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Recent work by the author which was independently
duplicated in part by Giles and Kummer has made it possible
to generalize the Gelfand representation theorem for abelian
C-*algebras to the non-abelian case. Let A be a C-algebra
with wunit. If A is abelian, it can be identified with the
algebra of all continuous complex-valued functions on its
maximal ideal space (with the hull-kernel topology). A less
precise way of looking at this result would be to say that
an abelian A is completely recoverable from the set of
maximal ideals and a certain structure thereon (in this case,
a topology). If we use the latter description as the basis for
a theory applicable to non-abelian A, we find immediately
that two changes are necessary. The set of maximal ideals
is replaced by the set of maximal left ideals, and secondly,
the structure defined thereon will not be a topology, though
it will have many similar properties when viewed correctly.
This paper shows how the C*-algebra is recovered from
the maximal left ideals (with structure).

I. Preliminaries. Consider the W *-algebra A**, the second
Banach space dual of A [9, p.236]. There exists a central projection
z¢ A** which is the supremum of all the minimal projections in A**
[3, p.278]. Set M = zA**. The minimal projections of M are in
one to one correspondence with the maximal left ideals of A [3, p. 280
and 9, p. 48], so that we can define a structure on this set of minimal
projections instead of directly on the maximal left ideals. Naturally
the first thing we “build” is the algebra M. We then single out a
class L of projections in M as the g-open projections as follows.
First note that we can consider A C M since A C A** and A —zA is
a *-isomorphism [9, p.39]. (Also we can view M as the direct sum
of irreducible representations of A, one from each equivalence class.)
A projection p in M is g-open if there exists a closed left ideal I of
A such that the weak* closure I of I in M is of the form Mp. The
g-open projections are analogous to the open sets of a topology.

If A were abelian, M would be the algebra of all bounded com-
plex function on its maximal ideal space K. The g-open projections
would be characteristic functions of open sets of K for the hull-
kernel topology. A self-adjoint operator & in M actually lies in
A(cC M) if and only if the spectral projections of b corresponding to
open sets of real numbers are g-open projections in the above sense.
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This is a restatement of Gelfand’s theorem since a function is con-
tinuous if and only if its inverse images of open sets are open.

We may now state an identical theorem for the non-abelian case.
The proof follows immediately from the addendum to [4] and
Theorem II. 17 of [3].

THEOREM I.1. A self-adjoint operator be M lies in A(CM) if
and only if each spectral projection of b which corresponds to an
open subset of the real numbers is also a q-open projection.

This theorem says that we may reconstruct A from its set of
maximal left ideals together with the above defined structure. As a
corollary we note that if two algebras 4, and A, have “isomorphic
structures ” then they are isomorphic.

COROLLARY 1.2. Let A, and A, be C*-algebras with M, = z,A}*
and L; the g-open projections in M; (t = 1,2). If there exists a *-iso-
morphism ®: M, — M, which maps L, onto L, then ®|A, is an iso-
morphism of A, onto A,.

This paper extends these results to C*-algebras without unit
with appropriate modifications suggested by the abelian case. A
number of other ‘topological” results are proved, and counter-exam-
ples are given to close off several tempting avenues of approach.

To complete our terminology, we shall assume from now on that
A is a C*-algebra which may not have a unit. The above discussion
still applies to get z¢ A** and we set M = zA**. Identify A and
2zAC M and call M the pure state g-space of A. (The terminology
is lifted from [11].) We have already defined g-open projections in
M, and their complements (in M) are called g¢-closed. A will denote
the algebra A with unit adjoined as in [9, p.7]. Note that A is a
closed two-sided ideal in A of co-dimension one. Thus A* = A*@ {(\f),
where f. is the unique pure state of A which vanishes on A. Also
the pure state g-space M of A is: M= M@ {\l.}, with f.(l.)=
1. In view of Theorem II.17 of [3] all the properties of open or closed
projections in A** (as considered in [3 and 4]) carry over immediately
to corresponding properties of g-open or g-closed projections in M.

II. The problem of compactness. Although the notion of com-
pactness is vaguely introduced in [3], it is clear that a theory which
claims to generalize locally compact Hausdorff spaces should general-
ize the notion of a compact set.

DEFINITION II.1. A projection pe M is g-compact if p is g-closed
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and there exists be A* (= {a € A: a = 0}) with bp = p.

There are a number of conditions equivalent to compactness for
a set in a locally compact Hausdorff space. It would be desirable to
show that many of them can be extended to equivalent conditions
for g-compactness. The most desirable such condition would be:

Conjecture I1.2. A regular [10, p.408] projection pe M is com-
pact if for every family {p,} of g¢-closed projections such that the
family {p. A p} has the finite intersection property, then » A A.p.#0.

We shall prove this for certain » in Theorem II.6. The con-
jecture is false without the assumption of regularity (see Example

IV.5).

LemMmA 11.3. Suppose B is a C*-algebra, be B+, pe B** a pro-
jection and {a,} C B an increasing met of positive elements with
|6 — b*a, || — 0. If b = p (considering B C B**), then||p — a.pl|— 0.

Proof. Since || 4" — b'"a, || —0, clearly [[(1 — a,) b(1 — a,)[|—>0.
Since 1 —a)b1 —a) =1 —a,) (1 — a,), we get

@ —a)p @ —a)ll =1 —a)pl’=Ilp— ap|*—0.

LEmMmA I1.4. I Ji p s g-closed for A and we consider A and M
as above with M C M (hence pe M) and there exists be A+ with b= p,
then p is q-closed in M.

Proof. Let K= (p A* p)*. Then K is o(A4*, A) closed by [3,
11.2]. If K is not o(4*, Zl) closed, then there is a net {f,} € K with
I f.llc K with || || =1 and f, —f, o(A*, A), for some fe A* with
£l = f1) =1. Since A* = A* P {\f.}, we get f = f, + \f. where
fie A** and A = 0. For any ce A with ¢ = p,

£(0) = F(e) = lim £.(¢) = Tm £.(p) = 1

since each f,e K.

Now if 1e A, then A* is o(A*, A) closed in A*, so the conclusion
of this lemma is immediate. If 1¢ A4, let {a,} C A* be an increasing
approximate unit. Then, by Lemma II.3, {a,} is an approximate unit
for p also. Thus given ¢ > 0 there exists ce A with ¢= p and
lell =1 + ¢ by Theorem 1.2 of [2]. Hence fi(c) =1 by the above.
Since ¢ > 0 was arbitrary, ||f,|| =1, so A = 0, since

WAL =1AIl+IN=1.
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Thus fe A*. Since {f,}C K, K is o(A*, A) closed, and f,—f in the
o(A*, A) topology, we see that fe K, so K is o(A*, A) closed.

THEOREM II.5. If p is q-closed and there exists be A with b= p,
then p is g-compact.

Proof. Since p is g-closed for A by Lemma II.4, there exist
by A4, b, =a,+ N1l with a,e4, 1=b,=p and b, | » in M [5,
proof of Prop. 1]. Thus each b, (and hence a,) commutes with p.
Since f.(b,) — 0, there exists @, with fu(b,) <1/2. Thus A\, <1/2
since fo(a.) = 0. Let g(¢) be a continuous function which has g(f) = 1
for ¢ =>1/2, g(0) =0, 0 < g(t) <1 for all ¢. Then g(a,) = p. (Since
Uy bo, and p all commute, we may view them as functions on a
common locally compact space; this makes the assertion clear.) Since
g(a,,) € A, the theorem follows.

The construction in the proof of last theorem will not work for
all projections p in M having only the property that p < be A, even
though it easily works whenever p is central.

THEOREM II.6. Suppose 1e¢ A and A is separable. Then Con-
jJecture I1. 2 holds for cemtral projections pe M.

Proof. Suppose p satisfies the intersection condition of Con-
jecture II.2. We need only show p is g-closed since 1e A. If it is
not g-closed, let 7 be its closure [3, II. 11] and let ¢ <P — p be a
minimal projection. As in [1] there exists a strictly positive element
a, in {a€ A: aq = ga = 0} = I, so we let p, be the spectral projection
of a, corresponding to the interval [0, 1/n]. Since A.,p. AP =0,
there is some n, with p, p = 0 by hypothesis. Since p is central, the
spectral projection x of a, corresponding to [1/m,, «) is g¢-closed and
2 = p. This contradicts 2¢ = 0 and ¢ < 7.

THEOREM II.7. If p is q-compact, then p satisfies the intersection
condition of Conjecture 11.2.

Proof. Since p is also g-closed in M by Lemma II.4, the theorem
follows from [3, II.10] for if {p,} are g¢-closed in M, then their g¢-
closures {p,} in M have no larger M component. (Recall that I =
M D (Mo} with 1.M = {0}.) Thus if » A AwcsD # 0 for all finite sets
Jy DN Neba # 0, 50 P A\ Al # 0, since p A Da = D A Dee

Next we move in a different direction for a characterization of
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M. If A were an abelian C*-algebra of functions containing the
constants and separating the points of the topological space 2, then
A consists of all continuous functions on 2 if and only if 2 is com-
pact. Following [11] we define a g-space to be an atomic W *-algebra.
If M, is a g-space and AC M, is a weak* dense C*-subalgebra with
le A, we can define a g-open projection in M, as a sup of range pro-
jections of elements of A. Naturally g¢-closed projections are com-
plements of ¢g-open projections. If M, = M, the two definitions coin-
cide.

THEOREM I1.8. If A is separable and A C M, as above, then there
s an A-preserving *~isomorphism between M, and M if and only if
the q-closed projections of M, satisfy the intersection condition of
Conjecture 11.2.

Proof. If M, is *-isomorphic to M under an A-preserving map
the verification is routine. Now suppose the ¢-closed projections of
M, satisfy the intersection condition. If every pure state of A ex-
tends to a normal state of M,, there is a natural isomorphism be-
tween M, and M which preserves A because of the definition of M as
a subset of A**. Thus let f be a pure state of A with no normal
extension to M,. Let {a;} C A be an increasing positive abelian [1]
approximate unit for {¢ e A: f(a*a + aa*) = 0}. Then let p;, be the
spectral projection of a, corresponding to the interval (1/n, o).
Cleary V;.P;, =1 in M, for if not, then 1 — V;,P;,) would be
one-dimensional, hence f could be extended to a normal functional on
M, with support (1 — V;.0;.). But {(1 — p;,}} is a decreasing net of
closed projections in M, with A;,.1 —V p;) =0. Thus (1 — p;,) =0
for some 7 and n. Hence «; is invertible, so f = 0, a contradiction.

III. The Gelfand representation.

LemmaA III.1. If p 4s q-closed, p, is q-compact, and pp =0,
then there exists ac AY with |lall =1, ap =0, and ap, = p,.

Proof. Set A = {ac A: ap = pa = 0}. Consider 4, c A. By
Lemma I1.4, p, is g-closed for A. Thus the unit ball of p,A*p, = p,4ip,
= plA ‘D, is compact for the U(A* A) topology, hence also for the weaker
o(A¥, A). Thus pAfp, is o(Ar, A) closed, so p, is g¢-closed for A,
[3, 11.2]. Now by [4, I.1] there exists ac A} with ||a||=1, ap, = p,
and ap, = 0, where p, is the one dimensional projection in 14, which
supports the pure state f., which vanishes on A4,. Since ap, =0, aec 4,,
so ap = 0.
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This last Lemma generalizes Urysohn’s Lemma. We now define
an analog for a continuous function.

DEFINITION III.2. A self-adjoint operator be M is q-continuous
if each spectral projection of b corresponding to an open subset of
the spectrum of b is also g-open.

Now we can state our best Gelfand representation theorem.

THEOREM III.8. The self-adjoint elements of A are exactly those
q-continuous elements b of M such that the spectral projections of b
corresponding to closed subsets of the spectrum of b which don’t con-
tain 0 are q-compact (i.e., b “vanishes at oo ).

Proof. Consider Ac A, Mc M. If be A, then be A, since b M.
But if p is the spectral projection of b corresponding to an open
subset U of the spectrum of b, we consider two cases. First if
0¢ U, then pe M, hence p is g-open since it is g-open for A by
hypothesis. Secondly if 0e U, then the complement of U is closed
and doesn’t contain 0, thus the spectral projection corresponding to
it is g-compact for A, hence g-closed for A by Lemma II.4. Thus b is
g-continuous for A and Theorem I.1 applies.

For the abelian case it is well-known that if B is a C*-algebra
of continuous bounded functiohs on a locally compact Hausdorff space
Q such that the smallest topology on 2 making all € B continuous
agrees with the given topology, then B contains all continuous func-
tions vanishing at c on 2. A similar result is true in general.

THEOREM II1.4. Let A, be a C*-subalgebra of M such that the
g-open projections for A, in M are the same as the q-open projections
for A, Then A, DA and A, = A if 1e A.

Proof. Let A, = AN A,. If p is q-open for A, then » = V.p.
where p, is g-open with g-compact closure. For each «, p, is also
A, open, so there exists a net {al} C A, with 0 <a} [ p.. By hypo-

thesis each a € A4, is g-continuous, and since p, has compact closure,
Theorem III.3 applies to give {a}} © A, hence in A4,. Thus p is A4,
open. We now apply Theorem III.3 of [3] and get A,= A. (Theorem
II1.3 of [3] is stated for algebras with unit, but considering A4, and

A we get the result.)
Now if 1e A, Theorem 1.1 gives that A, C A, so A, = A.
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Recall that one way of constructing the double centralizer M (A)
of A is to let M(A) be the idealizer of A in A**, i.e.,

M(A) = {be A**: bA + AbC A} .
We first prove a lemma bringing M(A) into M.

LEMMA IIL.5. The mapping b— bz is a *-isomorphism of M(A)
wmto M.

Proof. Suppose b =0 in M(A) and zb = 0. Then let ac A with
0<a=<b Then za =0 since za <2b=0. This means a =0, a
contradiction.

From now on consider M(A) as a subalgebra of M. A tempting
conjecture would be;

Conjecture 111.6. The self-adjoint elements of M(A) are exactly
the g-continuous elements of M.

Our next result is one half of the conjecture.

THEOREM IIL.7. Every self-adjoint element of M(A) s g-
continuous.

Proof. Let {a,} © A be a positive increasing approximate unit
for A. Let be M(A) be self-adjoint and let U be an open subset of
the spectrum of b with p the spectral projection of b corresponding to
U. Let {b,} be a sequence of continuous functions of b with 0 < b, 1 ».
Then {b¥%a,bY? is a net in A which is < p and converges to p. Thus
p is g-open for A.

In [7] Dixmier introduces the ideal center of a C*-algebra which
is a C*-subalgebra of M(A) containing A. Dixmier constructs it in
A** but Lemma IIL.5 assures us the idea carries over to M as well.
We can characterize it in the obvious way.

CoROLLARY III.8. The tdeal center of A comsists of exactly those
central elements of M which are g-continuous.

Proof. We need to show that if d is central in M and p-con-
tinuous and ac A4, then dac A. Clearly we need only consider
d,a=0 and ||d] = ||la]|| =1. For A >0, the spectral projection p of
(da) corresponding to the interval [\, ) is less than or equal to the
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spectral projection of a corresponding to [A, o) which is g-compact
since a € A. By III.3 we need only show ad is ¢g-continuous.

To show that (ad) is g-continuous, let (a, 8) be an open interval
and consider a and d as real functions on g(ad) (the spectrum of ad).
Then let t,e K = {t: a(t)d(t) € (@, B)}. For sufficiently small ¢ and 6
we have UN VC K, where U = {t: a(t)—e < t < a(t,)+¢c} and V =
{t; d(t,)—06 < t < d(t,)+06}. Since K is a union of open sets of the
form U N V, the spectral projection p of ad in M corresponding to
K is a union of projections corresponding to sets of the form U N V.
But for any U and V as above, the spectral projections of (ad) cor-
responding to U and V are both g-open and they commute. Hence
their intersection corresponds to U N V and it is g-open [3, II.7]. Thus
p is a union of g-open projections, hence it is g-open [3, IL.5].

IV. Assorted results and examples. One interesting question
is: What are all the different C*-algebras which have a factor for
their pure state p-space? If M is countably decomposable, then the
question was answered in [13] where it was shown that the C*-
algebra must consist of exactly the compact operators in M (i.e.,
the C*-algebra generated by the minimal projections). We can slightly
extend this result.

THEOREM IV.1. Suppose M is a factor. Then A consists of
exactly the compact operators in M if any q-open projection p s
countably decomposable.

Proof. Let A, = {ac A:ap = pa = a}. Then the pure state g-space
M, of A, is pMp. By [13] A, consists of the compact operators in
pMp. Thus A contains all the compact operators in M by [9, p.85].
But if A is strictly larger than the compact operators, then they
form an ideal in A4, so A has at least two inequivalent irreducible
representations. This contradicts the assumption that M is a factor.

Next is a theorem of the Stone-Weierstrass type.

THEOREM IV.2. Let BC A be a C*-subalgebra which separates
the pure states of A and 0. If pBp is norm closed in M for each q-
closed projection p for A, then B = A.

Proof. By [3, II1.2] M is also the pure state ¢-space for B. Let
p, be the B-closure of p in M (i.e., the smallest projection = p which
is g-closed for B). If p, > p, then there is a minimal projection p,
in M with p,< p,— p. Let {bJC B with 1=0b,] p, in M. Then
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[| 2020, ]| =1 for all &, but || »b.p]| — 0 since p is g-closed. By [3,
11.12] the map B — p,Bp, has closed range, and by hypothesis the
map p,Bp, > pBp has closed range also. But since p, is the g-closure
of p for B, the map ® is 1—1. Thus " is continuous by the
closed graph theorem, and this contradicts || p,b.p, || =1, || pbp || — 0.

The most difficult aspect of the g-theory is the existence of non-
regular projections, even in the best of circumstances [4, 1.2]. The
next result shows that some interesting projections are regular.

ProrosiTioN 1V.3. If p' is finite-dimensional, then p is regular.

Proof. Let p, be the g-closure of p. Then p] is finite dimen-
gional, so p] is ¢-closed [3, II.8]. Hence p, is g-open and ¢-closed, so
e A by [3,11.18]. By considering p,Ap,, we can assume p, = L.
Let be A with ||b]] =1 and suppose ||bpl} < 1. This would be the
case if p were not regular. Since |[0*b|| =1 and [|b*bp|| <1, we
can assume b > 0. Let p, be the spectral projection of b correspond-
ing to the open interval (9, «), where [|bp|| <6 < 1. Then p, is g-
open and p,# 0, so p, A p>*0 as follows. If p, A p =0, then
piV o' =1. Since p’ is finite dimensional, this implies that p, is
finite dimensional. But then p,e A, so we can get a minimal projec-
tion p,€ A with 9, < 9. This contradicts p =1. Now if ¢ is a

pure state of A with g(p. A ») = 1, then
g(bp) = g(b) = g(p:bp,) = g(0p,) =0 .

This contradicts the definition of §.

The next proposition and example show how badly behaved non-
regular projections can be and how reasonable regular projections
are.

ProrosiTION 1V.4. If pe M is regular, f a pure state of A,
be A with b= p and f(b) = 0, then f(p) =0 (p = closure of p).

Proof. Let {a.,} be an increasing positive approximate unit for
{ac A: f(a*a + aa*) = 0}, By Lemma II.3 and by [2, 1.2] we can
get {b,)C A with b,=», ||b,]| <1+ 1/n, £(b,) = 0. Let p, be the
support projection of f. If f(p) = 0, then there exists a pure state
g of A with g(@) =1 and g{(p) # 0. By regularity and [10, 6.1]
there exists a net {g,} of states of A with 95 9 o(A*, A), and
g,(p) =1 for all v. Let b, be a limit point of {b,} for the weak*
topology of M, clearly |/ b6,|] < 1. Since g,(b,) = g,(p) =1 for all v
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and all n, then g(b,) =1 for all n. Hence g(b) = 1. But ||b,+ p,]|=1
since b,p, =0 for all n implies bp, =0 (and similarly p,b, = 0).
Hence g(b, + p) =1 + g(p,) > 1, contradicting the asssumption that
gl =1.

ExampLE IV.5. Let us work in the direct sum 3,7, @ B(H,) of
matrix algebras where dimension H, = 2 for all n. Set

» (1/n 0 = (1 0 o 1—", (v,— 7"
a = , = y =
Z(o 0) P Z(o 0) ‘ E(m — )y, )

where {v,}z_, is an enumeration of the rationals between 0 and 1
which contains each rational an infinite number of times. Set
b=p+ ¢ and let A be the C*-algebra generated by a and b. Let
p, be the range projection of a in M.

Conclusions from the example. (1) b = p, but there is no de A*
with dp, = p, (c.f., [12] page 11, line 11). (2) If f is the pure
state at - for A, then f(b) =0 but f(p,) +# 0, so p, is nonregular
by Proposition IV.4. (3) Let p, be the support projection of f.
Then p, + p, satisfies the intersection condition of Conjecture II.2,
but p, + p, is not g¢-closed.

If p: A, — A, is a *-homomorphism of A4, onto A, we may easily
extend it to a normal *-homomorphism of M, onto M,. However if
® is not onto, this extension may not be possible. The natural re-
presentation of the continuous function on the interval [0, 1] into the
algebra of all bounded operators on L* [0,1] by ®(f)h = fh has no
such extension (the proof was communicated to me by R. Giles). In
order to place g¢-theory into a category theory setting, one must
restrict the class of allowable “morphisms” between two C*-algebras.
The following restriction is empty in the abelian case.

ProposITION IV.6. A *-homomorphism @ taking the C*-algebra
A, into the C*-algebra A, has a normal extension @: M, — M, (neces-
sarily unique) if and only if @ is continuous for the topologies genera-
ted by the semimorms ||all; = f(a*a) for all pure states f of A, (or
A, for the topology on A,).

Proof. It @ exists, the continuity is automatic for @, hence for
®. The converse follows immediately from [14, p.3 of appendix].
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