if m>n .

When solvable he shows that

N(d, U) = ΎdmΆMn~m>0) ,

where

min(m, n)

7 = Π 7,.

We show in Theorem 1 that the conditions

(1.3) d\c, N(d, L') > 0, G . C . D . (/,, ---,lM,d) = G . C . D . (IJ, . . , l'm, c)

are both necessary and sufficient for solvability of (1.1). When (1.1) is
solvable, (1.3) shows that the quantity g = G.C.D. (ll9 •••, lm, d) is a
factor of li9 l{ (i = 1, , m), c and d. Cancelling this factor throughout
we obtain the equation

G.C.D. (IJg-x + IJg, , IJg x + IJg, c/g) = d/g .

This equation is equivalent to (1.1) in the sense that every solution of
this equation is a solution of (1.1) and vice-versa. Thus we can
suppose without loss of generality that

G.C.D. (lu . . . ,/„,(*) = 1 .

The solution set of (1.1) is denoted by 6^d

c = <9*d

c{Lr) that is,

(1.4) ^ C = ^ ( L ' ) = { x 6 ^ | G . C . D . ( / 1 . χ + ί1, . . . , / m . χ + Zm, c) = d}.

Moreover when £fd

c Φ 0 , we have

d\c, N(d, Π) > 0, G.C.D. (/;, , l'm, c) = 1 ,

and we write e for the integer c/d.
If t e Z, a = (al9 * -,an)eZn and b = (bu , bn) e Zn, we say t h a t
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a and 6 are congruent modulo t (writing a^b (mod t)) if and only
if cii = bi (mod t) for each i = 1, , n. This congruences is an equi-
valence relationship on Zn. If Sic Φ 0 , any integer t for which this
equivalence relationship is preserved on *$ζβ(S Zn) is called a solution
modulus of (1.1). Thus a solution modulus ί has the property that
if Λ: e S^d then JC + ty e £fd

c for all y e Z*. Clearly 0 and ± c are solution
moduli. In Theorem 2 it is shown that the set of all solution moduli
with respect to Stf viz.,

Wle

d = mc

d(L') = {teZ\x + tyeS*d

c for all xe&"A and all yeZn} ,

is a principal ideal of Z. The positive generator of this ideal is
denoted by Mc

d{U) and called the minimum modulus of the equation
(1.1). We show

(1.5) Mc

d = M%{U) = d Π P
| i V ( d L ' ) 0

(Here and throughout this paper the empty product is to be taken
as 1). The product in (1.5) is taken over precisely those primes p\e
for which the system of congruences lt x + lt = 0 (mod pd) (i = 1,
• , m) is solvable.

In §5 we consider the problem of evaluating 9^ = %le

d (Z/), the
number of incongruent solutions x of (1.1) modulo the minimum
modulus Mc

d, from which the number of solutions modulo a given
modulus can be determined. In Theorem 4 we derive a technical
formula which allows the evaluation of yid in some important cases
(see §6). In particular we prove that if G.C.D. (d, e) = 1 then

(1.6) % = N(d, U) Π
\N(dp\e,NΓpd,L')>0~ v /n<->£)

where r(p, L) is the rank of the matrix L{p) obtained from L by re-
placing each entry liS by its residue class modulo p in the finite field Zp.

Finally in § 7 an alternative approach is given which enables us
to generalize a recent result of Stevens [6].

2* A necessary and sufficient condition for £^d

c Φ 0* We begin
by dealing with the case d = 1. We prove

LEMMA 1. <pfc Φ 0 if and only if

(2.1) G.C.D. (ίί, . . . χ , c ) = l .

Proof. The necessity of (2.1) is obvious. Thus to complete the
proof it suffices to show that if (2.1) holds then Sζc Φ 0 . In view
of (2.1) for each prime p\c there must be some U or li3^0 (mod p).
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If some li φ 0 (mod p) we let xr(p) = 0, otherwise we have some l^ Ξ£
0 (mod p) and we let x*(p) = (0, , 0, xd, 0, , 0), where the jth entry
Xj is any solution of l{ix5 = 1 (mod p), so that in both cases we have

G.C.D. (h xHp) + k, , lm-x'(p) + lm,p) = l.

We now determine Λ: by the Chinese remainder theorem so that x ==

x\p) (mod p), for all p\c. Hence we have

G.C.D. (lrx + k, , lm-x + lm, Π p)

= Π G.C.D. (lrx + ̂ , , Ox + Zw, p)

= Π G.C.D. ft.x^p) + k, , L-XKP) + ϊ , P)
= 1 ,

proving that x e S^c.
Now we use Lemma 1 to handle the general case d ^ 1. We prove

THEOREM 1. £^d

c Φ 0 if and only if

(2.2) d\c, N(d, U) > 0, G.C.D. (/,, . ., lm, d) = G.C.D. (U, . . . , Vm, c).

Proof. The necessity is obvious. Thus to complete the proof we
must show that if (2.2) holds then ^ c Φ 0 . As N(d, U) > 0 there
exists k G Zn and h = (hu , hm) e Zm such that

(2.3) Irk + li = dhi9 i = 1, •••, m .

W e w r i t e ^ = d/^r, gi = lt/g e Zn, g\ = ίj/flr e Z % + 1 , gi = IJg eZ(i = l, - ,
m) where g = G.C.D. (lu , lm, d) and suppose that

(2.4) G . C . D . (gl9 --; gm, h,e) > 1 ,

where e = c/d. Then there exists a prime p such that

(2.5) gt = 0 (i = 1, , m), AΞO, β^O (mod p) .

Now from (2.3) we have

ϋi k + gt = dΛ, i = 1, , m ,

and so appealing to (2.5) we deduce gi = 0 (mod p) (i = 1, •••, m),
giving sr' = 0 (mod p) (i = 1, , m). Thus we have G.C.D. (#', ,
fir«, ê β) Ξ 0 (mod p), which contradicts G.C.D. (g[, •• ,g'm,d1e) = 1.
Hence our assumption (2.4) is incorrect and we have G.C.D. (gu •••,
gmy h, e) = 1. Thus by Lemma 1 there exists XeZn such that

G.C.D. (gr\ + hu ---,gm-\ + hmie) - 1

and so JC = d,X + k e S^ά

c.
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3* Throughout the rest of this paper we suppose that S^d

c Φ 0
and G.C.D. (lu , Zm, d) = 1. Thus by Theorem 1 we have d\c, N(d,
L') > 0 and G.C.D. (l[, •• , Z'm, c) = 1. Also throughout this paper
corresponding to any xeS^d

c we define ueZm by u — (uu * , ^ m ) ,
where li x + h = du^i — 1, , m), so that G.C.D. (u, e) = 1. The
following lemmas will be needed later.

LEMMA 2. (i) If xe S^c and p is a prime dividing e for which
the system of simultaneous congruences

(3.1) li'Z + Ui = 0 (mod p), i — 1, , m ,

is solvable then N(pd, U) > 0.
(ii) Conversely if p is a prime dividing e for which N(pd, U) > 0

then there exists x e S^c such that (3.1) is solvable.

Proof, (i) For x e <5ic and z a solution of (3.1) we let w — x + dz.
Then for i = 1, , m we have

Z M? + li = (li'X + Zi) + dli z

= d{Ui + Ifz)

ΞΞ 0(mod pd) ,

showing that N(pd, U) > 0.

(ii) We define vt by l^w + ϊ, = pdt;,- (i = 1, , m) and claim that

(3.2) G.C.D. (ίlf , /m, p V l , , pvm, e) = 1 .

For if not there is a prime p ' | e such that

/̂  ΞΞ 0, pVi = 0 (mod p') (i = 1, , m) .

Thus from l^w -\- U — d pvi we have ^ ΞΞ 0 (mod pf) (i = 1, , m),
giving Zί ΞΞ 0 (mod p') (i = 1, , m), which contradicts G.C.D. (ZJ, ,
/ς? de) = 1. Hence (3.2) is valid and so by Lemma 1 we can find teZn

such that

G.C.D. (lrt + pvlf ••-,/«•* + pvm, β) = 1 .

We set Λ: = H? + cί t so that for ΐ = 1, , m we have

giving

G.C.D. (h-x + k, ~-,l.-x + l~,c)

= d G.C.D. (Zi f + pvlf , Zm ί + ^vw, e)
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so that x e Stf. Finally taking z = — t we see that the system

li z + Ui = 0 (mod p) (i = 1, , m)

is solvable, as %< = /<•<

LEMMA 3. Lei t be a positive integer, A a subset of Zn which
consists of A(t) distinct congruence classes modulo t. Now if V is a
positive integer such that t\t' then A consists of (t'/t)nA(t) congruence
classes modulo V.

Proof. It suffices to prove that a congruence class C modulo t of
A consists of (ί'/ί)* classes modulo i\ This is clear for iί xeC then
so does x + tyif (i = 1, •••, (t'/t)n), where the y€ are incongruent
modulo ί'/ί, moreover the x + ty{ are incongruent modulo V and every
member of C is congruent modulo t' to one of them.

4* The m ί n u m u m modulus* In this section we determine the
minimum modulus Mc

d. We prove

THEOREM 2. // Sfd

c
 Φ 0 and G.C.D. (lίf , Zm, d) = 1 the min-

imum modulus Mc

d with respect to S^ά

c ώ given by

(4-1) ΛΓ5 = d Π P .

Proo/. As ^ c ^ 0 , 2 K r f — t h e set of all solution moduli with
respect to £Sd

c—is well-defined and moreover Wlc

d is non-empty as 0
and ± c belong to Έid. The proof will be accomplished by showing
that Md is a principal ideal of Z generated by d Π P

p\e,N(pd,L')>0

(i) We begin by showing that j£fld is an ideal of Z. It suffices
to prove that if t, e Md and t2 e Έlc

d then t, - t2e Wd. For any x e 6^°
and any yeZn we have JC + tγy e <PΓ, as ^ e SK .̂ Hence as ί2 e Wlc

d

we have

(x + t,y) + U- y) e 6^c ,

that is

so that

ίt — ί! e

(ii) Next we show that k = d Π p G
p | i V ( d /

For JC e S^c and any y eZn we have
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G.C.D. (Zx (x + ky) + llf , Zm (x + ky) + lΛ, c)

= G.C.D. (lrx + k + Hh-y), ••,/••* + L + Wm-y), de)
= d G.C.D. (^ + k, (lry), --,um + k, (lm-y), e) ,

where kγ — k/d. To complete the proof we must show that for all
y e Zn we have

G.C.D. (u, + h (lry), -• ,um + k1 (lm y), e) = 1 .

Suppose that this is not the case. Then there exists y0 e Zn and a
prime p\e such that ut + kx (lry0) = 0 (mod p) for i = 1, , m. Let
J2Γ = x + &#o so that for i = 1, , m we have

= d (ut + Λi (

that is,

Zi z + U = 0 (mod

so that N(pd, U) > 0. Hence as p\e we have p\kx and so p\u{ for
i = 1, « ,m. This is the required contradiction as G.C.D. (uλ, •••,
ww, e) = 1, since x e ̂ 1 C .

(iii) In (i) we showed that 9KJ is an ideal of Z and since Z is a
principal ideal domain, 2K̂  is principal. Thus by the definition of the
minimum modulus Ml we have Wd = (ΛfJ). In (ii) we showed that
k 6 2Kc

d so that Mc

d | k. Hence to show that Mc

d = fc we have only to
show that Jfc|Λίd.

Now for all x e ^ c and all y e Zn we have
G.C.D. (lr(x + Mly) + i l f « ,/m (x + M ^ ) + lm, c) = d .

Hence

G.C.D. (du, + MS Zi if, , d^m + M^ Zm z/, d e) = d ,

and so we must have

u ^ / , . # = 0 (modd) ,

for all y eZn and all i (1 ^ i ^ m). Taking in particular # = (0, ,
0,1, 0, , 0), where the 1 appears in the j t h place we must have for
ί = 1, ••, m and j = 1, , n

Mc

d lij = 0 (mod d) ,

t h a t is

G.C.D. {Mc

d ίu, , Mc

d lmn) = 0 (mod d)

or
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MJ G.C.D. (l19 , /„) = 0 (mod d) .

But G.C.D. (lt , Zw, d) = 1 so we must have ΛfJ = 0 (mod d). Thus
it suffices to prove that

, where k: = &/ώ = Π P α ^ πd = Mdjd .
| J V ( d /

We suppose that hγ\πd so that there exists a prime p e for which
the system l^w + i4 = 0 (mod pc£) (i = 1, •••, m) is solvable yet p\
πc

d. By Lemma 2 (ii) there exists * e Z% such that for some JC e ^ c

we have

li z + Ui = 0 (mod #), i = 1, •••, m .

As p \ πc

d we can define λ by TΓJ λ = 1 (mod p) and let ί/ = λ̂ r so that
for i = 1, , m we have

(4.2) % + ττcrf li-y = 0 (mod j>) .

But as AfS is the minimum modulus and xe S^d

c we must have

G.C.D. (lr(x + Md y) + i l f . . . , lm-(x + Md y) + Zm> c) = d ,

that is

G . C . D . ( ^ + πd lry, ---,um + πc

d lm-y, e) = 1 ,

which is contradicted by (4.2). Hence πc

d = Π V and this com-
p\e,N(pd,L')>0

pletes the proof.

We note the following important corollary of Theorem 2.

COROLLARY 1. x e Zn is a solution of

(4.3) G.C.D. (lrx + llf •••,/*•* + L, c) = d

if and only if

(4.4) G.C.D. (lrx + k, •••, /» ΛΓ + iw,MS) = d.

Proof, (i) Suppose x is a solution of (4.3). Then we can define
Ui (i = 1, , m) by /^-x + Zi = ώ^ and we have

G . C . D . (ulf ...,um,e) = l .

Hence we deduce

G.C.D. (u19 --.,um, Π P) = l
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and so

G . C . D . (lrx + k, ...,lm.x + lm,d Π P) = d,
p\e,N(pd,L')>0

which by Theorem 2 is

G.C.D. (lί-x + k, •• , / m x + lm,M°d) = d.

(ii) Conversely suppose x is a solution of (4.4). Then there exist
ui (i = 1, , m) such that l^x + Z* = du{ and

G.C.D. (ulf ---,um, Π P) = 1
p\e,N(pd,L')>0

Suppose however that

G . C . D . ( u l f - - - , u m , e ) Φ l .

Then there exists a prime p such that

^ = 0 (i = 1, , m), β Ξ 0 (mod p), iSΓ(pd, L') = 0.

But for i = 1, , m we have

/ί jc + li = d^i = 0 (mod pd) ,

that is N(pd, Lr) > 0, which is the required contradiction. Hence we
have

G . C . D . (u19 - - - , u m , e ) = l

and so

G.C.D. (lrx + ?!,••-, /m x + ίm>c) = d .

5* Number of solutions with respect to the minimum mod-
ulus* We begin by evaluating 5ft;, that is, the number of solutions of
(1.1), when d = 1, which are incongruent modulo M\. We prove

THEOREM 3. 91; = Π 2Π1 - — r τ τ \ w/^re r(p, L) is the
p\c,N(p,L')>0 \ rprKP,^) J

rank of the matrix L[p) obtained from L by replacing each entry liά

by its residue class modulo p in the finite field Zp.

Proof. By Corollary 1 the required number of solutions 9ΐJ is just
the number of solutions taken modulo Mΐ of

G.C.D. (/1 ΛΓ + k, . . . , / m x + lm,Mϊ) = 1 .

Thus as ilίί = Π V is a product of distinct primes, a standard
ρ\c,N(p,L')>0



196 DAVID JACOBSON AND KENNETH S. WILLIAMS

argument involving use of the Chinese remainder theorem shows that
this number SSl{ is just Π STi(ί>), where <3l{p) is the number of solutions

P\M{

x taken modulo p of

(5.1) G.C.D. (k-x + k, . . . , / m x + lm,p) = l .

Now x is a solution of (5.1) if and only if x{p) is not a solution of the
system (T denotes transpose)

Since N(p, U) > 0, this system is consistent over the field Zp and has
pn-rip, L) solutions. Thus the number of solutions (modulo p) of (5.1)

is pn - p*-'<*>» = pn ( l - -^^j-X giving

as required.
In the proof of Theorem 2 we have seen that any solution

modulus M of (1.1) is a multiple of Mc

d. As £^ά

c consists of 3lc

d con-
gruence classes modulo Mc

d, Lemma 3 shows that S^c consists of
(M/Mc

d)
n<$ld congruence classes modulo M. Hence by Theorem 3 we have

COROLLARY 2. The number of solutions x of (1.1), with d = 1,
determined modulo M—a multiple of Mc

d—is

,α4'.>o V1

As a consequence of Corollary 2 we have the linear case of a
result recently established by Stevens [6]. A generalization of this
result is proved in § 7.

COROLLARY 3. (Stevens) The number of solutions of

G . C . D . (a.x, + &!,•••, anxn + bn1 c) = 1 ,

taken modulo c, is

where Vi(p)(i = 1, , n) is the number of incongruent solutions modulo
p of diXi + 5 { Ξ 0 (mod p).

Proof. The system
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diXt + h = 0 (mod p) (i = 1, , n) ,

is solvable if and only if

G.C.D. (ai,p)\bi(i = 1, ...,w) ,

that is, if and only if

p\ di or p I G.C.D. (α*, 6;) (ΐ = 1, , n) .

Hence by Corollary 2 the required number of solutions is

(5.2) e D

where the dash (') denotes that the product is taken over all p such
that p\di or p\G.C.D. (α<, bt) (1 <^ i <: n) and r(p) is the number of
a,i (i = 1, •• , ri) not divisible by p. As

1, P Jf di ,

0, p α o p | bi ,

for i = 1, , n, (5.2) is just

which is the required result.
We now turn to the general case d >̂ 1. Let p be a prime and

let E denote an equivalence class of S^d° consisting of elements of S^l
which are congruent modulo d. We assert that if x(1), x(2) e E then
the system l^z{1) + u! ι) = 0 (mod p) (ί = 1, , n) is solvable if and only
if the system li z{2) + ^ ( 2 ) = 0 (mod p) (i = 1, •••, n) is solvable. As
χ(D Ξ χ(2) ( m o d p ) t h e r e e χ i s t s f e ^ s u c h t h a t χi2) = χ(D + rfίβ Hence

for ΐ = 1, , n we have

dnf = lrx
{2) + k

= lrx
{ι) + lt + dlrt

= duίι) + dirt

giving

nf = uϊ1} + Irt .

If there exists z{1)eZn such that / j ^ + i t i ^ O (mod p) (i = 1,
. , w) letting z(2) = z(1) - ί we have Zΐ z

(2) + uf = /ί z(1) - Z-f + ulυ +
li t = 0 (mod p), which completes the proof of the assertion. Hence
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the solvability of the system

li'Z + Ui ΞΞΞ 0 (mod p) (i = 1, , n)

depends only on the equivalence class E to which x (recall U x + U =
dUi) belongs. Thus we can define a symbol δp(E) as follows:

rl, if for some xeE (and thus for all x e E) the system

δp(E) = | h z + ut = 0 (mod p) (i = 1, , m) is solvable,

10, otherwise.

We now prove the following result.

N{d,L') f / I \δp(E^))Λ

THEOREM 4. 3ίj = Σ i Π W l - —Ty \, ivhere
3=1 {.p\e,N(pd,L')>Q \ PKV' V J

the EU) denote the N(d, U) congruence classes modulo d in S^0.

Proof. We let

l/ί ΛΓ + Z< = 0 ( m o d d ) , i = 1, « , m }

so that we have Sfd

c g ^ . Now ^ consists of JV(d, L') congruence
classes modulo d and if we restrict this equivalence relation modulo
d to SHe, we show that £fd

c also contains the same number of classes.
We write E(x) (resp. E'(x)) for the equivalence class to which x e 6^
(resp. x G S?) belongs. From the proof of Theorem 1 we see that for
each x e y there exists Xe Zn such that x + dλ e ^ c . We define a
mapping / from the set of equivalence classes of S? into the set of
equivalence classes of 6^d

c as follows: For x e S^

f(E>(x)) = E (x + dX) .

This mapping is well-defined for if x' e S? is such that E\xf) = £"(x)
then E{x> + ώλ') = E(x + dX). f is onto for if x 6 S^c then / (E'(x)) =
E(x) and is also one-to-one, for if f{E'{x)) =f(E'(y)), then E(x + dX) =
E'^ + dλ'), that is x = x/ (mod d), giving Er{x) = £ % ) . Thus the
number of equivalence classes of ,9^d

c is the same as the number of
equivalence classes of Sf, that is N(d, U).

Since d\Mc

d, each equivalence class £7 of Sie, consists of a certain
number of distinct classes in S^d

c modulo Me

d. We now determine this
number. If xe E, x + dt also belongs in E if and only if it belongs
in S^.% that is, if and only if,

G.C.D. (ίt (x + dt) + k, , Zm (x + dt) + lm,c) = d,

that is, if and only if,



ON THE SOLUTION OF LINEAR G.C.D. EQUATIONS 199

(5.3) G.C.D. (u, + l^t, , um + ln-t, e) = 1 .

Thus the number of distinct classes modulo Md contained in E is
just the number of distinct classes modulo πΰ

d = Mc

d/d which satisfy
(5.3). But the minimum modulus of (5.3) is ΓLιe pδp{E). By lemma
2 (i) δp(E) = 1 implies N(pd, U) > 0, so that Y[pU pδ*(E) divides
ILp\e,N(Pd,L>)>o P = ^ . Writing Πίϊ. f ° r ΪLie ,^ , L Ί > 0 and Π°Piβ for
ϊlp\β,N(pd,L>)=oi the required number of classes is by Corollary 2

»<£>

as N(pd, U) = 0 implies δ^J?) = 0.
Finally letting Ea), . . , ί/(Λ) denote the h = N{d, U) distinct equi-

valence classes in 6^c we deduce that the total number of incongruent
solutions modulo Mc

d of (1.1) is

S { R 1 ) Γ

We remark that r(p, L) ^ 0 , for p\e and δp(E) = 1. Otherwise,
if r(p, L) = 0, li = 0 (mod p) (i = 1, , m). But as 5P(JE7) = 1 then for
xe E the system ^ z + ut = 0 (mod p) (i = 1, , m) is solvable con-
tradicting G.C.D. (t&i, , um, e) = 1.

6* Some special cases* We note a number of interesting cases
of our results.

COROLLARY 4. If G.C.D. (d, e) = 1 ίΛ,β^ ίΛe number %lc

ά of solu-
tions of (1.1) modulo Mc

d is

U) 11 p
p|e,Λ7(?)G;,L')>0

Proof. By Theorem 4 it suffices to show that if G.C.D. (d, e) =
1, p\e, N(pd, U) > 0 then for all xe £Sd we have δp(E) = 1, that is the
system li z + ut = 0 (mod p) is solvable. Let w be a solution of
ίi ΪΓ + Zt = 0 (mod pd), say Z-u? + li = p d ^ (i = 1, , m). As p | d we
can define * = d " 1 ^ — x), where dd"1 = 1 (mod p) so that for i =
1, , m we have
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li z + Ui = drl(li'W — li x) + u{

— k — dUi + lt) + Ui

— Ui) + Ui

= 0 (mod p) ,

as required.

COROLLARY 5. If N(d, U) = 1 then the number %ld of solutions
of (1.1) modulo Md is

(6.1) 9lJ= Π
\N(dp\e,N[pd,L')>0 \ p'"->V

In particular N(d, U) = 1 when L is invertible (mod d), and so
%lc

d is given by (6.1). Moreover if L is invertible modulo d JJple p or
c, then (1.1) is solvable and 9ΪJ = ΐ[p]e(pn — 1).

Proof. This is immediate from Theorem 4 since by Lemma 2(ii),
δp(E) = 1 for all p\e, N(pd, U) > 0. Also (1.1) is solvable when L is
invertible modulo d ]Jp]e p as

G.C.D. (l19 , lm, d) = G.C.D. (/;, , l'm, c) = 1 .

COROLLARY 6. If L is invertible modulo Π V then the
p\e,N(pd,L')>0

number of solutions of (1.1) modulo Md is
yic

d = N(d, Π) Π (Pn - 1) .
p\e,N(pd,L')>0

Proof. Let p be any prime such that p\e and N(pd, L') > 0.
Then L is invertible modulo p and so for any x e Sζc the system

li z + u,i == 0 (mod p) (1 = 1, , n)

is solvable and so δp(Eij)) = 1, j = 1, , N(d, U). Moreover as L is
invertible modulo p we have r(p, L) = n and the result follows from
Theorem 4.

COROLLARY 7. //

(6.2) G.C.D. (α1? « ,α w , d) = 1

^ e equation

(6.3) G.C.D. ( α ^ + . + αwa?Λ + b,c) = d

is solvable if and only if

(6.4) d I c, G.C.D. (αlf , αft, 6, c) = 1 .
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The minimum modulus of (6.3) is

dlί'P
p\c/d

and the number of solutions x modulo this minimum modulus is

p\cld

where the dash (') means that the product is taken over those primes
p\c/d such that G.C.D. (α l t , αw, p) = 1.

Proof. According to Smith [4] or Lehmer [3] the number of
solutions x taken modulo d of

aγxγ + + anxn + b = 0 (mod d)

is dn~ι G.C.D. (a19

 β , α n , d) if G.C.D. (α iy

 β , α Λ , d) divides δ and 0
otherwise. Thus as G.C.D. (a19 , an, d) = 1, we have JV(d, L') = dn~ι

and so by Theorem 1 (6.3) is solvable if and only if

d\c, G.C.D. (a19 , an, 6, c) — 1 .

Now if (6.3) is solvable and p\c/d then

G . C . D . (a19 ---,an,pd)\b

if and only if

G.C.D. (a19 --,an, p) = 1 ,

in view of (6.2) and (6.4). Thus by Theorem 2 the minimum modulus is

Finally for p\c/d, G.C.D. (aίf « ,α Λ , p) = 1 we have r(p, L) = 1 and
moreover the congruence α ^ + + α ^ + % Ξ= 0 (mod p) is always
solvable so that δp(Eij)) = 1,^ = 1 , . . . , d^ 1. Hence by Theorem 4 the
number of solutions is

dn-l -Q, Λ _
p I c/d V

We remark that in particular ([5])

G.C.D. {ax + 6, c) = 1

is solvable if and only if G.C.D. (a, 6, c) = 1, has minimum modulus
Upicpia Pi and has ELicpfα (p — 1) solutions a; modulo the minimum
modulus.
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COROLLARY 8. There is a unique solution of (1.1) modulo Mc

d if and
only if

(i) N(d, U) = 1 and there is no prime p such that

p\e, N(pd, L') > 0 ,

or

(ii) N(d, U) — 1 and the only prime p such that p\e, N(pd, L') >
0, is p = 2, and r(2, L) = 1, n = 1.

Proof. If (1.1) possesses a unique solution modulo Mj, Theorem
4 shows that S can consist only of a single congruence class modulo
d. Hence N(d, U) — 1. Also by Theorem 4 if there is no prime p
such that p\e and JV p̂d, U) > 0 then 9^ = 1. Suppose however that
there is such a prime p. Then by Corollary 5 we have

1 = Π (Pn - pn~r{p'L)) .
p\e,N(ρd,L')>0

This occurs if and only if

(6.5) p n - pn~r{*>>L) = 1 ,

for all p\e with N(pd, U) > 0. But the left-hand side of (6.5) is
divisible by p unless r(p, L) = n. Then pn = 2 and we have p = 2,
w = 1, r(p, L) = r(2, L) = 1, which proves the theorem.

7. Another method. Although the formula of Theorem 4
applies to some important cases in § 6, this formula seems difficult to
evaluate even for example in the diagonal case

G.C.D. ( α ^ + δi, , anxn + δΛ, c) = d .

The inherent difficulty is in determining for a given prime p which
solutions of this equation have the property that the system atZi +
Ui = 0 (mod p) (ί = 1, •• , n) is solvable. We now present another
method which in conjunction with previous results yields the diagonal
case.

We consider the set U of ueZm with G.C.D. (u, e) = 1 for which
the system

(7.1) li x + U = dUi (mod c) (i — 1, , n) is solvable

It is clear that if u e U and u = u' (mod e) then u' e U. We denote
by K\ the number of distinct classes modulo e contained in IX. Let
91 denote the number of solutions x of (1.1) modulo c. We prove

THEOREM 5. Sfl = Kc

dNc(L*) where L* is the mx(n + l) matrix
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Proof. If xe^dc then there exists ueZn such that i< x + ϊ< =
dUi (i = 1, , m) and G.C.D. (ιι, e) = 1. If x, x ' 6 ̂ 2 C are such that

x = x' (mod e) then dui = d^J (mod c), that is %,»==tt? (mod e).
Conversely if G.C.D. (M, e) = 1 and JC satisfies l^x + l{ = dui (mod

c) (i = 1, , m) then / x + ϊ» = rf(w« + λ<e) and x G ,9T as G.C.D. (M +
λe, e) = G.C.D. (w, e) = 1.

Thus x e S^d

c if and only if x is a solution of li x + i, = d% (mod
c), where G.C.D. (M, e) = 1. Now there are Ke

d incongruent classes of
u modulo e, with G.C.D. (u, e) = 1, for which (7.1) is solvable. For
each one of these, (7.1) has NC(L: 0) incongruent solutions modulo c.
Hence we have

% = Kc

dNc(L*)

as required.
We now obtain the following interesting result.

COROLLARY 9. If heZn and el9 ,ew are divisors of e then the system

(7.2) Uι = hi (mod e<) (i = 1, , w)

a solution u = (^, , ww) ŝ c/̂  ίfeaί G.C.D. (M, e) = 1 if
if G.C.D. (ex, , e», fci, , /̂ w, e) = 1. When this holds (7.2) /ιas

ft («/««) Π' ( i -
distinct solutions u modulo e, for which G.C.D. (u, e) = 1, where r(p) =

number of e< (i = 1, , w) woί divisible by p, and the dash (') means

that the product is taken over those primes p\e such that pJfβi or

pI G.C.D. (ei9hi) (i = 1, ••-,**).

Proof. The system (7.2) has a solution M such that G.C.D.
(u, e) — 1 if and only if

(7.3) G.C.D. ( β ^ + hu , enxn + ΛH, e) = 1

is solvable, which by Lemma 1 is the case if and only if G.C.D. (e19

•••fβnfhi* ' •> ΛΛ> β) = l Applying Theorem 5 to (7.3) we have Sft =
K?Ne{L*) and we note that K? is the number of distinct solutions u
modulo e of (7.2) for which G.C.D. (w, e) = 1. However Ne(L*) is the
number of solutions x modulo e such that e&i = 0 (mod e) (i = 1, ,
^ ) . Clearly iVe(£*) - Π?=i ^ % Corollary 2
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= e" Π (l - -hr) ,

where

Now N(p, U) > 0 if and only if the system etWi + h = 0 (mod p) (i =
1, •••,%) is solvable, that is, if and only if G.C.D. (p, e^\hi or if and
only if v\^% or p | G.C.D (e4, fe4) (i = 1, , n). Also r(p, L) is just
the number of the e{ (i = 1, , n) not divisible by p. This completes
the proof.

We now obtain a generalization of Steven's result [6] (see
Corollary 3).

COROLLARY 10. The equation

G.C.D. (a1xι + b19 , anxn + 6n, c) = d ,

G . C . D . (α,, •• , α w , d ) = 1 ,

is solvable if and only if

d\c, G . C . D . (ai9d)\bi (i = 1, •••, w) ,

G . C . D . (α x, , α n , δi, , δ n , c) = 1.
number of solution modulo c is given by

Π G.C.D. (au d) {φγ Π (l - »MllL»

where v^p) (i = 1, , w) is ίfee number of incongruent solutions modulo

" G C D (a d)G.C.D. (a,i, d) G.C.D. (α<, d)

Proof. The necessary and sufficient conditions for solvability are
immediate from Theorem 1. When solvable we calculate the number
91 of solutions modulo c using Theorem 5. Thus we require the number
of distinct u modulo e with G.C.D. (u, e) = 1 such that

a,iXi + bi = dui (mod de) (i = 1, , n)

is solvable, that is,
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(ajdjxt + (bjdt) = (d/dύUi (mod d/dre)

where d{ = G.C.D (aiy d) (ί = 1, , n).
This is solvable if and only if

G.C.D. ((di/di), (d/dje) \ (d/d^u, - (bjά^i = h , n) ,

that is, if and only if,

(d/dJUi = (h/di) (mod G.C.D. {{ajd,), e) (i = 1, . , n) .

This system is equivalent to

Ui = h (mod G.C.D. (ajdi, e)) (i = 1, , n) ,

where hi = (d/d^bi/di and (djd^)~ι is an inverse of d/di modulo G.C.D.
{dildi, e) since G.C.D. (d/di9 a^di, e) = 1. Thus by Corollary 9 the
number of such u is

n p / I

ϊ γτr (Λ _ 1

n n τ\ ((„ u \ o\ II V /nr^^

where the dash (') means t h a t the product is taken over those p\e
such t h a t p\a,i/di or p | G . C . D . (α*/^, 6 ^ ) , i = 1, , w, as p\G.C.D.
(a,i/di,e,hi) if and only if p\G.C.D. (ajdi, e,bi/di) because {djd^hi =
bjdi (mod G.C.D. (α,/^, e) and G.C.D. (d/di9 ajdi) = 1 (i = 1, , n).
Also r(p) is the number of ajdi (i = 1, , n) not divisible by p.

Next we need the number of incongruent x modulo de such that

diXi Ξ= 0 (mod de) (i = 1, , n) .

This is just

Π G.C.D. (α,, de)
ϊ = l

= P i G.C.D. (αjdί, (d/d()e)
ί = l

= Π ^ G.C.D. (di/di, e) .
* = 1

Hence by Theorem 5 the required number of solutions is

where the dash (') means t h a t the product is taken over those p\e
such t h a t p\ajdi or p\G.C.D. (ajdif bjdi), i = 1, , n. This number
is



206 DAVID JACOBSON AND KENNETH S. WILLIAMS

as

(Λ <n V a Id

\)'(Ύ) i — ' 0 Ύ) \ (Ί I (Ί Ύ) Λ u 1(1

p, p I ajdi, p I bt/di .

Finally we state that all formulas are easily modified if we do
not assume g = G.C.D. (l19 , lm1 d) — 1 (See introduction, Theorem 1).

For example we list

THEOREM 2'. If <9T Φ 0 the minimum modulus M% with respect
to (1.1) is given by

p\e,N(pd1,L'lg)>0

COROLLARY 4'. // G.C.D. (d, e) = 1 then the number 9% of solu-
tions of (1.1) modulo Ml is

wd - N(d, u/g) π
p\e,N(pdltL'lg)>0
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ON RANK 3 PROJECTIVE PLANES

MICHAEL J. KALLAHER

One of the unsolved problems in the theory of protective
planes is the following: Is every finite projective plane with
a transitive collineation group desarguesian? This problem
is investigated under the additional hypothesis that the group
has rank 3. It is proven that if a projective plane & of
order n > 2 has a rank 3 collineation group then & is non-
desarguesian and either (i) n is odd and n = m4, or (ii) n is
even and n — m2 with m = 0 (mod 4).

One of the older problems in the theory of projective planes
is the following: If a finite projective plane & has a collineation
group G transitive on its points, is the plane desarguesian? So far
only under one or more additional assumptions has the answer been
shown to be yes. The basis for these results is the theorem, due to
Wagner [10], that if the transitive group G contains a central col-
lineation, then & is desarguesian.

Ostrom and Wagner [8] showed that if the group G is doubly
transitive then & is desarguesian, and G contains all elations of ^ .
Higman and McLaughlin [4] investigated the problem in the case
when the group G is transitive on the flags of &. They proved
that under certain restrictions on the order of .ζP the plane is
desarguesian. Keiser [6] and Wagner [10] have showned that under
restrictions on the order of & and the order of G the plane is
desarguesian.

The rank of a permutation group G transitive on a set Ω is the
number of orbits of GP, P a point of Ω, in Ω. Hence a transitive
group G has rank 2 on a set Ω if and only if G is doubly transitive
on Ω. G has rank 3 if and only if for every point PeΩ GP has two
orbits besides GP. Ostrom and Wagner have thus answered the ques-
tion when the group G has rank 2. It is then natural to ask: If a
finite projective plane has a transitive collineation group of rank 3,
is the plane desarguesian?

Investigating this question we have found that a more appropriate
question is: Which finite projective planes have rank 3 collineation
groups? For we will prove in this article the following

MAIN THEOREM. Let ^ be a finite projective plane of order n
with rank 3 collineation group G. Then n satisfies one of the statements:

( i ) w = 2

(ii) n is odd and n — m4

207
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(iii) n is even and n = m2 with m = 0 (mod 4)
Furthermore only in case (i) is & desarguesian.

The proof consists in showing that G must be a nonsolvable
flag-transitive group of even order. It is not known whether & can
actually exist in cases (ii) or (iii). Hence the theorem leads to the
following conjecture:

CONJECTURE. The only finite projective plane having a rank 3
collineation group is the desarguesian plane of order two.

The desarguesian plane of order two (Fig. 1) has the rank 3
collineation group G generated by the collineations σ = {PJP^JPJP^PJP^
and τ = (P7PQP3)(P4P5P2). Note that G is solvable, sharply flag-transi-
tive, and has order 21.

We wish to thank Professor Ostrom for many helpful suggestions
and for reading a preliminary draft.

2* Definitions and results required later* We assume the reader
is familiar with the theory and terminology of projective planes as
appears, for example, in Chapters 3-5 of Dembowski [3]. Also a
familiarity with the simpler aspects of permutation group theory (as
in Chapter 1 of Wielandt [12]) will be assumed.

A transitive collineation group on a projective plane & is one which
is transitive on the points (and hence on the lines by Result II below).
A rank 3 collineation group of & is a transitive collineation group
which has rank 3 as a permutation group on the points of ^ . A
flag of & is an incident point-line pair; i.e., a pair P, I with P a
point, I a line, of & and Pel. A flag-transitive collineation group
is one which is transitive on the flags of ^ .

Use will be made of a number of results concerning permutations
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and collineations. These are listed below for convenience:

Result I (Ostrom [27]; Dembowski [3], p. 214): If & is a finite pro-
jective plane having a collineation group G which is transitive on non-
incident point-line pairs, then G is doubly transitive on the points of ^ .

Result II (Dembowski [2], Hughes [5], Parker [9]): A collinea-
tion group of a finite projective plane has equally many point and
line orbits.

Result III (Higman and McLaughlin [4]): Let & be a finite
projective plane of order n with a flag-transitive collineation group G.
If n is odd and not a fourth power, then & is desarguesian and G
contains all elations of & (See also Dembowski [3], p. 212).

Result IV (Higman and McLaughlin [4]): Let G be a flag-transi-
tive collineation group of a desarguesian projective plane & of order
n. G contains all elations of & with precisely two exceptions:

( i ) n = 2 and G has order 21.
(ii) n = 8 and G has order 657.

Result V (Wagner [10]): If & is a finite projective plane having
a transitive collineation group G which contains a nontrivial central
collineation, then & is desarguesian and G contains all elations of ^ .

Result VI (Keiser [6]): Let & be a finite projective plane of
order n with a transitive collineation group G. If G is nonsolvable
and if n = m2 with m = 2 (mod 4) or m = 3 (mod 4), then & is desar-
guesian and G contains all the elations of ^ .

Results VII (Dembowski [3], p. 212): Let ^ be a finite pro-
jective plane of order n. If G is a collineation group which is solvable
and primitive on the points of ^ , then n2 + n + 1 is a prime.

For the next result we note that a permutation group on a set
Ω is regular (sharply transitive) if it is transitive and GP consists
only of the identity for each point PeΩ. G is a Frobenius group
on Ω if (i) it is transitive, (ii) GP is nontrivial for each point PeΩ,
and (iii) for every two distinct points P, QeΩ GP,Q consists only of the
identity.

Result VIII (Wielandt [11], 11.6): A transitive permutation group
of prime degree is solvable if and only if it is either regular or a
Frobenius group (Due to E. Galois).

3* The investigation* In this section we prove that if a finite
projective plane & has a rank 3 group G of collineations then G is
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flag-transitive on ^ , G is nonsolvable (if n > 2), and & is not
desarguesian (if n > 2). We start with

LEMMA 1. Let 0* he a finite protective plane and G a rank 3
group of collineation of 0 . Then for every point P of 0, G
permutes the lines through P in one or two orbits. P

Proof. GP permutes the points different than P in two orbits
^ and &2. Define the sets ^/^ i = 1,2, by: ^/^ consists of the lines
through P such that I contains at least one point in ^ . GP is
transitive on ^ γ and ^/έ2, and every line through P is either in ^fγ

or ^ C . If ^ C ΓΊ c ^ is empty, then GP permutes the lines through
P in two orbits. If ^Jtγ (Ί ̂ €2 is nonempty, then GP is transitive on
the lines through P.

THEOREM 1. Let 0 be a finite protective plane and G a rank 3
group of collineations of 0 . Then GP is flag-transitive.

Proof. Assume G is not flag-transitive. For every point P of &
GP has 3 point orbits in 0 . Hence by Result II GP has three line
orbits in ^ . If all the lines through P are in a single orbit under
GP, then G is flag-transitive contrary to our assumption. Thus by
Lemma 1, two of these line orbits consist of the lines through P.
Thus the third line orbit of GP must consist of all the lines of &
which do not go through P. Hence for every point P, GP is transitive
on all lines not through P.

Let (P, I) be a non-incident point-line pair of & and (Q, m)
another non-incident point-line pair. There exists a collineation σ e G
such that Pσ = Q. Let T be the image of I under σ. Qίϊ since
Pίl. Then there exists a collineation τeGQ such that IT = m.
Then Pστ = Qτ — Q and Iστ = Tτ = m. This proves G is transitive
on non-incident point-line pairs.

Result I implies that G is doubly transitive on the points of &>.
This is a contradiction since G has rank 3 on the points of &.
Thus G is flag-transitive.

LEMMA 2. Let 0 be a finite protective plane of order n and G
a rank 3 group of collineations of 0, and let P a point of 0 .

( i ) GP permutes the points not equal to P in two orbits &x and
&2 of lengths kx(n + 1) and k2(n + 1) respectively, where kt + k2 = n.

(ii) GP permutes the lines not through P in two orbits ^ and
J*f2 of lengths sx and s2 respectively, with sx + s2 = n2.

Proof. GP is transitive on the lines through P. Thus every line
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through P intersects the non-trivial point orbits ^ in the same
number of points. Thus | ̂  | = k,(n + 1) where kt is the number of
points of έ?! on a line I through P. Similarly \έ?2\ = k2(n + 1), k2 the
number of points of ^ 2 on a line I through P. This proves (i) since
for every line I through P, a point Φ P on I is either in ^ or &2.

Gp has three point orbits. Hence it has three line orbits (Result II).
One of these consists of the lines through P. The other two line
orbits are made up of the lines not through P and there are n2 such
lines. This gives (ii).

LEMMA 3. Let ^ be a finite protective plane of order n and G
a rank 3 group of collineations of &'. If G is solvable, then

( i ) n2 + n + 1 is a prime',
(ii) G acts as a Frobenius group on &;
(iii) n is even, \G\ = l/2(n2+n + ΐ)n(n+ΐ), and \GP\ = l/2n(n+ΐ).

If \G\ is odd, then we also have
(iv) n = 2m, m odd.

Proof. Since G is flag-transitive, G is primitive on the points of
& (Dembowski [3], p. 212). By Result VII n2 + n + 1 is a prime.
Result VIII implies that G is either regular on & or it is a Frobenius
group on &. Since G is clearly not regular it must be a Frobenius
group on &. This proves (i) and (ii).

By Lemma 2 we have for every point P e &

\GP\ = kγ(n + 1) \GP,Q\ = k2(n + 1) | G P f Λ | ,

where Q e 6?γ and R e <^2, and kι + k2 = n. But G a Frobenius group
on & implies \GPΛ\ = 1 = \GP,R\. Hence \GP\ = ^(w + 1) = fe(w + 1)
and thus kγ — k2~ n/2. This implies w is even since kx is an integer,
and we have \G\ = l/2(n2 + n + l)(π(^ + 1)). This proves (iii).

If \G\ is odd, then w/2 is odd and this proves (iv).

LEMMA 4. Let 3P be a finite protective plane of order n with a
rank 3 group of collineations. If n > 2, then \G\ is even.

Proof. Assume \G\ is odd. Then G is solvable (by the Feit-
Thompson theorem) and the previous lemma implies n2 + n + 1 is a
prime, n = 2m with m odd, and \G\ — (n2 + n + ϊ)m(n + 1). Also
for each point P, G> has two line orbits ^ and ^ of lengths st

and s2 respectively with

( 1 ) s, + s2 = n2 = 4m2

(Lemma 2). Since | G P | = m(t^ + 1) = m(2m + 1), we have

( 2 ) si\m(2m + 1) , i = 1,2.
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Let s = g.c.d. (s19 s2) and define integers tx and t2 by

( 3 ) Si^sU, i = l , 2 .

Then g.c.d. (ί^ t2) = 1 and s(^ + ί2) == 4m2 (by (1)). Since s is odd
(for otherwise | G P | is even), s | m 2 . Since s\sλ (2) implies s\m since
g.c.d. (m, 2m + 1). Hence

( 4 ) m = su

for some integer u, and

(5) t, + U = 4su2 .

If v = g.c.d. (ίx, s) > 1, then v 112 — a contradiction to the fact
that g.c.d. (ίx, t2) = 1. If te; = g.c.d. (^, %) > 1, then w \ t2- again a
contradiction. Hence 1 = g.c.d. (t19 s) = g.c.d. (tlf u), which implies
g.c.d. (t19 m) = 1. Similarly g.c.d. (ί2, m) = 1 and thus

( 6 ) ίi

Then we have, using (5)

2(2m + 1) ^ tt + t2 =

Applying (4) we get

1 ^ 2s?φ - 1) .

Therefore u = 1 and

(7) m = s .

But then

( 8 ) t, + t2 = 4m .

If ίL = t%9 then ίx = 2m and this contradicts (6). Thus without loss
of generality we may assume tγ < t2. Then from (8) we get tt < 2m,
t2 > 2m and this implies t2 = 2m + 1 (by (6)) and tx — 2m — 1 (by (8)).
Hence 2m — 1 | 2m + 1, which implies m = 1, n — 2. This proves the
lemma.

REMARK. The example at the end of § 1 shows that if n = 2 [ G
can be odd.

By combining Lemma 3 and Lemma 4 we can show that the
rank 3 group G is nonsolvable if n > 2:

THEOREM 2. Let & he a finite projective plane of order n with
a rank 3 group G of collineations. If n > 2, then G is nonsolvable.



ON RANK 3 PROJECTIVE PLANES 213

Proof. Assume G is solvable and n > 2. By Lemma 3(ii) G acts
as a Frobenius group on &*. Lemma 4 implies \G\ is even. Hence
G has an element σ of order 2. Either σ is a central collineation or
it fixes a subplane of & pointwise (Baer [1]). In both cases σ fixes
more than two points. But GP>Q consists only of the identity for
every two distinct points P, Q of ^ . This gives a contradiction.
Therefore G is nonsolvable if n > 2.

Our last result in this section shows that & is desarguesian only
when n = 2.

THEOREM 3. Let ^ be a finite projectίve plane with a rank 3
group G of collineations. & is desarguesian if and only if n = 2.

Proof. Assume & is desarguesian. By Theorem 1 G is flag-
transitive. G cannot contain all the elations of ^ . For the group
H generated by the elations of & is doubly transitive on the points
of .^. Ha subgroup of G implies G is doubly transitive on the
points of &-again contradicting the fact that G has rank 3 on the
points of &. By Result IV either n — 2 and G has order 21, or
n — 8 and G has order 657. But the second case cannot occur since
n > 2 implies | G| is even (Lemma 4). Thus n = 2 and G has order 21.

Conversely if n = 2, then & is desarguesian, and the example
at the end of §1 shows that in this case a rank 3 group does occur.

4% Proof of the main theorem* We now prove the main theorem
stated in §1. Assume n is odd. If n is not a fourth power, then
Theorem 1 and Result III implies that & is desarguesian and G con-
tains all elations of ^ . But by Theorem 3 this is impossible.

Assume n is even and n > 2. Lemma 4 \G\ is even. If n is not
a square, then an element in G of order 2 must be an elation (Baer
[1]) and & is desarguesian by Result V. This contradicts Theorem 3.
Hence n is a square. If n — m2 with m = 2 (mod 4), then & is
desarguesian by Result VI since G is nonsolvable (Corollary 2.1). This
contradicts Theorem 3 again. The proof of the main theorem is
complete.
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ON SOLVABLE O*-GROUPS

D. P. MlNASSIAN

The purpose of this paper is to prove the existence of
O*-grouρs of arbitrary solvable length, as well as of non-
solvable O*-groups.

By a partial order for a group G we mean a reflexive, antisym-
metric and transitive relation, ^ , on G such that if g and k are ele-
ments of G and g ^ h, then xgy <̂  xhy for all x and y in G. If also
any two elements g and h of G are comparable (i.e., either g <^ h or
h ^ g), then the partial order for G is called a ίoίαZ (or /WZ, or linear)
order. The group G is an O*-group if any partial order for G is
included in some total order for G.

A group G is solvable of length n, where n is a positive integer,
if the derived chain of G reaches the unit subgroup, E, in n steps:

G = G1 ̂  G2 S S G" 5 G%+1 - #,

where Gί+1 is the derived group of Gί (denoted below by Gi+1 = [G% G*]).
It has been shown that non-abelian free groups are not O*-groups

([1], [2], [3], [4], [6]). Further, Kargapolov [5] and Kargapolov,
Kokorin and Kopytov [6] have produced solvable groups which are not
O*-groups even though they admit a full order: these are the free
r-step solvable groups on k generators for r ^ 3 and k ^ 2. In view
of these results one may ask if there exist solvable O*-groups of
arbitrary length, and nonsolvable O*-groups. The answers are affir-
mative.

THEOREM. For every positive integer m there exists an 0*-group
G that is solvable of length m.

Proof. Let F be the free group on k generators for some fixed
k ^ 2. Let Fi be the ith term in the lower central series for F,
where Fx = F, and let Fi be the ith derived group for F, where Fι

= F. Consider F/Fi9 the free nilpotent group of class i with k gen-
erators. By varying i we shall obtain the desired groups G of the
theorem.

We first claim that F/Fi is torsion-free for every positive integer
i. If not, then for some i there exists an element aeF and a posi-
tive integer p such that a £ Fiy but ap e Fi. Now aeFh- Fh+1 for
some positive integer h ^ ί - 1. Thus α ^ e ^ g Fh+ι, and so Fh/Fh+ί

is not torsion-free. On the other hand, Witt's theorem (see, e.g., [8,
p. 41]) states that FJFh+1 is a free abelian group (and hence torsion-
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free), a contradiction. Thus F/Ft is torsion-free, as claimed.
Malcev [9] has shown that a torsion-free nilpotent group is an

O*-group. Hence F/Fi is an O*-group for every positive integer i.
Now for every such i the solvable length of F/Fi is finite, since F/Fi
is nilpotent. Thus we shall complete our proof by establishing the
following lemma.

LEMMA. For every positive integer m, there exists an integer n
such that solvable length of F/Fn is m.

Proof. We first note that for every positive integer i, there
exists an integer j such that F3 5& F\ This follows from the fact
that Fi Φ E for each ί (hence F is not solvable), together with the
theorem of Magnus (cf. [8, p. 38]) which asserts that Γ\T=ιFi = E.
We next show that for each i and j,

(1) (F/FJY = FΨJ/FJ.

Indeed, it is readily seen that if A and B are subgroups of a group
G and if B is invariant under conjugation by elements of A, then
{AB/Bf = A2B/B. From this, an induction on i shows that for a
normal subgroup N of a group G it is true that (G/N)* — G*N/N for
all i, which implies the desired result.

Note that for each i there exists J such that for j ^ J, the solv-
able length of F/Fj exceeds i. This follows from (1) and the fact
that, by our first assertion, we can choose J such that Fj J> F\ In
particular, then, the solvable length of F/Fj is unbounded with in-
creasing j. Note also that the solvable length of F/Fj+1 exceeds the
solvable length of F/Fj by at most 1. For if F/F3 is solvable of
length r - 1, then {F/F3)

r = E. Thus, by (1) we have F'F./F, = E,
which implies Fr g F3 . On the other hand, F/F3+ι has solvable length
<̂  r since (again using

1y
+ί = i(F/Fs+ιy, (F/Fs+ιy]

= [F'Fi+1/Fj+ι, FrF3+1/Fj+1] s [F, /Fί+ι, F3/F3+ι] = E,

where g holds since both Fr and F3+ί are subsets of F3 , and the final
equality derives from the fact that F3/F3+1 is abelian by Witt's theorem
(above). The lemma follows at once from these results and the fact
that F/F2 = FJF2 has solvable length 1 by Witt's theorem.

The proof of the theorem is now complete.

COROLLARY. There exist nonsolvable O*-groups.

Proof. Kargapolov [5] and Kokorin [7] have shown that the re-
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stricted direct product of O*-groups is an O*-group. Thus the restricted
direct product, G = JlT=ιF/Fi, of the groups F/Ft is an O*-group. If
G were solvable of length m, then each F/Fi would have solvable
length ^ m; for if a subgroup i ϊ g (?, then Hk £ Gk for every k. Since
this contradicts the fact noted above that the solvable length of F/F3

is unbounded with increasing j , G is a non-solvable O*-group.

Note. The mapping φ of F into the unrestricted (or complete)
direct product, JlT=iF/Fiy of the groups F/Fi given by

φ{a) = (αĴ x, , α.Pw, •) for every aeF

is a monomorphism by Magnus' theorem, above. Since F is not an
O*-group (see [1], [4], or [6]), we have an immediate example of a
subdirect product of O*-groups which is not itself an O*-group. (In
[5], Kargapolov uses some of the groups F/Fi to show that the class
of O*-groups is not closed under formation of unrestricted direct pro-
ducts.)
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doctoral dissertation on which this paper is based.
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Let A = Aφ) be the sup norm algebra of functions con-
tinuous in D and holomorphic in D, where D is a bounded,
strictly pseudoconvex domain in O. This paper gives neces-
sary and sufficient local conditions that a subfamily of A
generates the maximal ideal ^ w (D) of f unctionsjn A vanishing
at we D. In particular, it shows that ^£^w (D) is generated
by Zt — wl9 , zn — wn when WeD.

In [3], Gleason shows that if m is an (algebraically) finitely
generated maximal ideal of a commutative Banach algebra A, the
maximal ideal space ^fA can be given an analytic structure near m,
in terms of which the Gelfand transforms of the elements of A are
holomorphic functions.

In a sense, the results of this paper go in the opposite direction.
We consider a bounded domain D in Cn, with C2 strictly pseudoconvex
boundary, and study the algebra A = Aφ) of functions continuous
on D and holomorphic in D. By a recent result, Henkin [4], Kerzman
[7], Lieb [9], A equals the closure in Cφ) of the algebra Oφ) of
functions holomorphic in some neighbourhood of D, from which it
follows that ^ C ̂  D.

We first fix the notation. If weD, ^ w denotes the maximal
ideal of the ring Ow of germs of holomorphic functions at w, while
^fwφ) is the maximal ideal in A of functions vanishing at w. If /
is a function on some neighbourhood of w, fw denotes the germ of /
at w.

THEOREM 1. Let we D, and fu - ,fNe A. Then fu , fN gener-

ate ^fwφ) if and only if

(1) flw, •• ,Λrw generate ^ C and

(2) w is the only common zero of fu * *yfN in D.

COROLLARY. If W e D, ZX — wly , sΛ — wn generate

Below we give the more general theorem 2, which also gives a
similar characterization of generators of ̂ fwφ) when w e 3D. When
n = 2, Kerzman and Nagel [8] have shown that zι — w1 and z2 — w2

generate ^wφ) when we D, as well as similar results for algebras
with Holder norms. I want to thank Dr. Kerzman for sending me a
copy of his thesis [7], where these results are stated.

The main tool in the proof is the following result, which is proved
in [11]:

219
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LEMMA 1. Suppose ue C?o,q)(D) is bounded, with du = 0, q ^ 1.
Then there exists a v e CZ,g-i)(D) with dv = u, such that v has a con-
tinuous extension to D.

A closely related result is given in Lieb [10], while a stronger
result for (0, l)-forms, involving Holder estimates, is given in Kerzman

[7].
It is convenient to prove first a more general result. If U is

open in D, let H(U) denote functions in C(U) that are holomorphic
in Df]U. When weD, we define Hw = \imH(U), so Hw is the

UBW _

space of germs at w of continuous functions on D that are holomor-
phic in D. It is easy to see that H is the sheaf of A-holomorphic
functions in the sense of [2].

PROPOSITION 1. Let D be as above, weD, and suppose fu * ,fN

have w as their only common zero. We let I denote the ideal in A

generated by fl9 •••,/#, and Iw the ideal in Hw generated by flw, •••,

fNw- If feA and fw e Iw, then f el.

Proof. By assumption, we may write / = Σ£=i0* /* o n a neigh-
bourhood U of w in D, with gu , gNe H{U). We want to write
/ = *ΣJ?=I hi fi, with hu * ,hNeA, and shall first solve the problem
differentiably. As the sets iV, = {zeD\{w}:fi(z) = 0}, i = 1, , N,
are closed in Cn\{w}, it is well known how to construct ψu , φN with
Φi = 0 on a neighbourhood of Ni9 i = 1, , N, that form a C°° parti-
tion of unity on Cn\{w). Choose φQ e C~{Uf), where Uf Π D = U, with
φ0 = 1 on a neighbourhood t/i of w, and define φt = (1 — φo) Φi, i =
1,...,ΛΓ.

If we define

9'i = <Po-9i + ^τ~, clearly Σ 9rfi = f on D.

The g'iSeC~(D) Π C(S), and are holomorphic in U, Π D.
We want to use Lemma 1 to modify the gls to get h^s in A. To

handle the combinatorial difficulties, we apply the homological argu-
ment of [6].

NOTATION. Lr = {u e C~,r)(Z?)> u a n d ^u have bounded coefficients},
while Ls

r = Lr (g)c A
s ^ , 0 ^ r, s.

If we choose a basis el9 •••, e^ in C^, the elements in L' may be
written uniquely as Σm= s ^/ ® β7^ where % e Lr, e1 = e^ Λ Λ eίβ,
and we sum over strictly increasing sequences / = (ilf , is). We
define 3 on L' by d(u ® ω) = (3%) ® ω and linearity. Clearly
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dLs

r c Ls

r+1, and lemma 1 gives:

LEMMA Γ. If ke Ls

r and dk = 0, r ^ 1, ί/^ere e#ίs£s α &' e
such that 9&' = k, and kf has a continuous extension to D.

The product determined by (u 0 ω) (uf 0 ω') = (uΛ v!)
is clearly a bilinear map Ls

r x L*' —* L + ',.
Let ef, , e# be the reciprocal basis to el9 , eN, so <e*, ^ )> =

δi3 . We define P/: L^ — Ls~ι by

P/ίd 0 ω) = Σ (/ί w) <g) (βf J ω), and linearity.

(For the definition of J, se [12] Ch. 1.)

Pf: LI —• L^ maps Σ f = i % 0 e i to Σ£=i/ ^»; i n particular, P ^ ' = / , when

A simple computation gives P} = 0, while the derivation property
of J gives

( i ) Pf{k-k') = {Pfk)-kr + ( - l)sk-Pfk'

when ke Ls

r.
Let Ml = {keLl:k\πi = 0}.

LEMMA 2. The complex 0 *— M°r —̂  M\ - i . . . -4 Mi +- 0 is exact.

Proof. Let φ e C°°(CN) be zero near w and one outside f7L. We
put fc^ΣL^ ^ ) / / ^ ^ Clearly kQeLι

Q, and PfkQeLQ

Q is identi-
cally one in I^ETΊ. If keMs

r and Pfk = 0, ko-keMs

r

+ί, and by (i),
P ίh U1Λ — CP k \ k — k

As fu * ,/Λ. are holomorphic in Z), P y and 9 commute.

LEMMA 3. If ke Ms

r and Pfk = dk = 0,
D.&' = fe α π d 9A:' = 0.

This is trivially true when r > n, and the proof goes by down-
ward induction on r. Suppose the lemma is valid for r + 1. By
Lemma 2, there exists a i ^ e M'S1 with P ^ = fe. Clearly dMs

r

+1 c Λf ίJ,
while P/9&! = SP/fei — 0. Using the induction hypothesis, we can find
k2 e Lltl with Pfk2 = dkx and dk2 = 0. By Lemma 1', k2 = 9fc3, with fe3

G L^+2. If we put kf = kι- Pfkz, we get k' e Ll+1, with 9&' = dk, -
Pfdk3 = 0, and P/&' = P / ^ — P}k3 = k. This completes the induction
step.
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Proof of Proposition 1. As the gls are holomorphic in Uι Π D,
dg' e M\. Applying Lemma 1' and Lemma 3, we find a ke L\, with
dPfk = Pfdk = dg', such that k is continuous on D. If h = g' — Pfk,
dh = 0. Writ ing h = Σ i ^ i ^ i ® e^ this means t h a t hγ, •••, hNe A, and

V ^ h f — f

THEOREM 2. Le£ weD, and let Mw denote the unique maximal
ideal of Hw. The family (fi)ieI in A generates ^^fw{D) if and only if

(1) (fijiei generates Mw, and
(2) w is the only common zero of functions f4 in D

Proof. I. The sufficiency of (1) and (2): If / e ^ C ( 5 ) , we have
fweMw, and by (1) fw belongs to some ideal [fh,w, • ,/<Jlf,J As
fe — Wj)*,, •••, f(zn — wn)w belong to Mw, the functions zt — wc> i =
1, " ,n, may be expressed as linear combinations of functions / ί j f + 1 ,
'",fip in the family on some open neighbourhood V of w in D. Then

/•'jffi» "m>fip have w as their only common zero in V. By condition
(2) and the compactness of D\V, there exist /</>+1, * ,fiN in the family
with no common zeroes outside V. Now proposition 1 implies that /

II. The necessity of (1) and (2): If (/<)<€/ generate ^
condition (2) follows from the fact that A separates points in D. Con-
dition (1) follows from

PROPOSITION 2. The germs at w of elements in ^ / w ( ΰ ) generate
Mw.

The following proof of Proposition 2 was kindly communicated to
me by Dr. R. M. Range, and replaces a more complicated argument
of my own:

When w e D, zγ - wu , zn — wn generate ^ C = Mw. Thus we
may assume we 3D, and consider an f e H(U Π D) with f(w) = 0,
where U is some neighbourhood of w in Cn. We choose φeC~(U)
such that φ = 1 on a smaller neighbourhood V of w. As D is strictly
pseudoconvex, we may extend it inside 7 to a strictly pseudoconvex
domain Ώ' containing w. As d(φ f) vanishes on V Π D, it may be
extended by zero to a smooth, bounded, 3-closed (0, l)-form ω on D'.
By Lemma 1, the equation dg = ω has a solution in C°°(D') Π C{Df),
and we may assume g(w) — 0. As g is holomorphic in Df Π F, we
may write it near w as g = Σ t i ^ f e — w<), with grx, •••, gn holomor-
phic. Thus / w = (?>./ - g)w + Σii=i9iw(*i ~ w j . , and 9> / - f l r f e e
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When we D and / is finite, Theorem 2 reduces to theorem 1. If
we 3D, it follows from Gleason's result that ^C(jD) is not finitely
generated. If Mw were finitely generated, it would by Proposition 2
be generated by finitely many elements of A, which implies by the
argument of I that ^C(5) must be finitely generated. Thus Mw is
not finitely generated when w e 3D. (This may also be proved in a
more direct fashion).

Note. The Corollary to Theorem 1 has also been proved by
G. M. Henkin in Bull. Acad. Polon. Sci., 24 (1971) 37-42, and by
I. Lieb in Math. Ann., 190 (1970-71) 6-44, which contains a detailed
version of [10].
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A SEMILATTICE DECOMPOSITION INTO SEMIGROUPS
HAVING AT MOST ONE IDEMPOTENT

MOHAN S. PUTCHA AND JULIAN WEISSGLASS

A semigroup S is said to be viable if ab = ba whenever ab
and ba are idempotents. The main theorem of this article
proves in part that S is a viable semigroup if and only if S
is a semi-lattice of ^-indecomposable semigroups having at
most one idempotent.

Furthermore, each semigroup appearing in the decomposition has
a group ideal whenever it has an idempotent. Also included as part of
the main theorem is the more elementary result that S is viable if
and only if every £ ^c las s contains at most one idempotent.

Throughout S will denote a semigroup and E = E(S) the set of
idemotents of S.

DEFINITION. Let α, be S. We say a \ b if there exist x, ye S such
that ax = ya = b. The set-valued function 3ft on S is defined by
2ft (α) = {e\eeE, a\e}. The relation δ on S is defined by a δ b if
Sft(α) = 3K(6).

Our first goal is to show that if S is viable then δ is a congruence
on S and S/δ is the semilattice described above.

LEMMA 1. Let S be viable. If ab = ee E, then bea = e.

Proof, (bea)2 = beabea = bea. Hence bea e E. But cleary abe —
ee E. Hence bea = abe = e.

LEMMA 2. Let S be viable. Suppose ae S and ee E. Then a|e
if and only if ee S^S1.

Proof. If a \ e, then e e S^S1 by definition. Conversely assume
e = sat with s, te S1. By (1), ates = e and tesa — e. Therefore a\e.

THEOREM 3. Let S be viable. Then
( i ) δ is a congruence relation on S containing Green's relation £%f.
(ii) S/δ is a semilattice and
(iii) each δ-class contains at most one idempotent and a group

ideal whenever it contains an idempotent.

Proof, (i) Clearly δ is an equivalence relation. We will show
that δ is right compatible. Assume a δ b. If ac \ e e E, then
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acx = e for some xeS. By (1), cxea = e. Hence a\e. Thus δ|e, so
yb = e for some j / e S . Therefore ybcxea = e, so 6c | β by (2). Hence
Ti{ac) s 3ft(δc). Similary 3ft(δc) g SK(αc) and hence αc σ be. That δ is
left compatible follows analogously. Consequently, δ is a congruence.
It is immediate that ^ r g ί .

(ii) To show S/δ is a band, let aeS. lΐ a2\eeE then by (2),
a\e. Hence 3ft(α2) s 3ft (α). Suppose α |βe i? , say αx = ya = e, α, i/e
S. Then τ/α2x = e. Again using (2), α 2 |e. Thus, Tt(a2) = 3ft (α) and
a δ a2. So S/δ is a band. Now let a,beS. If eeS0ΐ(αδ), then there
exist x, y e S such that αδx = yab = e. Hence ya(ba)bx = e, and by
(2), eem(ba). Therefore m(ab) § 3ft (δα). By symmetry, 2ft (δα) £
2ft(αδ). Hence αδ δ δα and S/δ is a semilattice.

(iii) Suppose, eι δ e2 with el9e2eE. Then ^ e 9ft(ex) = SK(e2)> so
e2 |e i e Similarly e1\e2. Hence ex έ%f e2 and by [2], Lemma 2.15, ex =
e2. Thus each δ-class contains at most one idempotent. Now suppose
A is a δ-class containing an idempotent e. Let ae A. Since e e
3ft(e) = 3ft(α) = 2K(α2), there exists xe S such that a2x = β. Now α δ
a2 implies ax δ a2x, so ax 3 e o a. Hence axe A and a(ax) = e implies
e is a right zeroid of A. Similarly e is a left zeroid and by [2], §2.5,
Exercise 6, A has a group ideal.

A semigroup is said to be ^-indecomposable if it has no proper
semilattice decomposition.

COROLLARY 4. If the viable semigroup S is ^-indecomposable
then S/δ = 1 and is either idempotent-free or has a group ideal and
exactly one idempotent.

LEMMA 5. Assume I is an idempotent-free ideal of S. Then S
is viable if and only if the Rees factor semigroup S/I is viable.

Proof. Assume S is viable and that αδ, ba e E(S/I). If αδ e /, then
δα = δ(αδ)α e /, so αδ = δα in S/I. So we may assume αδ and δα are
not in I. But then αδ, baeE(S). Hence αδ = δα in S and so in S/I.
Therefore S/I is viable. Conversely, let ab,baeE(S). Since S/I is
viable αδ = δα in S/I. But αδ, bail since I is idempotent-free. Hence
αδ = δα in S and S is viable.

A semigroup S is said to be S-inversive if for every ae S there
exists x G S such that ax e E.

THEOREM 6. The following are equivalent.
( i ) Every ^f-class of S contains at most one idempotent
(ii) S is viable.
(iii) S is a smilattice of S^-indecomposable semigroups each of
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which contains at most one idempotent and a group ideal whenever it
contains an idempotent.

(iv) S is a semilattice of semigroups having at most one idem-
potent.

(v) S is viable and E-inversive or an ideal extension of an
idempotent-free semigroup by a viable E-inversive semigroup.

Proof, (i) => (ii) If ab and ba are idempotents then ab = a(ba)be
S^aS1. Similarly ba e S'abS1. Hence ab ^ ba, so ab = ba.

(ii) ==> (iii) By Tamura [3], S is a semilattice of ^indecomposable
semigroups. Since subsemigroups of viable semigroups are viable,
each component is viable. The result follows from (4).

(iii) => (iv) a fortiori
(iv) => (i) Suppose e,feE with e ^ f. Then e and / are in the

same component of the given semilattice decomposition. Hence e = /.
(ii)=>(v) Let 1= {aeS\Wl(a) = 0} . If I is empty then S is

i£-inversive. Otherwise, I is obviously an idempotent-free δ-class of
S. Moreover if ax\e or xa\e,eeE, then by (2), a\e. Hence, ael
implies ax, xael so that / is an ideal of S. By (5), S/I is viable.
Since S/I has a zero, it is JS'-inversive. In fact, every nonzero element
of S/I divides a nonzero idempotent of S/I.

(v) => (ii) Follows from (5).

REMARK. Observe that the semilattice decomposition of (iii) in
general will not be isomorphic to S/8 since in fact S may be idem-
potent free. Also, cJF may be replaced & in the theorem.

LEMMA 7. S is an ideal extension of a group by a nil semigroup
if and only if S is a subdirect product of a group and a nil semigroup.

Proof. Suppose S is an ideal extension of a group G by a nil
semigroup N. Let e be the identity of G. It is easy to see that e
is central in S. It is well known that S is a subdirect product of
subdirectly irreducible semigroups Sa (aeΩ). Let σa: S —+ Sa be the
natural map. Let ea = eσa. Then ea is a central idempotent in Sa

and hence is zero or 1 (cf. [1]). If ea = 0, then σa(G) = 0 and hence
Sa — oa(S) is a nil semigroup. If ea = 1, then all of Sa is contained
in σa(G) and hence Sa is a group. Consequently each Sa is a nil
semigroup or a group. Let Ωί = {a\aeΩ, Sa is nil} and let Ω2 =
{a\aeΩ, Sa is a group}. Let ψ- = J\a£Ωi σa: S-+ΐ[aeΩi Sa be defined
for i = 1, 2. One can check that S is a subdirect product of Sψλ and
Sψ2 with Sψi a nil semigroup and Sψ2 a group.

Conversely, suppose S is a subdirect of a group G and a nil
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semigroup N. Consider S embedded in G x N. Let e be the identity
of G. There exists a e N such that (β, a) e S. There exists a positive
integer k such that ak = 0. Hence (β, 0) = (β, ak) = (e, a)k e S. If g e
G, there exists beN such that (#, b) e S. Thus (g, 0) = (e, 0) (#, 6) e
S. Hence G x {0} g S and G x {0} is an ideal of S. Let (g, a) e S.
Since ae N, there exists a positive integer k such that afc = 0. Hence
(g, <*)k = (^, «*) = (̂ *, 0) e G x {0}. Therefore S is an ideal extension
of the group G x {0} by a nil semigroup.

COROLLARY 8. The following are equivalent.
( i ) S is viable and a power of each element lies in a subgroup,
(ii) S is a semilattice of semigroups which are ideal extensions

of groups by nil semigroups.
(in) S is a semilattice of semigroups each of which is a subdirect

product of a nil semigroup.
Moreover the decompositions in (ii) and (iii) are the same and coincide
with the δ-decomposition as specified in Theorem 3.

A semigroup S is separative if x2 = xy = y2 (x, pe S) implies x = y.

COROLLARY 9. The following are equivalent.
(i) S is viable, separative and a power of each element of S lies

in a subgroup.
(ii) S is a semilattice of groups.

Proof, (i) => (ii) By (8), it suffices to show that if T is separa-
tive and an ideal extension of a group G by a nil semigroup, then
T = G. Let e be the identity of G. Then e is central in T. If T Φ
G, then there exists aeT, a&G with a2eG. Then a2 = (ae)2 = a(ae).

Thus a — aeeG, a contradiction. Hence T = G.
(ii) => (i) Obvious.
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RINGS OF QUOTIENTS AND π-REGULARITY

R. M. RAPHAEL

Throughout this paper rings are understood to be com-
mutative with 1, and subrings are understood to have the
same identity as their over-rings. Familiarity with the
Utumi-Lambek concept of complete ring of quotients Q(R),
of a commutative ring R, is assumed. Q(R) is commutative
and it contains a copy of the classical ring of quotients of
R (denoted Qci(R)), obtained by localizing R at its set of
nonzero-divisors. Any ring lying between R and Q(R) is
called a ring of quotients of R. R is π-regular if for r e R
there exists r1 e R and a positive integer n such that rn =
(rn)2rf. This paper investigates the question: if Q(R) is π-
regular, under what conditions are all rings of quotients of
R π-regular?

The characterization obtained is applied to the case of semiprime
rings. Examples are given, followed by some results directed at the
problem of characterizing internally those rings R for which Q{R) is
π-regular. The author is indebted to the referee for posing the latter
question, and for his criticisms. The terminology and notation are
consistent with Lambek's Lectures on Rings and Modules.

PROPOSITION 1. (Bourbaki-Storrer, [(6, 5.6), (l, p. 173,16(d))]. //
R is a commutative ring then the following are equivalent:

(1) R is π-regular,
(2) R/rad R is regular, where rad R is the prime radical of R,
(3) all prime ideals of R are maximal ideals.

COROLLARY 2. A semiprime π-regular ring is regular.

Let R be a ring and let S be an over-ring of R. An element
s of S is called integrally dependent on R if there exist elements
r0, n, , rn_j. in R such that sn + rn^sn~ι + . . . + rxs + r0 = 0. The
set of all elements of S which are integrally dependent on R is a
ring called the integral closure of R in S, and if this is all of £
then S is called an integral extension of R.

PROPOSITION 3. [7, p. 259]. Let R, S be rings, S an integral
extension of R. If P is a prime ideal of S, P is maximal in S if
and only if P Π R is a maximal ideal in R.

DEFINITION 4. A ring is classical if it coincides with its classical
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ring of quotients. Equivalently, each of its elements is a unit or a
zero-divisor.

LEMMA 5. A π-regular ring is a classical ring.

Proof. Let r be a nonzero-divisor in R, a 7Γ-regular ring. Then
there exists rf e R and an integer n such that r w ( l - r V ) = 0. Since
r does not divide zero, neither does f so 1 - rnrf = 0 which shows
that r is a unit.

The main result*

PROPOSITION 6. Let R be a commutative ring with complete
ring of quotients Q(R) which is π-regular. The following are equiva-
lent:

(1) Q(R) is integral over R,
(2) every ring of quotients of R is π-regular,
(3) every ring of quotients of R is classical,
(4) R[q] is π-regular for all qeQ(R),
(5) R[q] is classical for all qeQ(R),
(6) the units of Q(R) are integral over R.

Proof. Clearly (2) =* (4) => (5) and (2) =* (3) => (5). (1) => (2). If
S is a ring of quotients of R, then S is integral over R. Any
prime ideal of S contracts to a prime ideal of R which is maximal
in R by Proposition 1. Thus by Proposition 3 all prime ideals in S
are maximal and by Proposition 1, S is π-regular.

(5)=>(6). Let g ba a unit in Q(R) with inverse qf. Since R[q]
is classical q is either a zero-divisor or a unit in R[q\. If it were
a zero-divisor in R[q] then it would be both a unit and a zero-divisor
in Q(R), an impossibility. Thus qr lies in R[q], and q'= rnq

n + ••• +
rxq + r0 for some r{ e R, i = 0, 1, , n. Now 1 = qq' — rnq

n+1 + +
rxq

2 + roq. If one multiplies both sides of the equation by (q')n+1

and transposes one obtains the equation (q')n+L — rQ{qf)n — r1(q')n~ι—
— rn^{qr) — rn = 0 which shows that qr is integrally dependent on R.
Since every unit is the inverse of a unit (6) is established.

(6) => (1). Let q e Q{R) Since Q{R) is π-regular there is a q' e Q{R)
such t h a t qn = (qn)2qr. Let e = qnq', u — qn + 1 — qnqr. One verifies

immediately that e = e2, that u is a unit with inverse u~ι = qn(qf)2-\-
1 — qnqf and that qn = ue. Now e is integral over R, and by (6) v,
is, so qn is integral over R, which implies in turn that q is integral
over R.
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PROPOSITION 7. [4, p. 42]. Let R be a semiprime ring. Then
Q{R) is regular.

PROPOSITION 8. Let R be semiprime and let Q(R) be its complete
ring of quotients. Then the following are equivalent:

(1) Q(R) is integral over R,
(2) all rings of quotients of R are regular,
(3) all rings of quotients of R are classical.

Proof. Q(R) is regular so by Proposition 6, (2)=>(3)=>(1). (1)=>
(2). Let S be a ring of quotients of R. Q(R) is semiprime so S is
as well. By Proposition 6, S is τr-regular. Therefore by Corollary
2, S is a regular ring.

EXAMPLE 9. Boolean rings. A ring is Boolean if each element
is idempotent. Thus a Boolean ring is regular. Rings of quotients
of Boolean rings are discussed in [3, 2.4] where it is shown that a
Boolean ring coincides with its complete ring of quotients if and only
if it is complete when viewed as a partially ordered set. Further-
more the complete ring of quotients of a Boolean ring is Boolean.
Thus if R is a non-complete Boolean algebra, Q(R) is a proper ex-
tension of R, which clearly satisfies condition (1) of Proposition 8.

EXAMPLE 10. In Fine-Gillman-Lambek [2, 4.3] the rings QL(X)
and QF(X) are introduced and it is shown that the former is the
complete ring of quotients of the latter. To realize QL{X) one con-
siders the set of all locally constant continuous real-valued functions
whose domains of definition are dense open subsets of a completely
regular Hausdorff space X, and divides out by the equivalence relation
which identifies two functions which agree on the intersection of
their domains. QF(X) is the subring determined by the functions
with finite range. QF(X) is regular. It is not difficult to see that
the two rings differ if X is the real field in its usual topology.

Let g e QL(X) and suppose that gn + gn~fn-ι + + /0 = 0 for
some fi G QF(X), i = 0, 1, , n — 1. We may assume that all the
functions are defined on the domain D given by the intersection of
their individual domains. Each f is defined on a finite clopen partition
Πi of D, on the elements of which it is fixed. Let 77 be the common
refinement of the 77̂ . Then 77 is finite and each f{ is fixed on the
elements of Π. Since g must satisfy the above polynomial it can
assume only a finite number of different values on a given element
of 77. Thus g restricted to D has finite range and therefore lies in
QF(X). Thus the elements of QL(X) — QF(X) are not integral over
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QF(X). Thus we have examples of regular rings for which the con-
ditions of Proposition 8 fail.

Proposition 6 demands the τr-regularity of Q(R) thus raising the
question: for which rings is the complete ring of quotients ττ-regular?
In the Noetherian case the classical ring of quotients is Noetherian
and it coincides with the complete ring of quotients. Thus [6, 5.5
and 5.7] the complete ring of quotients is π-regular if and only if it
is Artinian. Furthermore Small [5] has shown that a Noetherian
ring R has Artinian classical ring of quotients if and only if R
satisfies the following 'regularity' condition: if f is not a zero-divisor
in jβ/rad R, then r is not a zero-divisor in R. We examine the
question of Q(i2)'s π-regularity in the light of this condition. By R
and Q(R) we denote i?/rad R and Q(J?)/rad Q(R) respectively. The
following diagram (with the obvious maps) is commutative

R >Q(R)

R >Q(R)

and R —• Q(R) is a monomorphism since rad (Q(R)) Π R = rad R.

LEMMA 11. // Q{R) is π-regular and rad R is nilpotent then R
satisfies the regularity condition.

Proof. Let f be a nonzero-divisor in R. If f is a zero-divisor
in Q(R), then there exists s e Q(R)\raά Q(R) such that rs e rad Q(R).
There is a dense ideal D in R such that sD c R. Suppose that
sDczR. Since rad R is nilpotent, (rad R)k = (0) for some integer
k. Thus skDk = (0). But Dk is dense so sk = 0, contradicting the
fact that s ί rad Q{R). Thus there exists d e D such that sd e R\(rsiάR).
Now r(sd) e rad R contradicting the fact that r is not a zero-divisor
in R. Thus r is a nonzero-divisor in Q{R). But Q(R) is regular by
Proposition 1, so r is invertible in Q(R). Thus there is a qeQ(R)
such that rq — leradQ(iϋ), from which it is easy to see that r is
a unit in Q(R), and therefore not a zero-divisor in R.

LEMMA 12. If rad R is nilpotent then Q(R) is a ring of quotients
of R. Furthermore if R satisfies the regularity condition then Q(R)
contains QC1(R).

Proof. Let q be a nonzero element of Q(R). qDaR, for some
dense ideal D of R. Suppose that qD c rad R. There exists an
integer k such that (rad R)k = (0) so qkDk = (0) yielding qk = 0, a



RINGS OF QUOTIENTS AND π-REGULARITY 233

contradition. Thus there is a d e D such that qd e iϋ\rad R yielding
qd Φ 0 in R, and Q(R) is a ring of quotients of R. [4, p. 46 no. 5].

If the regularity condition holds and r is a nonzero-divisor in
R, then r is a nonzero-divisor in R and rq = 1 for some qeQ(R).
But then rg = ϊ showing the nonzero-divisors in R have inverses in
Q(R). Thus QCB) 3 Q^CR).

PROPOSITION 13. If rad J? is nilpotent and Qa(R) — QCβ) ίAew
Q(R) is π-regular if and only if R satisfies the regularity condition.

Proof. Lemma 11 gives one implication. If QCι(R) = Q(R) then
by Lemma 12 Q(R) = Q(S). But Q(R) is regular by Proposition 7.
Thus by Proposition 1, Q(R) is π-regular.

The above proposition applies to the Noetherian case. More
generally if R is commutative with maximum condition on annihilatar
ideals then:

( a) rad R is nilpotent [3]
(b) R satisfies the maximum condition annihilator ideals [5,

1.16], and
(c) Q{R) = QCι{R), [4, p. 114, 5(g)].
By condition (b), condition (c) also holds for the ring R. This

together with condition (a) makes Proposition 13 meaningful for these
rings as well.
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INFINITE MATRICES SUMMING EVERY ALMOST
PERIODIC SEQUENCE

JAMIL A. SIDDIQI

Necessary and sufficient conditions are given for infinite
matrices to sum every almost periodic sequence and their
basic properties as summability matrices are studied. It is
then shown that these matrices enter naturally in the prob-
lem of the determination of the jump or total quadratic
jump of normalized functions of bounded variation on the
circle in terms of the limits of matrix transforms of certain
functions of their Fourier-Stieltjes coefficients. The results
obtained generalize the classical theorems of Fejέr and
Wiener as also the extensions of theorems of Wiener given
by Lozinskiί, Keogh, Petersen and Matveev. Applications are
made to the study of coefficient properties of holomorphic
functions in the unit disk with positive real part.

1* R. H. C. Newton [11] proved that a regular matrix A = (an,k)

sums every periodic sequence if and only if liτnn_oo'Σ^=0an)kexp(2πikt)
exists for each rational t. Vermes [15] generalized this result by
proving that an arbitrary matrix A = (an,k) sums every periodic se-
quence if and only if for every rational t, (1) Σ~=o α*,*exp (2πikt)
converges and (2) limn_«> Σ~-o αWf* exp (2πikt) exists.

The set P of all periodic sequences of complex numbers is a
linear subspace of L that is not closed in the usual norm topology
of the Banach space L since P is meager in L. Berg and Wilansky
[3] proved that the closure Q of P in L is the set of all semi-
periodic sequences. (A sequence x = {xk} is called semi-periodic if for
any ε > 0, there exists an integer r such that | xk — xJc+rn | < ε for
every n and k). Berg [2], gave a characterization of infinite matrices
summing every semi-periodic sequence which is rather involved. We
first show that these matrices can be characterized simply as follows:

THEOREM 1. An infinite matrix A — (an,k) sums every semi-
periodie sequence if and only if (1) || A || = supΛ^0 Σ"-=o I α»,* I < °°

and (2) lim^^ ΣΓ = 0 aΛfk exp (2πikt) exists for all rational t.

Proof. I f xeQ, t h e n f o r a n y ε > 0 , t h e r e e x i s t s a yeP s u c h

t h a t \\x — y\\oo<e. I f y i s o f p e r i o d r , t h e r e e x i s t c o n s t a n t s Xί9 •••,

λ r s u c h t h a t

T

Σexp (2πikv/r) λ, = yk, k = 0, 1, , r - 1
v — 1
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so that

Σ (α»,A - cb%tk) ( Σ exp (2πikv/r)

for n and m sufficiently large. Hence lim^c, ΣΓ=o α*,* #fc exists. Thus
(1) and (2) are sufficient. The necessity of (1) can be established as
in Berg and Wilansky [2] (see also the proof of Theorem 2 below
where similar arguments have been given to prove the necessity of
Theorem 2 (1) independently of the use of Theorem 1), and that of
(2) is immediate since {exp (2πikt)} is periodic when t is rational.

2* A sequence x = {xk} of complex numbers is called almost
periodic if to any ε > 0, there corresponds an integer N = N(e) > 0
such that among any N consecutive integers there exists an integer
r with the property | xk — xk+r | < ε for all k. If we denote by AP
the set of all almost periodic sequences of complex numbers, then
clearly AP is a linear subspace of L and P c P = Q a APa L. Also
AP is a closed subspace of L. For if {x{n)} is a Cauchy sequence in
AP, there exists an x = {xk}eL such that l inv^ || x{n) — x ||oo — 0.
Given any ε > 0, we can choose an n such that | x^ — xk \ < ε/3 for
every k. Since x{n) e AP, there exists an integer N = N(e) such that
among N consecutive integers there is an integer r such that
I xln) - %lnlr I < ε/3 for every k so that

I Ύ ry(n) I I I /v.(%) /v.(tt) I _| I /«(%) /y, I

I % —• %k I ~Γ I Xk — Xh^-r I + I Xk + r — %k + r \

for every k. Thus AP is a Banach space. We note that Q
since if ί is irrational, then {exp (2πίkt)} is almost periodic but not
semi-periodic.

Infinite matrices summing every almost periodic sequence in AP
can be characterized as follows:

THEOREM 2. An infinite matrix A = (an,k) sums every almost
periodic sequence if and only if (1) \\ A\\ = sup%>0 ΣΓ=o I an,k I < °°
(2) lim^oo ΣΓ=o an,k exp (2πikt) exists for all t.

Proof. Suppose that A sums every almost periodic sequence.
Since for each t, {exp (2πikt)} e AP, (2) holds. To prove the necessity
of (1), we first observe that if yelί9 its norm \\y\\UP)* is identical
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with its Zi-norm. For if y = {yk} e llf we define a sequence x of period
n by the rule: xk = sgn #fc ίoτ k<^n so that

= sup ^ Σ
where

as w - * o o . Thus | M | U p ) * ^ \\y\\h Clearly \\y\\UP)* ^ \\y\\h so t h a t

I M I U P ) * = \\v\\h.
For each fixed n, put

= Σ °kfc «*> where aj e AP .
k=0

yNe(AP)* and l im^^ yN(x) exists for each xeAP. By the uniform
boundedness principle,

for each N so that ΣΓ=o I ,̂/b I < °° for each n. If we put

= Σ

then zne(AP)* and l im^^ ^(x) exists for each xeAP. Applying
once more the uniform boundedness principle, we get

|| A || = s u p Σ \an>k\ < oo .

Thus (1) holds.
To prove the sufficiency of conditions (1) and (2), we note that if

x = {χk} e AP, there exists a sequence {Σf 6y exp (2πiXjk)} e AP such
that for all k,

— Σ δy exp (2πίXjk) < e .

Now

Σ- Σ (««,* ~ «»,*)(«Λ - Σ h exp (2πiXjk)
ife 0

Σ (amΛ - an,k) Σ &ί exp (2πiXίk)
k=0 0

for m and % sufficiently large. Thus linv_«, Σ?=o «n,* ** exists.
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We call a matrix A = (an,k) satisfying the conditions (1) and (2)
of Theorem 2, an almost periodic matrix. We now establish a few
properties of these matrices. We recall that the set of all sequences
summable by a given matrix A = (an>k) is called its convergence field
and is denoted by (A). If (A) contains all convergent sequences then
A is called conservative. It is known that A is conservative if and
only if (1) || A\\ < °o, (2) l im^^ ΣΓ=o anιk = a exists and (3) l i n v ^ α ^ =
ak exists for each fixed k. We have:

PROPOSITION 1. An almost periodic matrix is always conservative.

Proof. It is sufficient to show that lim^^ an>k = ak exists. If we
put Kn(t) — Σ"=o αΛ,Aexp (2πίkt), then {Kn} is a sequence of continuous
functions on [0, 1] such that lim^^ Kn(t) = K(t) exists for each t and
\Kn{t)\ ^ II-AII < °° for all n and all t. By bounded convergence theorem,

lim an,k = lim Γ Kn(t)e~2rikt dt = [ K{t) e~2~~ΐkt dt

exists for each k.
The converse is easily seen to be false.
A conservative matrix A — (an>k) is called multiplicative if there

exists an m > 0 such that lim^eo xn = x implies l im^^ An{x) = lim^^
Σ"-o dn..k χk = m% and then A is called m-multiplicative. Since

lim An(x) = ax + Σ ak (xk - x) ,

it follows that a conservative matrix A = (an k) is multiplicative if
and only if l im^^ antk = 0 for each k. An examination of the proof
of Proposition 1 shows that an almost periodic matrix A = (an,k) is
multiplicative if and only if

[ K(t) e~2πίkt dt = 0 for all k = 0, ± 1 , ± 2 ,
Jo

so that, by the uniqueness of Fourier expansion, if and only if K(t) =
0 a. e. Thus we have:

PROPOSITION 2. An almost periodic matrix A = (anιk) is multipli-
cative if and only if limn_oo^A^0an,kexp(2mkt) = 0 a.e. in (0, 1).

It may be remarked that there exist multiplicative almost periodic
matrices for which the above limit is not zero for all te (0, 1). The
positive matrix A = (an,k) where an2k = 0, an2k+ι = nk/(n+ΐ)k+1 for
k = 0, 1, 2, is one such matrix. We also have:
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PROPOSITION 3. An almost periodic matrix A = (an,k) is regular
if and only if (1) l i m ^ ΣΓ=0 an,k = 1 and (2) l i m ^ Σ~= o an,k exp
(2πikt) = 0 α. e. m (0, 1).

We call an almost periodic matrix normal if (1) l im^^ ΣΓ-o a>n,h
= 1 and (2) l i m ^ Σ~ = o α»,*exp (2πikt) = 0 for all ί e (0, 1). Clearly a
normal almost periodic matrix is regular.

3* A sequence x = {xk} is said to be ^ A summable where A =
(an,k) if lim^oo Σ£=o α»f* xk+p exists uniformly in p = 0, 1, 2, . An
obvious modification of the reasoning used in the proof of Theorem 2
yields the following:

THEOREM 3. Let A be a given matrix. Then every almost periodic
sequence is summable ^ A if and only if A is an almost periodic
matrix.

In particular, a sequence x = {xk} of complex numbers is called
almost convergent if lim^^n + 1 ) " 1 ΣΓ= 0

 χk+P exists uniformly in p =
0,1, ••• i.e., if it is summable j^~A where A is the matrix of the
arithmetic mean. Every almost periodic sequence is almost con-
vergent (cf. Theorem 3) but not conversely. Lorentz [8] has
proved that a matrix A — (an>k) sums every almost convergent sequence
to its almost convergence limit if and only if (1) A is regular and (2)
limw__ Σ ϊ U I Δantk \ = 0 where Aan,k = an,k - an,k+1 for k = 0, 1, . He
calls matrices A = (an>k) satisfying (1) and (2) strongly regular. A
simple modification of his proof of the above characterization yields
the following:

THEOREM 4. A matrix A = (antk) sums every almost convergent se-
quence if and only if (1) A is conservative and (2)\imn_oo

1ΣΛΐ=0\ A(an,k—ak)\ =
0, where ak = l i n v ^ an>k.

A natural problem in this connection is to determine whether
there exist matrices that sum every almost periodic sequence without
necessarily summing every almost convergent sequence. The fact that
there exist almost convergent sequences that are not almost periodic
does not resolve the problem since, a priori, it is not clear that the
convergence field of an almost periodic matrix does not contain all
almost convergent sequences. This is settled by the following:

THEOREM 5. There exists a normal almost periodic matrix A =
(an,k) such that \ A \ = (| an>k |) is also almost periodic but A is not
strongly regular.

Proof. Let A = (αWlfc) be defined as follows:
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an,0 = 0 ,

ank — — for 1 ^ k ^ n ,
n

an>k = exp {iπ(k — n) log (k —

an,k = 0 for & > 2w.

for % < k ^

Clearly lim^oo Σ~ = o αw,fc = 1, since Σ~ = o α»,* = 1 + (1/w) Σ?=i e χ P
{i7r(fc — w) log (& — n)} and the partial sums sn(x) of the series Σ exp
{iπA; log k + i&α;} are O((n)112) uniformly in x (cf. Zygmund [17] p. 199).
Also lim^oa Σ?=o cbn,k e χ P (2πίkt) = 0 for all £ e (0, 1) since, in view of
the above cited result,

Σ
1

an,k exp (2πikt) = 1
n

Λi2πt (Λ

1 — e'2
0

n
) .

Also since || A || = 2, it follows that A is normal almost periodic. For
ί 6(0,1)

I exp
11 —

and

so that IAI is also almost periodic. However A is not strongly
regular. In fact,

Σ
λ0

o n — i

n i
sin | . {log (l + j j + log (k + 1)}

Since

as k —> oo , we have

sin-^ {A; log ( l + ±λ + log (A; + 1)} = cos -ξ- log (& + 1) + o (1)

so that

A Σ s i n ^ {fe log ( l + 1) + log (A; + 1)}
2 I \ k) )

2 n—i

n i
cos ~ log (k + 1)

Δ
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We assert that

1 w - 1

A. v
n i

does not tend to zero. In fact, if we put

cos — log (k + 1)
Δ

k) 11 s i n ^

cos — log k
Li

then we have

uk <2

It is known (cf. Zygmund [17], p. 78) that if a series Σuk is sum-
mable (C, 1) and % — 0(l/&), then J % is convergent. Hence, if in
our case the series Σun were summable (C, 1) to zero i.e., if

1 n-l

- Σ
n i

were to tend to zero as n —
which is not the case since

would be convergent

cos — log (k + 1)

- oo, the series 1

cos — log (n + 1)
Δ

does not tend to a limit as n —» oo.
As a corollary of Theorem 5, we get that there exist sequences

that are almost convergent without being almost periodic.

4. Let F[0, 2π] denote the class of all normalized functions F
of bounded variation in [0,2π] such that F(x + 2π) — F(x) =
F(2π) — JP(0) for all x and let {CJ be the sequence of Fourier-Stieltjes
coefficients of F. We now show that almost periodic matrices enter
naturally in the solution of the problem of the determination of
the jump or the total quadratic jump of a function .Fe F[0, 2π] by
means of the limits of the matrix transforms of {Cke

ίkx} or {|C/C|
2}

respectively.

THEOREM 6. Let A = (an>k) be such that \\A\\ < oo. Then for
every Fe V[0, 2π] and for every xe[Q, 2π], the sequence {Cke

ikx} is
summable A or ^2 to (27Γ)"1 D(x) where, D(x) = F(x + 0) - F(x - 0),
if and only if A is normal almost periodic.

Proof. We prove the assertion for summability A, the proof for
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Σ~=o

summability J^~A being similar. The condition is necessary, for if we
choose F: F(t) = 2π for 0 < t ^ 2π and F(0) = 0, then Ck = 1 for all
k, D(0) = 2π and D(x) = 0 for 0 < x < 2π so that li
exp (2πίkx) = 0 for all a? e (0, 1) and lim*.^ Σ~=o αΛffc = 1.

Suppose that A is a normal almost periodic matrix. Then

Σ aUtk Cke
ik° = Σ antk^-

Jo k 2π

where £»(«) = Σ?=o ^n.^exp (2πikt), {Xj} are the points of jump of F
in [0, 2τr) and Fc is the continuous part of F. Clearly the first term
on the right tends to D(x)/2π as n —• oo. The second term on the
right tends to 0 as %-^oo, for, given an ε > 0, there exists a } > 0
such that

x+δ

dF.(t)

so that

Cx+δ ( χ-t

}x — δ \ 2ι7Z

and, by bounded convergence theorem,

x—δ

0 2

for large %. Thus {Cke
ikx} is summable A to D(x)/2π.

Theorem 6 generalizes a theorem of Fejer [4] (cf. also Zygmund
[17] p. 107) and, in particular, it shows that in Fejer's theorem the
summability (C, 1) can be replaced by almost convergence.

THEOREM 7. Let A = (an,k) be such that \\ A\\ < oo. Then for
every Fe V[0, 2τr], the sequence {\Ck\

2} is summable A and ^ A to
(4τr2)~1Σ7=o \D(XJ)\2, where {XJ} are the points of jump of F in [0, 2π)
if and only if A is a normal almost periodic matrix.

Proof. If we put F*(x) = (27ΓΓ1 F(x + t)dF{t), then F*G

0, 2π], F*( + 0) - F*(-0) = (2πyiΣ,7=o \D(xj)\2 and the Fourier-
Stieltjes coefficients of F* are {\Ck\

2}. Applying Theorem 6 to F* at
x = 0 we get the proof of the sufficiency part of the above theorem.

To prove the necessity part, we observe if {Ck} and {Ck} are the
Fourier-Stieltjes coefficients of F and Fr in F[0, 2ττ], then
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is summable A to (47Γ2)"1 Σ~o {D{yι) Dt{yι) + D{Vl) Π{yι)}, where {yt}
denotes the set of all points of jump of F and Fr. On replacing
F' by iF', we get that {CkCί - CkC'k) is summable A to (Aπ~2)

'iyύ) so that {CkC'k} is summable A to

If we choose F e 7 [ 0 , 2ττ] such that
D'iVi) - D(yίj

ikx

so

(4π2)-1 ΣΓ=o
F'(t) = 0 for 0 S t < x, F'(t) = 2π for x < t ^ 2τr, then CA' = e
that {Cfc e

ίkx} is summable A to D(x)/2π for each α? e [0, 2π] and
Theorem 6 applies. Thus we conclude that A is normal almost
periodic.

Theorem 7 generalizes a theorem of Wiener [16] (cf. also Zygmund
[17] p. 108) and, in particular, it shows that in Wiener's theorem the
summability (C, 1) can be replaced by almost convergence.

As an immediate consequence we have the following:

THEOREM 8. For functions Fe V[0, 2π], the following conditions
are equivalent:

(1) F is continuous,
(2) is summable A or to 0 by a normal almost

periodic matrix A,
summable A or ^ A to 0 by a normal almost

a*n,k\ e χ P (2πikt) = 0periodic matrix A — (an>k) for which l im % ^
for all te(O, 1).

Proof. The equivalence of (1) and (2) is a direct consequence of
Theorem 7. Suppose that F is continuous. Then the convolution F*
as defined in the proof of Theorem 7 is continuous and belongs to
V[0, 2π], If we go through the steps of the proof of Theorem 6 for
F* with x = 0 and D*(0) = ^ T Γ ) " 1 ] ^ | D{x3) |

2 and note that the
Fourier-Stieltjes coefficients of F* are {\Ck\

2}, we conclude that the
an,k\ exp (2πikt) — 0 for all £e(0, 1) without

exists, assures that

hypothesis nm^oo ^_jk=o

the requirement that
I α*,fc I I Ck |

2 = 0. Applying Schwarz inequality, we get that
Σ?=o|αΛ,fc| \Ck\ = 0 and consequently that {|CΛ |} is summable A to
0. Similarly we show that {|CΛ|} is summable j^~A to 0. Thus (1)
implies (3). Suppose that {[ C^ |} is summable A to 0. If we write
Ck = Cί + C", where Cί and Ck are respectively the Fourier-Stieltjes
coefficients of the saltus part and the continuous part of F, we
have

l Q"n k (I ̂ k+p I [ Ck + p I)

Since the last term tends to zero in view of the equivalence of (1) and (2)
already proved and since the almost periodic sequence {| Cί \} is sum-
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lim Σ αΛ,* I Ck+P | = 0

uniformly in p. Similarly we prove that

oo

lim Σ I a>«,k I \Ck+p I = L (say) ,

exists uniformly in p. If we set
oo

0n,p — Σ ®"n,k I ̂ k+p I 9

we see that

Σ ~ Σ Σ

= Σ <*>n,k Σ I α^,P 11 C^+P I

If for an ε > 0, we choose an N = JV(ε) such that for all ?

\p=0 /

uniformly in p and k respectively, it follows that for n ^

^ ΛΓ

V I L <

v

— Σ I ]|
v

^ | | A | | ε + | | A | | ε = 2 | | A | | ε .

Making ^ - ^ o o , we get L ^ 2 | | A | | ε so that L = 0. Thus {ICJ} is
summable J^A\ to 0. Hence {|Cfc|

2} is summable J^\A\ to 0 and
therefore summable ^ J to 0. Since (1) and (2) have already been
shown to be equivalent, we conclude that F is continuous. Thus (3)
implies (1).

Theorem 8 generalizes a theorem of Wiener [16] (cf. Zygmund
[17] p. 108) and contains as special cases various generalizations of
that theorem including those given by Lozinskiϊ [9] and Matveev (cf.
Bari [1] p. 256).

Theorem 8 can be reformulated in the following strengthened
forms which we state separately.

THEOREM 9. For Fe V[0, 2π] to be continuous, it is necessary
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that {\Ck\
2} should be summable J^~A to 0 by each normal almost

periodic matrix A and sufficient that {\Ck\
2} should be summable A

to 0 by some normal almost periodic matrix A.

THEOREM 10. For Fe V[0, 2π] to be continuous, it is necessary

that {\Ck\
2} and {\Ck\} should be summable &\M to 0 by each normal

almost periodic matrix A — (an>k) for which (1) l i m , ^ ΣΓ=o I an>k \

exp(2πikt) = 0 for all te(O, 1) and sufficient that either {\Ck

2} or

{I Ck I} should be summable A by some normal almost periodic matrix

satisfying (1).

It may be pointed out that the assertion regarding summability
^\A\ in Theorem 10 has been established in the course of the proof
of Theorem 8. Theorem 10 generalizes the following strengthened
form of Wiener's theorem given by Keogh and Petersen [7].

THEOREM A. For Fe V[0, 2π] to be continuous, it is necessary
that {\Ck\

2} and {\Ck\} should be almost convergent to zero and suf-
ficient that either {|Cfe|

2} or {\Ck\} should be summable to zero by
some summation method which contains almost convergence.

Since every strongly regular matrix A == {an>k) is an almost peri-
odic matrix satisfying (1) and the (C, 1) matrix is strongly regular,
the direct proposition of Theorem A is a particular case of the cor-
responding assertion in Theorem 10. We have already remarked ear-
lier (§ 3) that Lorentz [8] has shown that a matrix sums all almost
convergent sequences to their almost convergence limits if and only
if it is strongly regular. The sufficiency part of Theorem A is there-
fore also a special case of the corresponding assertion in Theorem
10.

Lorentz [8] has proved that (a) if A is regular, then summability
^~A implies almost convergence and that (b) if A is strongly regular,
then summability ^~A and almost convergence are equivalent.
Although not explicitly stated by Lorentz, it follows that summability
^~A and almost convergence are equivalent if and only if A is strongly
regular. For, if A is not strongly regular, there exists an almost
convergent sequence that is not summable A and hence a fortiori not
summable J^A. Hence if A is not strongly regular, summability ̂ ~A

is strictly weaker then almost convergence. Since there exist non-
strongly regular normal almost periodic matrices satisfying (1) (cf.
Theorem 5), Theorem 10 is sharper than Theorem A in both direc-
tions.

A particularly interesting corollary of Theorem 10 is the following:
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COROLLARY. For a continuous Fe F[0, 2π\ with Fourier coef-
ficients {ck}, we have Σ£+ 2 > 1^1 — ° (log n) (n —> oo) uniformly in p.

This result is significant since there exist continuous functions
of bounded variation for which ck Φ o (1) (k —> oo).

5* In Theorems 6 and 7 of the preceding section, we started
with matrices A satisfying the condition that \\A\\ < oo and then
found the necessary and sufficient condition in order that these be
effective in the problem of the determination of jump or total quad-
ratic jump of functions belonging to F[0, 2ττ], However, as we shall
see below, this restriction is not necessary. In fact, if we call a
matrix A = (an,k) for which

Kn: Kn(t) = Σ an,kexp (2πikt)

is continuous in [0, 1] for each n, a matrix with continuous kernel,
we have the following:

THEOREM 11. Let A = (an>k) be a matrix with continuous kernel
{Kn}. Then for every Fe F[0, 2π] and for every xe[0, 2τr], the
sequence {Cke

ikx} is summable A or ^ A to {2π)~ιD{x), where

D(x) = F(x + 0) - F(x - 0)

if and only if

( i ) sup max | KN

n(t) | = Mn < oo for every n,

(ii) sup max | Kn(t) | = M < oo,

(iii) \\mKn(t) — 0 for t e (0, 1) and —\ otherwise,

where KN

n(t) = Σ£^antkexp(2πikt)f N= 0, 1, •••.

Proof. If A sums every sequence {Cke
ikx} for each x in [0, 2π]f

and for each Fe V[0, 2π], it follows that for each fixed n the se-
quence of continuous functions {KN

n} converges weakly in C[0, 1] so
that, by the uniform boundedness principle, we get ( i ) . Since

±an,kCk = Km A. J[" JΓί(zl) dF(t) =

and

κn[—

exists for all Fe F[0, 2ττ], again, by the uniform boundedness principle,
we get ( i i) . If for each te [0, 1], we choose F: F(x) = 0 in [0, t],
F(x) = 2π in (t, 2τr], we get Ck = e~ikt so that (iii) holds. Thus con-
ditions ( i ) , (ii) and (iii) are necessary. The proof of the sufficiency
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of these conditions is the same as in case of Theorem 6, if we ob-
serve that the continuity of Kn and ( i ) assure that

Σ *..* Ck e* = ±- \κJp) dF(t) .
k=o 2π Jo \2πJ

The assertion for summability FA can be similarly proved.
We call a matrix A = {antk) normal Fejer effective if it satisfies

conditions ( i ) , (ii) and (iii) of Theorem 11.
We can similarly prove the following analogues of Theorems 7

and 8 respectively.

THEOREM 12. Let A — (antk) be a matrix with continuous kernel.
Then for every Fe V[0, 2π], the sequence {\Ck\

2} is summable A and
J^A to (47Γ2)-"1 ΣΓ=o I-D(#y) IS where {x3) are the points of jump of F in
[0, 2π), if and only if A is a normal Fejer effective matrix.

THEOREM 13. For functions Fe V[0, 2π], the following conditions
are equivalent:

(1) F is continuous,
(2) {I Ck |2} is summable A or ^ A to 0 by a normal Fejer effec-

tive matrix A with continuous kernel,
(3) {I Cfc I} is summable A or ^2 to 0 by a normal Fejer effec-

tive matrix A = (an,k) with continuous kernel, for which lim^^^ Σ"=o
\an,k\ exp (2πikt) = 0 for all t e (0, 1).

Theorems analogous to Theorems 9 and 10 can also be established.

A normal almost periodic matrix is clearly a normal Fejer effec-
tive matrix since the hypothesis \\A\\ < oo implies that the conditions
( i ) and (i i) of Theorem 11 are satisfied. But the converse is not
true. Consider the matrix A — (an>k), where

α»,o = 0 ,

for 1 ^ & ^
n

It can be verified that A is a normal Fejer effective matrix with
continuous kernel that does not satisfy the condition ||.A|| < oo, since
even ΣΓ=o I αw,Λ I = °° so that applying Theorem 2 one concludes that
the matrix A is not an almost periodic matrix. It follows that for
the validity of the theorems of this section we need normal matrices
that may not be conservative.
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6* Hayman [6] and Petersen [12] have applied Wiener's theorem
and its generalization Theorem A respectively to the study of coef-
ficient properties of holomorphic functions with positive real part.
We can apply Theorem 10 to obtain the following:

THEOREM 14. Let ψ(z) = 1 + Σ?=i bnz
n = u + iv be holomorphic

in I z I < 1 satisfying the condition u > 0 there and let

o ew — z

be the Herglotz representation of ψ where g is non-decreasing on
[0, 2π]. Let gλ denote the saltus part of g.

a. If A = (αw,fc) is a normal almost periodic matrix for which
l im^c Σ?=o I αΛ,fc I exp (2πikt) = 0 for all te(0,ΐ), then there exists a
complex Borel measure μ uniquely determined by g1 and A, defined
on the disk A = {w: \w\ <^2} such that

lim
r

bn+P) = \ Φ(w)dμ for all φeC(Λ)

uniformly in p, where C{A) denotes the space of all complex con-
tinuous functions on A.

b. If, moreover, lim^oo Σ"=o I αw,fc I exists, then there exists a posi-
tive Borel measure v uniquely determined by g1 and A, defined on A
such that

lim
A;=0

α»,* I ΦΦn+p) = [ Φ(w)dv for all φeC(A)

uniformly in p.
c. If we define χE: χE(bk) = 1 if bkeE and = 0 if bk$E where

E is a Borel set, then under the same assumption on A — (an,k) as in
b, we have

lim Σ I antk I χE(bk+p) = v{E)
n—><χ> k — Q

uniformly in p.

Proof. If {θu} denote the points of discontinuity and {αj the
jumps of g in [0, 2π), and g2 = g — g19 we get

= SΓ τ^τdm = Γ %=

= Σ β^" + Σ dnz
n ,
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where cn = Σ^=o2ave-ίn^(n^l). It is known (cf. Hayman [5] p. 12)
that I 6.1 ^ 2. Since

\2K Σ ocv + g2(2π) - &(0) ^ Σ ay,

If we set φ(Reiθ) = (β-R)φ(2eίθ)(2<R<S) and φ(Reiθ) = 0(22^3),
then ^ is continuous in the whole plane, ^ = 0 for | w | ^ 3 and hence
0 is uniformly continuous. This extension of φ outside the disk
1 w I ^ 2 does not alter ^ (δΛ) and φ (cn) since | bn | ^ 2 and \cn\ ^ 2 .

If we put
oo

L(φ) = lim Σ «»,* ^ (c*+p) ,

then this limit exists uniformly in p> since {φ(ck)} is almost periodic.
We now show that

oo

l i m Σ ^n,k [Φ(ck+P) - Φ(bk+P)] = 0
n—>co A;=0

uniformly in #>. Since ^ is uniformly continuous, given any ε > 0, we
can choose δ > 0 so that if \w — w'\<δ, then | φ(w) — ̂ (^') | < ε. Now

Σ
fc0

antk || φ(bk+p) - φ(ck+p) I ̂  ( Σ + Σ )

p) - Φ(ck+P)\

^ ε || A || + 2ikf
I

Since A. is normal almost periodic and is such that lim,^ Σ£=o
I an>k I exp (2πikt) = 0 for all t e (0,1) and {dn} are the Fourier-Stieltjes
coefficients of continuous part of g, it follows from Theorem 10 and
the inequalities

δ Σ I α ,* I ^ Σ I «»,* I I dfc+p I ̂  Σ I a*,* I I dk+p I
I^A+pl^5 \dk + p\^δ λ=0

t h a t limJI_>oβΣidA.+pι^ί l«»,*l = 0 uniformly in p. I t follows t h a t

oo oo

L(φ) = lim Σ α»,* ^(cfc+3)) = lim Σ «»,* Φ(h+p)

exists uniformly in p and depends only on gιm Since L is a bounded
linear functional on the space of all continuous functions in the plane
with compact support, there exists a complex Borel measure μ in
the plane such that

L(φ) = lim Σ a>n,kΦ φk+P) = \ Φ(w)dμ .
U-»co fc=0 Jj
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This establishes (a), and (b) follows from it.
Suppose E is a set, whose frontier has v-measure zero. Then we

can find a compact set K c Int E such that v(K) > v(E) — ε. Further,
we can construct φ continuous in the plane such that 0 ^ φ ^ 1,
φ(K) = 1 and φ(cE) = 0. Then

Σ I an.k I Φ (δ*+p) ^ Σ I α»,* I Z*(δ*+p)
fc = 0 & = 0

so that

lim Σ I α.,* | χ ^ δ ^ ) ^ ( 0(κ;)ώ> ̂  v{K) > v(E) - ε .

Similarly there exists a bounded open set U~DE such that
v(U) < v(l?) + ε. Choose a continuous function ψ in the plane such
that 0 ^ ψ ^ 1, (̂-iE;) = 1 and ^(cZ7) = 0. Then

so that

Since ε is arbitrary, we get

limΣ|α.,*IZί(6*+p) = »(#) »

uniformly in p.
We remark that in the above theorem we can replace the normal

almost periodic matrix by a Fejer effective matrix with continuous
kernel.

Finally, I would like to express my thanks to Professor B. Kutt-
ner for kindly reading the manuscript of this paper and making
valuable suggestions.
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UNIFORM CONVERGENCE FOR MULTIFUNCTIONS

R. E. SMITHSON

Let J^~ be a collection of multivalued functions on a
topological space into uniform space. The topology of uniform
convergence is defined on *^~, and it is shown that for point
compact functions this topology is larger than the pointwise
topology. Some results are given on uniform convergence of
nets in J^~. It is also shown that if ^~ consists of point com-
pact continuous functions on a compact space, then the compact
open topology and topology of uniform convergence are the
same. Finally the following Ascoli theorem for multifunc-
tions is obtained. Theorem: Let & be the set of point
compact, continuous multifunctions on a compact regular space
into a T2-uniform space. Then J^~ c & is compact if and only
if (i) J^~ is closed in ^ , (ii) ^~[%\ has compact closure for
each x and (iii) J^~ is equicontinuous.

1* Introduction* In [2] the topology of pointwise convergence
and the compact open topologies were defined for sets of multivalued
functions. Basic properties of these topologies (such as separation
axioms, etc.) were studied and some characterizations of compact sets
were obtained. The purpose of the present paper is to continue the
development of the basic topologies to topologies generated by uni-
formities, and hence, to a discussion of uniform convergence.

Thus let (X, S~) be a topological space, and let (Y, Jr) be a uni-
form space. Let ^ be a family of multivalued functions on X into
Y. We construct a uniformity for ^ as follows. If VeT*, define
W(V) by: W(V) = {(F, G) ejr x J ^ | for all xe X, (y, G{x)) Π VΦφ
for all yeF(x), and (F(x), y') Π V Φ ψ for all γ'eG(x)}.

The cumbersomeness of this definition is a result of the fact that
F(x) and G(x) are subsets of Y rather than points. Note, that if F
and G are singlevalued functions, then W(V) = {(F, G)\(F(x), G(x)) e
V}. We could have used the set {(F, G)\F{x) x G(x) c V}, but then
we might not get many pairs in members of the uniformity. An-
other possibility is sets of the form {(F, G)\F(x) x G(x) Γ\ V Φ φ}.
This could give a reasonable definition, but this condition is some-
what weaker than the one chosen, and in some cases allows too many
pairs (F, G) in the set. Now we let ΊJ& be the uniformity generated
by the collection of all such sets W(V). The topology generated by
°ί9 is called the topology of uniform convergence (we sometimes
abbreviate this to the u.c. topology or simply u.c.) and we obtain
the following relationship between this topology and the topology of
pointwise convergence defined in [2].

253
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DEFINITION. A multifunction F: X —> Y on a topological space
X into a topological space Y is called pomί compact if and only if
(̂α?) is compact for each xe X.

If (Y, ψ*) is a uniform space, we shall assume that Y has the
topology generated by the uniformity T. (See Kelley [1] for notation
and definitions.) Further, if A c X, then A* and AΌ denote the closure
and interior of A respectively. Finally, in this paper the terms
function and multifunction will be synonymous.

LEMMA 1. If each member of j ^ ~ is point compact, then the
topology of uniform convergence is larger than the topology of point-
wise convergence.

Proof. From [2] we have that the pointwise topology is gener-
ated by sets of the form {Fe ^ \F(x) c U) or {FeJ^\F(x) Π U Φ φ)
where x e Xand Z7is an open subset of Y. Thus let έ? = {Fe ^ \ F{x) c
J7}, and let He έ?. We shall show that there is a VeT such
that W(V)[H] cz έ?. Since H(x) is compact and U is open, there
exists a member VeT such that V[H(x)]d U [1; pg. 199, Th. 33].
Now suppose that GeW(V)[H\; then (H, G)eW{V) and hence,
if y'eG(x), then (H(x), y') Π VΦ <f>. Therefore there is a y e H{x)
such that (y, yf) e V. Thus y' e V[y] c V[H(x)] c U. That is, G(x) c
U, and so W(V)[H] c U. Now suppose that & = {F\F(x) Π U Φ φ},
and let He &. Then there exists y e H{x) Π έ? and there exists a Ve
T such that F[τ/] c ^ \ If G e T^(F)[ii], then (y, G(a;)) Π U Φ φ. Thus
there is a yreG{x) such t h a t {y,yr)eV and hence, yf eV[y\a έ?.

That is, G{» ί l f/^^ and TF(F)[Jϊ] c ^ . These two results show that
the topology of uniform convergence is larger than the topology of
pointwise convergence.

We can now use this result to get the following.

THEOREM 2. Let J^~ he the set of point compact multifunctions on
X into Y. Then a net {Fa,aeD} converges uniformly to F e J^ if
and only if {Fa, ae D) is a Cauchy net, relative to Ύ/^, and converges
pointwise to F.

Proof. That uniform convergence implies pointwise convergence
follows from Lemma 1, and if a net converges uniformly, it is a
Cauchy net with respect to Ύ/^.

Now suppose that {Fa, ae D) is a Cauchy net with respect to <W
and suppose Fa—*F pointwise.

Now let W{V)eW~, VeT. We need to show that there is
a βeD such that Fae W(V)[F] for all a> β. Let V and V1 be
closed symmetric members of T such that F Ό F ' c VX(Z V.
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Since {Fa, ae D} is Cauchy, there exists a β such that (Fa, Fr) e
W(V) for all a, 7 > β.

Now let xeX, and let yfeF{x). If F o e 5 ^ , then there exists βf

such that Ί > β' implies that Fr(x) ΓΊ V0[yf] Φ Φ- Thus there is a
net {2/r, 7 e D'}, yr e Fr(x) such that y7 -> 7/'. Now if α: > /S and 7 >
max (/5', β) then, (i^α(aj), #r) Π V Φ ψ. Thus there is a net (#αr, #r) e
F ' , 7 G D' in F2(x). Now if {yar | 7 G D'} = A is finite there is a 70 and a
ZV, a cofinal subset of D' such that (?/αro, yτ) eV, 7 G Dό Otherwise
A c .Fβ(ίc) is infinite and since Fa(x) is compact A has a limit point
y0 e Fa(x). Then in either case there is a y0 e Fa(x), such that (y0, y') e
V. We have shown that (Fa(x), yr) Π V Φ Φ for all xeX, where
7/' e F{x), and for all a > β.

The next step is to show that (y, F(x)) Π V Φ φ for all x, and
all a>β where yeFa(x). For this let xeX and F 0 G ^ " with Vo

symmetric. Then there exists a β' such that Fr(x) c Fol^x)] for 7 >
β'. Thus there is a net (2/, 2/i) with y'aeFr{x) and yreF{x), γ e ΰ ' .

Now for 2/ G jFα(β), (1/, ίVίa?)) Π F r =7̂  ̂  for a, 7 > /9 and all x. Hence,
for all xeX, (y, yr) e V'°Vf where yreF(x). If y0 is a limit point of
{yr, 7G.D'} in i7 7^), then since V1 is closed (y,yQ)e V1cV and so (y,
JP(X)) Π V Φ Φ for all x e X, 7/ G Fa(x), a > β.

These two together imply that (Fa, F) e W(V) for a > β and so
{Fα, ae D} converges uniformly to F.

DEFINITIONS. Let F: X—> Y be a multifunction on a topological
space X into a topological space Γ".

(1) The function F is upper semi-continuous (u.s.c.) if and only if
whenever F(x) c F, an open subset of Y, there is an open set U c X
such that x e U and F(Ϊ7) c F.

(2) The function î 7 is lower semi-continuous (l.s.c.) if and only if
whenever F(x) f) V Φ φ, V open, there is an open set U, such that
x G U and F(x') Π F ̂  φ for all a?' G *7.

(3) The function ί7 is continuous if and only if it is both u.s.c.
and l.s.c.

THEOREM 3. Suppose the net {Fa, ae D] converges uniformly to F.
If each Fa is u.s.c. (l.s.c., continuous) and if F is point compact,
then F is u.s.c. (l.s.c, continuous).

Proof. Let x e X and F(x) c S, an open subset of Y. Let F e
T such that V[F(x)]aS, and F ' e T BVΌVCF and let £el> be
such that Fae W(V')[F] for all α > β. Now let α > β and then
jPα(^) c V'[F(x)\ (we may assume the Fa(x) is contained in the interior
of V'[F(x)]) and so there exists an open set ?7cXsuch that FJJU) c
V'[F{x)\. Also since (ί7, Fα) G TΓ(F') we have (?/', Fa{x')) f) V Φ φ for
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all x' and y' eF{xf) (in particular this holds for all x' e U). But then
there exists aye F(x) such that {y', y) e V'° V c V and hence F(x')(z
V[F(x)] c S for all x' e U and thus F is u.s.c.

Now suppose that F(x) Π S Φ Φ, and let y e F(x) Π S. Further, let
VeT be such that 7 [ | / ]cS and let VeT and F Ό F ' c F (we
assume that F and V are symmetric). Let /3€D such that Fae
W(V')[F] for all a > β. Let a be fixed, α > β, and then Fα(a>) Π
V'[y] Φ φ. So let a? e Ua X be an open set such that .Fα(ίe') Π V'[y'] Φ
φ for all x'e U, where #'e jPα(ίE) c V'[y\. Now there is a y"eF{x')
such that (2/", ?/') e V and hence, (#", y) e VΌ V c V. Hence, ί\x') Π
S Φ φ for all x' e U, and so î 7 is l.s.c.

The above two parts show that if each Fa is both u.s.c. and
l.s.c, then so is F. Consequently if Fa is continuous for each a,
then F is continuous.

COROLLARY. Let {Fa, ae D} be a net of u.s.c. (l.s.c.) functions
into a T2-space such that for each VeT* there is a βeD such that,
a > β, and y19 y2 e Fa(x) implies that (yl9 y2) e V. If {Fa, aeD) con-
verges uniformly to F, then F is a continuous single-valued function.

LEMMA 4. Suppose that F: X-+Y is a continuous point compact
function on the space X into the regular space Y. Let KaX be
compact, and let U be an open subset of Y such that F(x) Π U Φ φ
for all xeK. Then there exists a compact set C c U Π F{K) such
that F{x) Γ)C Φ φ for all xe K.

Proof. Let xe K and let y e F(x) Π U. Then there is an open
set VxczY such that yeVx(zV*aU, and an open set WxaX such
that x e Wx and if x' e W, then F{xf) Π Vx Φ φ. Pick such a Vx and
Wx for each xeK. Thus the family <W" = {Wx: xeK} is an open
cover of K and so there is a finite subcover, WXl, •••, WXk. Let VXl

be the set corresponding to WXl as above. Then the set C" = U<=i Vίt

c U is closed and F(x) Π C" Φ φ for all xeK. Finally, since F is
u.s.c. and point compact, F(K) is compact and so C = C ' Π F{K) is
the desired set.

REMARK. If we merely require that F be l.s.c. in Lemma 4, the
proof given shows that there is a closed subset C of U such that
F(x) Π C Φ φ for all xeK.

LEMMA 5. Let j ^ ~ be the family of continuous, point compact
functions on a compact space (X, ^~) into the uniform space (Y, Y*).
Then the topology of uniform convergence is the same as the compact
open topology.
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Proof. Let KaX be compact and let 0>u έ?2 be open subsets
of Y. From [2] the compact open topology is generated by sets of
the form T = {FeJ^: F(K) c ^ and F{x) n ̂  Φ Φ for all x e K).
First we shall show that T is open in the topology of uniform con-
vergence. For this let Fe T. Since K is compact, F is continuous
and F(x) compact, F(K) is compact and so there is a member C/Ίe
T such that V\F(K)\ c ^ Also, by Lemma 4 there is a compact set
C c F(K) Π ̂ 2 such that F(x) ΓίCφφ for all a? e K. Let F2 be a
member of 3^ such that V2[C] c ^ 2 , and let V be a symmetric mem-
ber of T such that VczV.f] V2. Then if G e W(V)[F], we get G{K) Π
^ and (?(&) f) έ?2Φ Φ for all cce iΓ. Hence W(V)[F] c T, and so T
is open with respect to the topology of uniform convergence.

Now let Ve T and consider the set W(V)[F]. Let V be a closed
symmetric member of the uniformity such that VΌ V'aV. If x e X,
then, since F is point compact, there exists a finite set {yly , yk}aF(x)
such that F(x) c Uί ̂ '[2/iΓ Further, by the continuity of F, there
exists a closed, hence compact, neighborhood K of x such that
F(K) c Uϊ V%4]°, and F{z) Π F'[^]° ^ ζ3 for all i = 1, , & and z e K.
Since X is compact we obtained a finite cover Kt, , Km of Xof such
sets together with corresponding sets \Jΐ V'ly^]0, , Uίm ^'[2/im]0 Set
S3 = \J];j V'[yi3Y and define a set [/,• as follows:

Ud = {Gejtr: G(K5) c Sd and G(x) Π V'[yt.]° Φ Φ

for all ij and α; e Ks} .

Note that F G Uj for each j = 1, , m. Further, let Ge Γ)T Ud

and let y e G(x) where x e Kβ. Since G e U3-, G{x) c S,- and hence,
V e F'[2/i.]° for some ^ Also F(x) Π Vr[yi3] Φ φ follows from the con-
struction of the JBΓ/S. Hence, (^(x), y) Γ)V Φ φ. Finally, if yeF(x)
for xe Kj, then, since (?(#) Π F ' ^ . ] 0 Φ φ, there exists a τ/'e G(α ) such
that (T/, 7/') G V'oV. Thus (T/, G(OJ)) Π F ^ ^ , and the u.c. topology is
contained in the compact open topology. Hence, the lemma follows.

DEFINITION. Let ̂  be a family of functions on the space X
into the uniform space (Y, T1) the family ^ is equicontinuous at
x e X if and only if for each VeT* there is a neighborhood U of x
such that for all Fejr (1) F(U) c F[F(x)], and (2) for each se EΓ,
G(s) Π F[τ/] ^ 0 for all y e F(x).

LEMMA 6. Let j ^ he a collection of point compact functions on
the space X into the uniform space (F, JΓ) which is equicontinuous
at x. Then the pointwise closure of J^ in the family of point com-
pact functions on X into Y is also equicontinuous at x.

Proof. Let F be a point compact function which is in the
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point wise closure of j ^ . Let V be a closed member of 5^ and
let V e Y* be closed and symmetric and suppose F'° F ' c V. Let
U be a neighborhood of x such that for each G e ^ , G{U)(Z
V'[G{x)\ and G(s) Π Vfo] ^ φ for z e Ϊ7 and y e G(a). Now if F(I7) £
F[lφOL there is aze Uand α?/e F(s) such that y £ V[F(x)]. Since F(x)
is compact, there is a finite set j ^ , • • ,yk}c:F(x) such that i*7^) c
Uί yr[ViY = S. Further there is an open set Γ such that y e T and
TO F ^ ] = 0 for each i. Now set W(S) = {H: H(x) c S} and TΓ(Γ) -
{JET: JBΓ(«) Π TΦφ}. Then TF = W(S) Π W{T) is a point wise open set
containing F such that W Π ̂  = φ. This is a contraction and so
we conclude that F{U) c FfίXα;)]. A similar argument will show that
F(z) Π V[y] Φ φ for all y £ F(x) and z e U. Hence the lemma follows.

We say that the family J^ is equicontinuous in case it is equi-
continuous at each point. Then if J^ is equicontinuous, each member
of j ^ ~ is l.s.c, and if each member of ^ is point compact, thene ach
member of j ^ ~ is u.s.c. and hence, each member of j ^ ~ is continuous.

Let . ^ b e a family of functions from the topological space Xinto
the topological space Y. A topology J7~ on ̂  is said to be jointly
continuous (j.c.) if and only if the function P: J?~ x X—> Y defined
by P(F, x) = F(x) is continuous.

LEMMA 7. If ^ is an equicontinuous collection of point compact
functions, then the pointwise topology for J?~ is jointly continuous.

Proof. First we shall show that P is u.s.c. For this suppose
that F(x) c W where W is an open subset of Y and (F, x) e J^ x X.
Since F(x) is compact, there is a symmetric V in the uniformity
such that VoV[F(x)] c W, and such that F(x) c (J V[y]° = S for ye
F(x). Since ^ is equicontinuous, there is a neighborhood U of x such
that G(U) c V[G(x)] for all G e JΓ. Further, let T = {G e ̂ \ G(x) c S}.
Then (F,x)eT x U and P(T x U) c W. A similar argument
shows P is l.s.c. and so the pointwise topology is jointly continuous.

COROLLARY. // F is an equicontinuous family of point compact
functions on the compact space X into the uniform space (Y, Ύ),
then the u.c. topology, the pointwise topology and the compact open
topology are all the same.

Proof. This follows from Lemmas 5 and 7 together with Pro-
positions 6 and 7 of [2].

We need one more lemma before stating one of the main theorems
of this paper.

LEMMA 8. // J^ is compact relative to a j.c. topology J7~, and
if each member of j ^ ~ is point compact, then J^~ is equicontinuous.
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Proof. Let Ve 5*7 the uniformity for Y; let V be a symmetric
member of 3^ such that F ^ F ' c F, and let x e l Since P is con-
tinuous, we can find a neighborhood W{F) for each F e ^ ~ and a
neighborhood Z7CF7) of a; such that there is a finite subset {yλ1 ' >,yk}
of F(x) and such that for GeW(F), G(z)a\Ji V^], and G(s) n

Φ φ for each yim Then there is a finite subcover W(Fj)f •••,
of ^ with corresponding sets J7(jPχ), •••, ί/(FΛ). Let £7 =

Then if GeJ^Ge W{F3) for some i, and if ze U, then
l/J where y.eF^x). Thus, since G(a) Π V'\yλ Φ φ, for

each yeG(z) there is a y' eG(x) such that (?/, y') c Vr°V'<z V and so
G(s)c F[G(α)] for all ze [Λ On the other hand let yeG(x). Since
G(a ) c Uί V'lvA and G(«) Π Vf\vλ Φ Φ for all y, we get G(s) Π V[y] Φ
φ. Hence, J^ is equicontinuous at x, and the lemma follows.

Now by combining the above results with Theorem 3 in [2] we
get the following Ascoli Theorem.

THEOREM 9. Let cέ? he the set of all continuous, point compact
functions on a compact regular space into a T2, uniform space. Let
^ have the topology of uniform convergence. Then a subset Fd^7

is compact if and only if
(i) J^ is closed in ^ ,
(ii) F[x] = U {F(x): Fe^"} has compact closure for each xeX,

and
(iii) j ^ ~ is equicontinuous.

We can extend many of the above results in the following way.
Let j y be a family of subsets of X. Then in the definition of
PΓ(F) replace x e X by xe A for some A e S/. Then generate a uni-
formity by these sets. This gives us the topology of uniform con-
vergence on members of j ^ (If Szf = {X}, there is no difference,
and if Szf is all singletons we get pointwise convergence). In par-
ticular if J ^ is the set of compact sets then we obtain the topology
of uniform convergence on compacta. Then if we use the topology of
uniform convergence on compacta in place of the u.c. topology, we
can obtain results analogous to Theorem 9 for functions on locally
compact spaces.
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MULTIPLICITY TYPE AND CONGRUENCE RELATIONS
IN UNIVERSAL ALGEBRAS

T. P. WHALEY

For given multiplicity types μ and μ' we consider the
possibility of always replacing a universal algebra <A; F}
of multiplicity type μ with an algebra (A; (?> of multiplicity
type μf which has exactly the same congruence relations.

In [1] Gould considered the corresponding problem for subalgebra
structures. There he completely determined those types μ' which
could replace a given type μ. His results were very positive; e.g.,
any countable type with finitely many nonzero entries can always
be replaced by a type representing a single operation. We do not
completely determine which types can replace a given type in the
congruence ralation sense, but give necessary conditions which show
that simplifications as in the subalgebra case are impossible. We also
show that no two finite types are interchangeable with respect to
congruence relations.

In this paper we shall be concerned only with the congruence
relations of the algebras considered so we may disregard nullary
operations. Thus we alter the notion of multiplicity type as follows:

DEFINITION 1.1. By the multiplicity type of an algebra Ssf we
mean the sequence μ = <μx, μ2, , μn, —>>weω where S^ has exactly
μι operations of rank i for i = 1, 2, .

DEFINITION 1.2. We denote the set of all congruence relations
of the algebra Szf by Θ(Ssf). If α, b are elements of the algebra j&,
we denote by Θ(a, b) the smallest congruence relation of Jϊf which
contains (α, b).

DEFINITION 1.3. If μ = ζμ19 μ2, , μn, —>> and μ' = ζμ[, μ'z, ,

/C —>y are sequences of cardinal numbers, we write μ <£ μ9 provided
for any algebra S/ = <^A; Fy of multiplicity type μ there is an
algeba sf' = <A; FfSy of multiplicity type μ' such that Θ(j^f) =

2. A necessary condition for μ rg μ\ The purpose of this
section is to prove the following theorem which shows that in con-
sidering congruence relations, as contrasted with subalgebras, the
number of operations present is very crucial.

THEOREM 2.1. If μ ^ μ', then 2 χ <: ΣμU

To prove the theorem, we construct, for each cardinal m ̂  2,
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an algebra J^4 = <Aw,/€>lse^m with each fξ a unary operation and
such that Θ(J/') Φ Θ{j*fm) if j&" = ζAm, G> is of type μ' where
Σμl < m.

To construct j ^ ς , let Am = {αf: 0 ̂  f <Ξ m} U {&£: 0 <£ ξ ̂  m} where
the αjs and δ̂ s are all distinct. Let Bm — Am ~ {α0, b0}. Now if
1 ^ ί ^ m let fξ be defined by fξ(a0) = aζ,fζ(b0) = όf, and /e(a) = x if
α? e £ m . Then

LEMMA 2.2. Letting idx denote the identity relation on X we have
( i ) if x,yeBm, then θ(x, y) = idAm U {(x, y}, (y, x)},
(ii) θ(a0, bQ) = idAm U {(aξ, bξ):0^ζ£m}U {(bζ, aξ) : 0 ^ ξ ^ m}
(iii) if x e Bm, then

θ(a0, x) = idAm U [{x} U {aξ: 0 ^ ί ^ m}]2

β(60, x) = i ^ w U [{x} U {6,: 0 < ξ ^ m}]2 .

Proof. Both (i) and (ii) are clear. For (iii) we consider 0(αo, a?)
Now since (a0, x) e θ(a0, x) we have {fξ{aQ),fζ{x)) = (α?, α;) € ^(α0, x) for
each f. By transitivity we get (aξ, aη) e θ(a0, x) for each ξ,η with
1 ^ ί ^ m and 1 ^ ^ ^ m. Thus [{x} U {αe: 0 ^ ί ^ m}]2 s #(α0, ̂ )
Since ίcϊ^w U [M U {α f: 0 < ξ ^ m}]2 is a congruence relation, the proof
is completed. The claim for θ(b0, x) follows by symmetry.

LEMMA 2.3. Let f be a unary operation on Am which preserves
the congruence relations of <s$fm (i.e. adding / as an operation would
not affect the congruence relations). Then f\ Bm — idBm or f\Bm is
constant.

Proof. Let us assume that f\BmΦidBm. Then there is some
x e Bm such that f(x) = y Φ x. Suppose y e Bm. Let z e Bm, z & {x, y}.
Then (f(z), (f(x)) = (/(«), ?/) e 0(α, «). By Lemma 2.2. part (i) we get
f(z) = y. Also we have (f(x),f(z)) = (f(z),f(y)) = (y,f(y)) e θ(x, y) ΓΊ
θ(z, y). Thus f(y) = 2/ and f\Bm is constant.

Now if y & Bm, we have for any zeBm that (f(x),f(z)) = (y,f(z)) e
θ(x, z) so f{z) — y and f\Bm is constant.

LEMMA 2.4. Lei f be a unary operation on Am which preserves
the congruence relations of j ^ m . Then if f \ Bm is constant, f is
constant.

Proof. Suppose first that f\Bm = b for some b e Bm. Without
loss of generality we may assume that f\Bm = a2. Then (f(aL),f(b0)) =
(a>2>f(bo)) e e{ax, b0) so by Lemma 2.3. (iii) we have f(bo) = a2. Also,
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(/(<)>/(α2)) = (f(a0), a2) e θ(a0, α2) so/(α0) e {aξ | 0 ^ ξ ^ m). Furthermore
(/(αo),/(6o)) = (/(α0), α2) e 0(αo, 60) giving f(a0) = α2.

Now assume that /1 Bm == α0 (the case //J?m = δ0 follows by sym-
metry). Then (/(αj,/(α0)) = (α0,/(α0)) e tffo, α0) so f(a0) e {aζ\0^ξ<, m}.
Also we have (f(b1),f(bo)) = (ao,f(bo))eθ(b1,bo) so f(bo) = ao. Finally
(fφo),f(<h)) = (ao,f(ao)) e θ(b0, a0) so /(α0) = α0.

LEMMA 2.5. If f is a unary operation on Am which preserves the
congruence relations of J^m, then f = idAm, f is constant, or f = fξ

for some ξ, 1 ^ <? ̂  m.

Proof. Assume that / is not constant. By Lemmas 2.3 and 2.4
we know that f\Bm = idBm. Thus (f(bί),f(b0)) = (b1,f(b0))eθ(b1,b0)
so /(δ0) e {δ̂  I 0 ^ f ^ m}. Similarly f(a0) e {aζ \ 0 £ ξ ^ m}. Since

e 6>(α0, 60)> we know t h a t for some £, 0 ^ f ^ m, we have

NOTATION. Suppose g is an w-ary operation on t h e set X. If
1 ^ k ^ n9 if c19 , c%_fc e X, if {1, , n) = {ix, , v_fc} U OΊ, , i*},
then we denote by ^ [ ^ , • ••, v^jCx, * , c n _ J the fc-ary operation on
X defined by

where

_ (cβ if i = i 8
i/j 1 . /.

^Λ5 11 J — Js

More informally f̂̂ , , ift_Λ; cx, , c^^] is obtained by holding each
cά fixed in the î  coordinate of g.

REMARK. An operation preserves the congruence relations of an
algebra if and only if each of its unary translations preserves the
congruence relations of the algebra. Thus if g is an operation on Am

which preserves the congruence relations of J*fm, then a given unary
translation of g must be the identity map, a constant map or else
one of the fξ. It is the purpose of the next lemma to show that only
one fξ can be so obtained from a given operation g.

LEMMA 2.6. Let g be an n-ary operation of Am which preserves
the congruence relations of s^m. If g[i19 , ΐn_j c19 , cw_J = fξ for
some i19 , v ^ ; c19 , cw_1? ξ where 1 <̂  iά ^ n, c3- e Am, α^d 1 ^ f ^ m,
ίfee^ g[i19 , in_!; d^ , dn^] — fξ for each dl9 , dn^ e Am.
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Proof. The proof is by induction on n. The first case to consider
is n = 2. Without loss of generality we assume that g[l, c] = fx and
show that g[l, d] = f for each de Am. We consider the cases c = aί9

c = α0, and c = α2. The case c = αy with j > 2 would be handled just
as c = α2, and c = δ; would be symmetric to c = a{.

Case 1. c = αx: We are assuming now that g(a19 x) — fι{x) for
all x e Am. Since (g(b19 α0), g(aίy α0)) = (g(b19 α0), αx) e #(δx, aj, we have
0(δi> O = <h °Y Φι<> <h) = &i If #(δx, α0) = b19 then #[1, δj = bx. But
this would give (g(b19 a2), g(aί9 a2) = (b19 a2)) e θ(bί9 a^, a contradiction.
Thus #(δx, α0) = Oi From this we see that g[l, bL] = f1 or g[l, δj = aL.
However, if g[l, 6J = αx, then (^(ό^ α2), fif(αu α2)) = (αx, α2) e 5(6i, αx), a
contradiction. Therefore, g[l, δj = fL.

Now since (^(α0, δ0), g{a^ bo)) = (g(ao, δ0), δx) G θ(a0, a,) gives ^(α0, 6O) = 61,
we have #[1, α0] = b, or ^[1, α0] = f,. Noting that (g(a0, α0), g{ax, α0)) =
(̂ (cto» αo)> «i) € θ(a0, α j we see that g(a0, a0) e {aζ \ 0 ^ f ^ m}. Thus
#[1, α0] ^ δ: so g[l, a0] = / l β By symmetry we get #[1, δ0] = /x.

For 2 ^ ί ^ m we have (g(aξ9 δ0), ̂ (α^ δ0)) = (g(aξ, δ0), δ2) e θ(aξ, a,)
so g(aζ,b0) = δx. Thus ^[1, αf] Ξ ^ or flf[l, α j = / x . Now (flf(αe, α j ,
^(α1? Oi)) = (^(α ,̂ αx), O e ^(α f, α j so g(aξ, a,) Φ \. Thus g[l, aξ] = / l f

and by symmetry #[1, δ j = /x.

Case 2. c = a0: We are assuming that g(a0, x) = /^a?) for each
a? 6 Aw. Thus we have (g(al9 δ0), g(α0, δ0)) = (g(au δ0), δj 6 0(αlf α0). Hence
flf(αχ, δ0) = b, so g[l, αj = δx or gr[l, αj = /L. If flf[l, αj = δ1? then
(^(^i, α2), flr(α0, α2)) = (δ:, α2) e ^(αx, α0), a contradiction. Thus g[l, αj = f19

and we have Case 1.

Case 3. c = α2: Now we are assuming that g(a2, x) = fι(x) for
each x e Am. Here we have (g(a0, δ0), g(a2, δ0)) = (g(aQ, δ0), δj e ^(α0, α2)
so ^r(α0, δ0) = δlβ Thus ^[1, α0] = 6X or gr[l, α0] == / l β If g[l, α0] = δx,
then (sr(α0, α2), ̂ (α2, α2)) = (δx, a2) e (9(α0, α2), a contradiction. Therefore,
#[1, α o ] = / i , Q-nd we have Case 2. This completes the step n = 2
in the induction argument.

Let us assume that the lemma holds for n = k and that g is
(& + l)ary with g[i^ i2, , ik; c19 , c&] = / e . Without loss of general-
ity we take #[1, 2, , k; c19 , ek] = / 6. Thus flr(d, , ck, x) = /f(a?)
for all x e i , Applying the induction hypothesis to the fc-ary operation
#[1, cj we get g(c19 d2, dB, , dk, x) = /e(a?) for all d̂  e Am and all x e Am.
Now we apply the case n = 2 to the binary operation #[2, 3, •••,&; d2, ώ3,
• , dk] to get ^(di, d2, , dk, x) = /f(a;) for arbitrary elements eẐ  , dk.

COROLLARY 2.7. Let g be an n-ary operation on Am which
preserves the congruence relations of Safm. Then all nonconstant,
nonidentity unary translations of g are equal.
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Proof. Suppose g[i19 , in-.x; clf , cn_J = fζ. By Lemma 2.6 any
unary translation of g obtained by fixing these same coordinates is
equal to fξ. Let {1, , n) = {i19 , in_19 j}. Then for any x19 ,
xn e Am we have

where ^ = #ίjfc for k = 1, , w — 1.
Now consider a unary translation of g obtained by fixing another

set of n — 1 coordinates; say g[jί9 , iw_x; dί9 , dn_J where j" — j k

for some fc, 1 <£ & ̂  ^ — 1. Then for any x e Am

where

ίdβ if i = i β

(a? if i ί t/x, •• ,in-1} .

Thus ^r[iL, , i%_ :; d lf , ^ _ J is constant.

Proof of Theorem 2.1. Suppose μ and μ' are sequences with Σμ\ <
j ^ . = m . Clearly μ ^ εm = <(m, 0, 0, •>. Since Ξ> is transitive, it
is enough to show that μf ^t εm. Now sfm is an algebra of type εm.
Suppose J^ = ζAm; G> is an algebra of type μf such that Θ(^f) = Θ(j^m).
Then θ(j^m) = θ{3&) where 3*f = <^4m; G> with G consisting of the
unary translations of G. Now by Lemma 2.5 each element of G is
the identity, a constant, or one of the //s. By Lemma 2.6 at most
Σμl of the /£s can be so obtained. Let ^ be such that fη $ G. Then
(dηj bη) £ θ(aQ, 60) in j ^ . This contradiction shows that μf ^t εm and
completes the proof of Theorem 2.1.

3* Finite Types*

DEFINITION 3.1. A sequence μ is said to be finite if Σμ. is finite.

NOTATION. For a finite sequence μ, we let l(μ) — n if ^ is the
largest interger such that μn Φ 0.

LEMMA 3.2. If £& — ζD; Fy is an algebra of finite multiplicity
type μ and if C — {c19 , cn} is a finite subset of D, then the number
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of translations of the operations of F which can be obtained by fixing
only elements from C is at most

where

fi\ il
k) kl(i - k)\

Proof. Suppose 1 ^ j < k ^ l(μ) and fe F is λ -ary. By fixing
j elements from C in j of the coordinates of / we obtain a (k — i)-ary

translation of /. There are ί \ ways to choose the j coordinates and

nj ways to choose the constants. Thus for fixed j and k we get
J translations in this way. For a fixed j we then obtain

ίk\
translations from F by fixing exactly j elements from C.

Now summing on j we obtain the desired number of translations.
For a fixed sequence μ and a fixed nonnegative integer k we now

construct an algebra £& = <7); Fy of multiplicity type μ whose con-
gruence relations can not be realized by operations of type μf if P(μ', k) <
P(μ, k). Let m = P(μ, k), and recall from §2 that j ^ ς = <Am;/e>1<e<m.
Let C — {c19 , ck} be such that c s are distinct and C Π Am = φ.
Now we take D = C U Am. If ^ is an operation on D, by a C
translation of g we mean a translation of # obtained by fixing some
of the coordinates of g with elements from C. Now any application
of g to elements of D may be regarded in a unique way as either an
application of g to elements of C or else as an application of a C
translation of g to elements of Am (including as a C-translation g
itself). We thus define F by telling what the elements of F do to
elements of C and telling what the C-translations of elements of
F do to elements of Am. If fe F and F has rank I, then we shall
have f(cix, , cit) = ciχ if each cf e C. Now by Lemma 3.2 there will
be at most m C-translations of elements of F. Let us denote these
C-translations by {gξ \ 1 ^ ζ ^ m}. Now if #£ is i-ary and xs e Am for
1 ^ s ^ i, then we take ^ ( ^ , •••,#,•) = /*(#,)•

The following lemma is clear from the construction of ϋ^.

LEMMA 3.3. 1/ # e θ ( j ^ ς ) , then θ I) idceθ(^r). Conversely, if

LEMMA 3.4. If g is an n-ary operation on D which preserves
the congruence relations of 2$ and if g(xlf •••,»„) = ceC for some
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x19 , xn G Am, then g(yl9 , yn) = c for all y19 , yn e Am.

Proof. The pair (g(x19 •••,&»), 0(1/1, , yn)) is in the congruence
relation of &r generated by {(x19 yj, , (xn9 2/n)}. But by Lemma 3.3
this congruence relation is contained in (Am)2 U idc

LEMMA 3.5. Let g be an n-ary operation on D which preserves
the congruence relations of 3f. If h is a unary translation of g, then
h\Am — idAm, h\ Am is constant, or h\ Am = f€ for some ζ, 1 ̂  ξ <̂  m.

Proof. By Lemma 3.4 if h\Am is not constant, then (h\Am):
Am —* Am and thus h | Am preserves the congruence relations of j ^ ς .
The conclusion now follows from Lemma 2.5.

LEMMA 3.6. Let g be an n-ary operation on D which preserves
the congruence relations of 2$. Then there is at most one ζ such
that fς is a unary translation of g \ (Am)n.

Proof. This follows from Lemma 3.3 and Lemma 2.6.

THEOREM 3.7. If μ and μf are finite sequences such that μ < μ',
then P{μ, k) ^ P(μ', k) for each nonnegative integer k.

Proof. Suppose P(μf

9 k) < P(μ9 k). The algebra £2ί is of multi-
plicity type μ. Suppose <3ίf = <D; ff} is of multiplicity type μf and
that Θ(£%r) = θ{^ff). Let G be the set of all C-translations of elements
of G (again including the elements of G). Then θ(&) = θ{&")
where &" = ζD; G>. Now in Sf we have

0 ( θ o , δ 0 ) = idD U {ai9 b i ) \ l < i ^ m f .

Thus for each i, 1 <̂  i ^ m, we must have g eG such that some
unary translation of g is /*. However, by Lemma 3.6, there is at
most one i for a given geG. Furthermore, by Lemma 3.2, the
number of elements in G is P(μ, k) < P(μ9 k) = m. This contradiction
shows that such a G does not exist and thus concludes the proof.

REMARK. For a fixed finite sequence μ, P(μ, n) is a polynomial
in n of degree l{μ) — 1 having positive coefficients. The coefficient of

ί i\nk in P(μ, n) is Σi-2+i( i )/**• Hence the following corollaries follow
\f€/

easily from Theorem 3.7.

COROLLARY 3.8. If μ and μr are finite sequences such that μ ^ μf

then l(μ) ̂  l{μ').
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COROLLARY 3.9. If μ and μr are finite sequences such that μ < μr

and if n is the largest integer for which μn Φ μ'n, then μn < μr

n.

COROLLARY 3.10. If μ and μ' are finite sequences, then μ ^ μ',
μf ^ μ, or μ = μ'. Thus among finite types, ^ is a partial ordering.

REMARK. While a complete characterization of the relation <ί
such as that given by Gould for the case of subalgebras would be of
interest, it seems that the results given here indicate that such a
result would not be as easily applied as is the subalgebra result.
For example, in general we can not reduce the number of operations
even by increasing rank.
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GLOBALIZATION THEOREMS FOR
LOCALLY FINITELY GENERATED MODULES

ROGER WIEGAND

Each commutative ring has a coreflection R in the
category of commutative regular rings. We use the basic
properties of R to obtain globalization theorems for finite
generation and for projectivity of i?-modules.

1* Preliminaries* A detailed description of the ring R may be
found in [8]. Here we list without proofs the facts that will be
needed. We assume that everything is unitary, but not necessarily
commutative. However, R will always denote an arbitrary com-
mutative ring. All unspecified tensor products are taken over i?.
For each aeR and each PeSpec (R), let a(P) be the image of a
under the obvious map R-+RP/PRP. Then R is the subring HPRP/PRP

consisting of finite sums of elements [α, 6], where [α, b] is the element
whose Pth coordinate is 0 if b e P and a(P)/b(P) if b ί P. There is a
natural homomorphism φ: R-+R taking a to [α, 1]. The ring R is
regular (in the sense of von Neumann). The statement that R is a
coreflection means simply that each homomorphism from R into a
commutative regular ring factors uniquely through φ.

The map Spec (<£>): Spec (R) —> Spec (R) is one-to-one and onto; for
each PeSpec(iϋ) we let P be the corresponding prime (= maximal)
ideal of R.

If A is an iϋ-module and Pe Spec (R), then AP/PAP and ( A ® %
are vector spaces over RP/PRP and RP respectively. The map
φ: R—>R induces an isomorphism RP/PRP = RP, and, under the
identification, AP/PAP and (A®R)P are isomorphic vector spaces.

2* Globalization theorems*

LEMMA. J / i 0 β = O and AR is locally finitely generated then
A = 0.

Proof. For each prime P, AP/PAP = 0, by the last paragraph of
§ 1. Since AP is finitely generated over RP, Nakayama's lemma im-
plies that AP = 0 for each Pe Spec (R). Therefore A = 0.

THEOREM 1. Assume (A 0 R) is finitely generated over R, and
that AR is either locally free or locally finitely generated. Then AR

is finitely generated.

269
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Proof. Assume AR is locally free. Then, for each prime P, AP

is a direct sum of, say, fc copies of RP. Then AP/PAP is a direct
sum of ft copies of EP/PRP. But since (A 0 R) is finitely generated
over R, AP/PAP is finite dimensional over RP/PRP. Thus K is finite,
and we conclude that AR is locally finitely generated.

Now, if AR is not finitely generated, we can express A as a well-
ordered union of submodules Aa, each of which requires fewer
generators than A. We will get a contradiction by showing that
some Aa = A. Let Ba = lm{Aa 0 J? —• A 0 j?). Since

A (g) J2 = lim(Aα 0 #) , A 0 β = \J Ba .
—> α

Since the i?α are nested and (A 0 .β) is finitely generated over j£,
some Bao = A(g) R, that is, AaQ (g) j? -» A 0 R. Let C = A/Aαo. Then
C 0 Λ = Coker (Aαo 0 JB — A 0 #) = 0, and CR is certainly locally
finitely generated. By the lemma, C = 0, and Aαo = A.

THEOREM 2. Let AR be finitely generated and flat, and assume
(A 0 R) is R-projectίve. Then AR is protective.

Proof. By Chase's theorem [3, Theorem 4.1] it is sufficient to
show that AR is finitely related. Let 0-^K—>F—>A—>0 be an
exact sequence, with FR free of finite rank. This sequence splits
locally, so K is locally finitely generated. Since AR is flat, the long
exact sequence of Tor shows that 0—>K(g)R-^F(g)R--+A§ζ)R-->0
is exact. This sequence splits, so (ϋΓ0jB) is finitely generated over
R. By Theorem 1, KR is finitely generated.

3. Applications. The following result generalizes the well-
known fact that over a noetherian ring every finitely generated flat
module is protective.

PROPOSITION 1. // R has a.c.c. on intersections of prime ideals
then every finitely generated flat R-module is protective.

Proof. In [8] these rings are characterized as those for which
(A 0 R) is β-projective for every finitely generated AR. The conclu-
sion follows from Theorem 2.

Suppose AR is locally finitely generated. For each prime ideal P
let rA(P) denote the number of generators required for AP over RP.
By Nakayama's lemma, rA(P) = dA(P), the dimension of (A®R)P as
a vector space over RP. Since the map P—>P is continuous, it fol-
lows that if rA is continuous on Spec (R) then dA is continuous on
Spec (R). Using these observations we can give easy proofs of the
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following two theorems:

THEOREM 3 (Bourbaki [1, Th. 1]): Assume AR is finitely generated
and fiat, and that rA is continuous. Then AR is projective.

THEOREM 4 (Vasconcelos [7, Prop. 1.4]): Assume AR is projective
and locally finitely generated, and that rA is continuous. Then AR is
finitely generated.

Proof of Theorem 3. By Theorem 3 we may assume R is regular.
A proof of Theorem 3 in this case may be found in [5], but we in-
clude one here for completeness. For each k ^ 0 let

Uk = {Pe Spec (R) \ rA(P) = k} .

By hypothesis the sets Uk are clopen, and we let ek be the idempotent
with support Uk. Then A = A e0 0 0 A en1 and rAeh is constant
on Spec (Rek). Therefore we may assume rA is constant on Spec (R),
say rA{P) = n for all P. Given a prime P, choose au , ane R such
that ax{P), -",an(P) span AP. Then αx(Q), β ,αΛ(Q) span RQ for all
Q in some neighborhood of P. (Here we need AR finitely generated.)
In this way we get a partition of Spec (R) into disjoint clopen sets
Vl9 , Vm together with elements ai3 e R such that ai3-(P), , anj(P)
span AP for each P e Vj. Let e3- be the idempotent with support Vj,
and set b{ = ί ^ α^ . Then, if PR is free on uly , un, the map P—>A
taking Uι to b{ is an isomorphism locally, and therefore globally.

Proof of Theorem 4. By Theorem 1 and the proof of Theorem 3
we can assume R is regular and rA{P) = n for all P. Write A =
Θ Σ i e / Λ β , el = β< ̂ 0 , by [4]. Given Pe Spec (R), since (Rejp is 0
if βiβ P and RP if ef g P, we see that there are precisely n indices i
for which e{ $ P. For each ^-element subset J £ J let

[/(/) = {Pe Spec (B) \edίP for each j e J} .

These open sets cover Spec (J?), so Spec (R) = ϋVi) U U £7(Λ>). If
i ί e/"i U U e/m then βj is in every prime ideal, contradicting e5 Φ 0.
Therefore | /1 ^ m%, and A^ is finitely generated.

As a final application we give the following:

PROPOSITION 2. Let 0—>A-^B—>C-+0 be an exact sequence of
flat R-modules Assume AR is finitely generated and (B 0 R)R is pro-
jective. Then AR is projective.

Proof. Since CR is flat, 0-> A® R-> B ® R—>C(g)β->0 is
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exact. Since R is semihereditary (A(g)JR) is iϋ-projective. By
Theorem 2, AR is protective.

If BR is projective this proposition contains no new information.
(In fact, a trivial extension of Chase's Theorem shows that the
sequence splits.) On the other hand, if we let MR be projective,
take feR, and let B = Mf = {[m/fn]}, then BR is not in general
projective; but by the second corollary to Theorem 5 (next section),
B(g)R is JK-projective.

4* Epimorphisms* Suppose M is a multiplicative subset of R,
and let S = M~ιR. Since S(g)RP = SP/PSP for each prime P, we see
that S(g)Rp is J?£ if P Π M = 0 , and 0 if P n M"^ 0 . If we could
show that (S(g)R)R is finitely generated, it would follow easily that
S 0 R = K̂/î , where i£ is the intersection of those primes P for
which P Π M = 0 . We give an indirect proof of this fact in a more
general setting.

Suppose R and S are commutative rings and that a: R—*S is an
epimorphism in the category of rings. By a theorem of Silver [6]
this is equivalent to the natural map S 0 S —> S being an isomor-
phism. It is known [8] that R-+R is an epimorphism, and it fol-
lows readily that the natural maps / : S—>S(g)R and g: R—>S<g)R
are epimorphisms.

THEOREM 5. Let R and S be commutative rings and let a: R-^S
be an epimorphism in the category of rings. Then there is a unique
ring homomorphism β: S —> S (x) R making the following diagram
commute:

S0R .

Moreover, β is an isomorphism, and ά and g are surjections with
kernel K= Π{P\SPΦ PSP}.

Proof. We first show that S (x) R is regular. Suppose A and B
are (S <g) ̂ -modules. Then by Silver's Theorem B = S ®RB, and by
[2, p. 165] we have

A(g) S®RB = A(x) S0%(S(x) RB) = (A® SS) (g) fcasB = A<g) &B .

It follows that tensor products over S (x) R are exact, and therefore
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S(g)R is regular. Hence there is a unique map β: S—*S®R such
that βφs = f, where φs: S —> S is the natural map. Consider the
diagram:

R-

R-

S <g> R

->s .

Here 7 is defined by the equations yf = <ps, yg = ά. Now yβφs =
7/ = φs and /9τ/ = /3<Ps = /• Since φs and / are both epimorphisms,
we see that 7 = βr1. Also, Bά — Byg = g, as required. Uniqueness
of β follows from the fact that ά is an epimorphism (since both α
and φs are).

Next, we show ά is onto. To simplify notation, we assume R is

regular and α: R—> S is an epimorphism. Then S(g) S-^ S is an
isomorphism. But then SP (x) Rp SP —* SP is an isomorphism for each
P e Spec(.β). If se SP then l ® s - s(g)le ker μP = 0. It follows
that the dimension of SF as a vector space over RP is either 0 or 1.
Therefore αP is surjective for each P, (#(1) = 1), and we conclude
that α is surjective.

Finally, we compute kerg = K. If P e Spec (R), then

COROLLARY 1. Let M be α multiplicative subset of R and let
S = M~~XR. Then S (x) R is a cyclic R-module, and S (x) R is R-
projective if and only if {P\ M Γ\ P Φ 0} is closed in Spec (R).

Proof. Let K be as in Theorem 5. Then S®R = R/K is R-
projective if and only if if is a principal ideal, that is, if and only
if the set of primes containing K is open in Spec (R). But

K PSP Φ SF Mf] P= 0 .

The next corollary shows that Theorem 2 is false if AR is not
assumed to be finitely generated.

COROLLARY 2. For each f e R, Rf(g)R is R-projective.
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Proof. Set M = {/*: n ^ 0}. Then Pf) M^ 0 if and only if
φ(f)eP. Thus if is the principal ideal of R generated by φ{f), and
R/K is j?-projective.
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