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For a symmetric differential expression associated with a
first order system

A)x’ + Az, a<t<b

where A, and A are n X » matrices and % is an n X 1 vector,
a spectral decomposition will be developed. That is, if Sisa
closed symmetric differential operator determined by the dif-
ferential system, the explicit nature of the generalized resolu-
tions of the identity for all the self-adjoint extensions of S
in any Hilbert space will be determined in terms of a funda-
mental matrix and spectral matrices associated with these
extensions. An important aspect is that these self-adjoint ex-
tensions may be defined in Hilbert spaces larger than the
natural one &Z in which the operator S is defined.

The development proceeds as in Coddington [5]; however, the con-
sideration of systems of differential equations introduces matrix tech-
niques and notation. It is hoped that this formulation will have appli-
cation to such problems as open end (infinite time) control theory
problems, and facilitate the canonical formulation of the associated
spectral analysis.

Preliminary definitions. Let 27 be a Hilbert space with an
inner produet (, ).

(1) Generalized Resolution of the Identity. Let F = {F(\)} be a
family of bounded self-adjoint operators in 5#°, depending on real A,
such that:

(i) FOy=F(, x> p,

(ii) F(+ 0) = F(\),

(i) F\)— I, as A — + oo,

F(\) —0, as A — — oo,
then F is a generalized resolution of the identity.

The family F is said to be associated with a symmetric operator

Z (or F is a ‘“‘spectral function’ for Z, Naimark [7]) if

(Zu, v) = Sxd(F(x)u, ),

and

13
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1Zull = [NaFEQyu, ),

for all ue &7 (Z) and ve 57.

(2) Generalized Resolvent. Let Z be a symmetric operator and
F = {F(\)} be an associated generalized resolution of the identity. For
Iml+#0, let &£ = {#()} be a family of operators such that

d(F (\)u, v)

(@, v) = [ LW

Then <% is a generalized resolvent of Z associated with F. The
development for symmetric operators will include the case for self-
adjoint operators.

1. Basic vector and matrix definitions. In addition to the usual
definitions and notation for the absolute magnitude of a vector, the
inner product of two vectors, the norm of a vector and the absolute
magnitude of a matrix, the norm of a matrix is defined as

n 1/2

33 (hs rat) = ([erace (4@ a)ar) s

=1 j=1

14l = (
and a matrix ‘‘inner product’’ is introduced,
(A, B) = SB*(t)A(t)dt,

which is a matrix whose (7, j)th element is

| Bu A oar.
This ‘‘inner product’’ makes sense for any two matrices for which
B*(t)A(t) exists and is integrable.

An inner product of a matrix and a vector can be defined in some
situations; it is a special case of the matrix ‘‘inner product.” For
example, if f is an » X 1 vector and G an n X % matrix,

f, @) = SG*(t) F)dt.

2. The *“‘basic operators’® T, and 7. Let (@, b) be an open in-
terval on the real line (¢ may be — o« and/or b may be + ). A
differential operator L is defined by

Lo = At + A(t)e.,

where: « is an n x 1 vector, 4, and A are n by = suitably regular
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matrix-valued functions (Brauer [2]) and ’ denotes d/dt. The Lagrange
adjoint, L*, associated with L is defined by

Lty = — (A¥®t)y) + (A*(t)y)
= — AF()y + (— A¥ (@) + A*()y).

The operator L is formally self-adjoint if L = LT, that is when
A= — Af and A = — AY + A* = A] + A*,
Throughout the remainder of this paper L will be assumed to be formally

self-adjoint.

Using the definitions for the inner product of two vectors, and
for the norm, a Hilbert space, 577, can be defined,

ot = ZHa, b) = {u [[u|] < oo}

Defining a domain & in &% by & = {ue #: (i) u is absolutely
continuous on every compact subinterval of (a, d), (ii) Lu € 57}, an
operator T, having domain <7, can be defined by

Tu = Lu, uwe<=z.
Let, for u,ve &,
luvy = (Lu, v) — (u, Ltv) = (Lu, v) — (u, Lv).
Then, similarly for a domain &,
Z, = {ue Z:{uvy = 0 for all ve o},
an operator 7T, can be defined by
Tow = Lu, uec .

The development of the operators 7, and T is motivated by the
fact that T, is the smallest closed symmetric operator in 52 (associated
with the differential operator L) having a domain which contains all
vectors which are infinitely differentiable on (a, b) and vanish outside
closed bounded subintervals of (a, b). Further, if F, is any generalized
resolution of the identity for a closed symmetric operator T,, where
T, T, T, then F, is a generalized resolution of the identity for 7,,
also. Thus, by considering T,, a maximal set of generalized resolutions
of the identity, which are naturally associated with L, can be obtained.

The following theorem provides an important relation between T,
and T.

THEOREM 2.1. The operator T, is closed, symmetric, and T} =
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T, T* = T,
Proof. Let
oMo (0)A7 (), t=T,

K(t, 7) =
U 0, t <,

where @ is a fundamental matrix, that is, a matrix whose columns
are independent solutions of Lz = 0. Thus, & is a nonsingular n X n
matrix such that L® = 0. As a function of ¢, LK(t,7) = 0, and

Kit+,t)— Kt —,t =0 +)0 ')A (W) — 0 = A7(t).
The representation for K can be simplified
(0*A,0) = 0, or §*A@ = D,
where D is a skew-Hermitian constant matrix, and hence
O At = DO*.
The matrix K can now be written as

o(H)DO*(c), t= T,
K@, 7) = 0 t<zt

Let 4 be a closed bounded subinterval [@, b] of (a, ). The Hilbert
space .~7%(4) is defined by

L) = {u [|u]l, < ok
For te 4, the vector = defined by

x2(f) = S;K(t, Tyy(T)dT

ﬁK@rw@ma

where y € &%), is such that

(0) ze 4,

(i) =« is absolutely continuous on 4,

(ii) Lxe &£*4).

Having verified that for ¢t e 4 and y ¢ <#*(4) the vector = satisfies
conditions (0), (i), and (ii}), the proof follows exactly as in Theorem
1 of reference 3.

3. The Green’s function G,. In §5. the generalized resolvents
associated with 7T, will be constructed. The generalized resolvent
will be developed starting from the Green’s function G, associated
with certain self-adjoint boundary-value problems on finite subintervals
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4. The purpose of this section is to derive such Green’s functions G,.

Once again, let 4 be a closed bounded subinterval of (a, b), denoted
by [&, 5]. Analogous to previous definitions, a domain <2, is defined
and the associated operator T,, having domain <&,

T = Lu, we <,
Similarly, for <,,, an operator T,,, having domain <,, is defined by
Tuw = Lu, e <y,

[NOTE: The conditions and relations of Theorem 2.1 hold for 7,, and
T,.]

It will now be shown that abstract self-adjoint boundary conditions
can be constructed by considering the self-adjoint extensions of T,.
Let

Ei(x1) ={ve D Tw= % iv);

It is clear that dim &,(?) = dim &,(— %) = n. The domain =, can be
written as a direct sum

T, = god -+ gg(@) + gd(— 7')'

From the theory of the Cayley transform (see Riesz-Nagy [8], for
example) every self-adjoint extension, T,,, of T,, has a domain

QAU = 904 + (I"— U) gﬁ(— ?:),
where U is a unitary mapping from &,(— 7) onto &,(?); and
Toou = Lu, e &y

Let {ps} ¢ =1, +++,n, be an orthonormal basis for £,(7); also let
{vru} ©=1, ¢+, m, be an orthonormal basis for &,(— 7); finally let

Va; = g5 — Unpryy,
and
Ve = Pgy — U Py, F=1, 40+, n.

The following theorem describes the abstract self-adjoint boundary
conditions induced by the domain <.

THEOREM 3.1. The domain Dy of Ty has the following repre-
sentation:

-@AU = {ueg:<uvdj*>: Oyj = ly ".1%}

where {{uvyx) = 0,4 =1, «++, 0} form a self-adjoint set of boundary
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conditions.

Proof. This follows by direct analogy from the proof of Theorem
3 in Coddington [3].

The set {{uvyx» = 0,7 = 1, - -+, n} forms a self-adjoint set of bound-
ary conditions since the v,;« are linearly independent and <{v,;xv,x)
= 0 for all j, k.

The set of self-adjoint boundary conditions {{uv, ;x> = 0,5 =1, <o,
n} can be represented in matrix form by

V() A(D)u(d) — Vi@ A@u@) = 0,
where V,, is the matrix whose ith column is the vector v,;«. Letting
M, = — V(@) A(@),
and
N, = V0 AD),
the self-adjoint boundary conditions can be written in standard form
U = Mu(@) + Nau(b) = 0.
The self-adjoint boundary-value problem (on 4)
Lu=1lu, Um=0 (bv)

will now be considered. The Green’s function G, associated with the
problem (bv) is a unique function G,(¢, 7,1) (I not an eigenvalue of
(bv)) satisfying the following conditions:

(1) Gu(¢, 7, 1) and 8/0tG,(t, 7,1) are continuous on Aa<t<T<b

and @ < 7 <t < b, and for each fixed (¢, 7) are analytic in [,

(ii) Gut+,7,0) — Gt — ,t, 1) = A7'(t), @ < t < b,

(iii) G, satisfies LG, = IG, (as a function of ),

(iv) G, satisfies U,G, = 0 (as a function of t),

(v) Gut, 7,0 =G, t 1),

(vi) if fe F*d) and Lu = lu + f,
then,

u(t) = SAGA(t, e )f@)de, Ump=0
and if
ZA07 0 = | Gut, 7, DS @),

then
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(L = Dz, Df®) = £ @),
and

&l < |Im 1]

The Green’s funection will now be constructed starting from the
kernel

o, ) DO*(z, 1), t=rT,
Koy = [JOIDTED, 12

for ¢, T e 4; where @ is a fundamental matrix for (L — )u = 0, having
the property that for some ¢, & < ¢ < b, @,y = I. The matrix D( =
A;'(c)) is a constant, skew-Hermitian matrix. From Theorem 8.4
Coddington and Levinson [6], @ is continuous as a function of (¢, 1),
and for fixed ¢ is an analytic function of I(Im # 0). Let

Git, T, 1) = K,(t, 7, 1) + B, )J(, 1).
Introducing the notation
Uo(l) = M 0@, 1) + N&@b, ),
G, can be written as

_ (oGt )(U00) M2, ) DO*(z, b, t=r,

G2 D=1 o, p(U.00) NG, YO, D), <z

It now follows by direct verification that G, as constructed satisfies
the remaining five conditions.

4, The limit function G. In this section it will be shown that
a type of limit function G exists for the set {G.,}, as 4 approaches
{a, b).

Let 4,, 4,, and 4 be closed bounded subintervals of (a, b) such that
4, is properly contained in 4,, and 4, is properly contained in 4; these
will be denoted by

4y = [a, b, 4, = [ay, b], 4 = [&, b].

Let ¢ be a function, having a continuous first derivative, such that
for some open interval 4,, 4, C 4, C 4,

#) = 1, ted,
) = 0, ¢ outside 4,.

Let
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Wit 7, 1) = Gut, 7, 1) — p(O)G.(t, T, D).

Then for t,ce 4, W,(t, 7,1) is continuous; as a function of ¢, W,
satisfies

UW,= MW@ + N,W(b) = 0;
and also
(L, — DW.t, 7, 1) = — A (t)Gaft, T, 1), t#T.

Since t/(t) = 0 for ¢ outside of 4,, W, can be written as
Wit 7, 1) = — S Gults 5, D As) ¢ (5)Go(s T, s

(Note: The integral over 4, actually represents the sum of integrals
over [a,t —], [t +,7 —], [t +, 8] for = > t), or

Gyt T, 1) = )Gyt T, 1) — SAGA(t’ s, ) Ay(s) 2t (8)G 4 (s, T, )ds.

It can be shown that the set {W,} is uniformly bounded and equi-
continuous on any compact (¢, 7,1) — region, Im1l =+ 0,¢ = z. Thus,
by Ascolis’ theorem a uniform limit W exists and from this a limit
function @, where

G = #G"l + W,
and G is a limit function for the set {G,.
THEOREM 4.1. The function G satisfies the following conditions:
(i) G@,7,1l) and 0/0tG(t, T, 1) are continuous on a < t <7 <band
a<T<t<b, and for Iml£0 G vs analytic in 1,
(ii) G(t—l—,t,l)—G(t—,t,l):Ach(t),a<t< bs
(i) LG=1G,t=+7,
(iv) G(t,7,l) = G*(7, t, 1),

(v) G, ,l)e F*a,b),a <t<hb,
(vi) If fe F*a,b), then the vector v defined by

v(t) = SZG(t, 7, ) f(t)dr, Imli== 0,

18 such that ve & and
Lo(t) = w(t) + f(¢t).

Proof. Again, this follows by direct verification.

It is thus seen that G satisfies 'all the conditions of a Green’s
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function except for satisfying boundary conditions. Further, from pro-
perty (vi), if

() f) = S:G(t, o Df(D)dz,

then,

(L=Dz)f@© = f©
and Z(l) is a right inverse for L — [.

5. The generalized resolvent. Having constructed the closed
symmetric operator T,, all its self-adjoint extensions will now be con-
sidered. In §3. the self-adjoint extensions for an operator in 57
having equal deficiency indices were considered and these self-adjoint
extensions were also in the space 5#. A spectral analysis of those
self-adjoint extensions occurring in 57 was carried out, by quite dif-
ferent methods, by Brauer in [2]. The problem to be considered next
is for unequal deficiency indices or equivalently, singular problems with
equal deficiency indices such that the self-adjoint extensions are out-
side the original space.

Naimark [7] and others have defined extensions of T, for this case
in larger Hilbert spaces. Theorem 7. in Straus [12] provides a means
for an explicit construction in 5# itself. Let A(l) map & (— %) into
& (1), where A(l) is analytic and ||A(l)|| <1 for Im[>0. Analogously
to the case of equal deficiency indices, a domain = (l) C & is defined
by

) = 2, + I - AD)E (- 1),
and an operator T,,, having domain <7 (l) is defined by
T, wu = Tu, wuwe ().

Then, T, < T4y © T, and the generalized resolvent <2 can be repre-
sented as

B() = (Tywy — )™, Z(l) = 2%, Im1 > 0.

Further, from Straus [12] every generalized resolvent is generated by
such A(l).

Again, analogously to the case for equal deficiency indices, the
domain <7 () can be characterized in an alternate manner which leads
to an explicit formulation for the generalized resolvent .<Z(l). The
domain <7 can be represented as a direct sum

D =g+ F@) + E(— 1),
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let @* be the dimension of &(¢), and @~ be the dimension of & (— 1),
where 0 < w*, 0~ < n; let {p;(?)}, j=1,-++, 0", be an orthonormal
basis for & (¢), and let {y(— %)}, 6k =1,.--,®", be an orthonormal
basis for & (— 4); finally, let

v;(l) = ¥ (= ) — ADy(— 1),
and
v;x(l) = 9,(1) = A*(D)P;(3).

THEOREM 5.1. For Im1l > 0, the domain =2 (1) of T4 can be rep-
resented as

) =uwez:luwxl)> =0, j=1,---,0%;
and the domain of T%, 1s

) =fwez:lwrl)y) =0, k=1,+-,07}.

Proof. The proof is the same as the proof of Theorem 3.1 with

the operator A(l) in place of U.

It will now be shown, again analogous to §3, that the domain
(1) induces limiting abstract boundary conditions. For e & and
any closed bounded subinterval [e, d] of (a, b)

[uv,](d) — [uv;i](e) = v (d)A(d)uld) — vii(c)Ao(c)ulc).

Since u, v;,, Lu, and Lv;, are each in &*(a, b), then lim,_, v}, (d) A,(d)u(dy
exists, and lim,_,v}.(c)A.(c)u(c) exists; these limits will be denoted by
50 A, (b)u(d) and vi.(a@)A(@)u(a). The conditions {(uv;,>=0,5=
1, .-+, ®"} can then be represented in matrix form as

0 =<uV,> = Vi, DAb)u(®) — Vile, DA(@)u(e)(LB),

where V, is the matrix with v;, in the sth column; these are limiting
abstract boundary conditions.

Having obtained the limiting abstract boundary conditions, the
following theorem describes a method for the construction of the gen-
eralized resolvent . (l) starting from the integral operator Z(I) de-

veloped in § 4.

THEOREM 5.2. Fach generalized resolvent # (1) of T, is an integral
operator of Carleman type, having a kernel R(t,t,l), which is con-
tinuous in (¢ 7, 1) and analytic in 1 in any region for which Im I+ 0,
and t #+ T.

Proof. The integral operator & (I) obtained in §4. is of Carleman
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type; further = (l) satisfies the conditions of the theorem except that
Z (l) is only a right inverse of (T — ). It will now be shown that
a matrix G, can be constructed such that the kernel of <Z(l) is

R(t, 7, l) = G(t, T, 1) + Gi(t, 7, D).

For fixed I,Im1l > 0, let {6,(])}, + =1, ---, w*, be an orthonormal
basis for & (l), let .(l) be the n X ®* matrix having 6,(l) in the jth
column, similarly, let {x.(1)}, ¥k =1, -+, @, be an orthonormal basis
for & (1), and x_(1) be the n x w~ matrix having ¥,(7) in the kth column.
From the orthonormal property of the 6,(1) and the y.(1),

©.0,6.0) = | 61(t, 1oLt Dt

ot xoty

where I,+4,+~ is the identity matrix of rank w*; similarly,

Q=(0), x=(1)) = Li~xu--

For any vector f in e, ), (T — WF#FN) —<cO)f)=f—f =
0, and thus (ZZ(1) — Z(1))f is in & (l). Thus for some w* x 1 vector
a(f, )

(20 — ZO)f = 0.(Dalf, ).
Also
(W) — 2O, 0.0) = (f, (1) — £(1)0.0);

and, for each column 6,(1) of @.(1), (T — I)(Z (1) — = (1))0,() = 0,(1)
— 0,() = 0. Thus, for some w* x w~ matrix B(l)

(2 (1) ~ (1)0:0) = 1(D)B*().
Combining the preceding calculations yields
() — ZW)f() = 0., VBO(S, 1-(1)) = (F, }(1)B* ()01 (¢, 1));
thus,
R(t, 7, 1) — G(t, 7, ) = @.(¢t, ) BD)y*(z, 1).

Similarly, for some w* x w~ matrix H(l},

R(t,z, 1) — G(t, 7, ) = y_(t, D H*(1)0*%(, 7)
and

R¥*(t,t, 1) — G*(z, t, 1) = @ (t, D H()y*(z, 1).
Further,
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B(l) = (x~(1), x-()B*()) _
= (x-(1), (2 () — £ (1)2.(1))
= (1) — zO-(1), 2.(1)
= (0.()H(1), 6+())

so that
R*(z,t, 1) — G*(z,t, 1) = R(t, 7, ) — G(¢t, 7, D).

Since 0;,(Ne & () c =, for j =1, -+, 0", and () e L () c =, fork
=1,+++, @, then 0,()Bl)yx*(z,l)e F*a,b) for a <7 <b,Iml=0.
Thus <#(l) is an integral operator of Carleman type.

The operator #Z(l) will completely satisfy the condition of the
theorem when it is shown that R(¢, 7, 1) is analytic in [, Im s 0, and
t#7. To facilitate the proof of the analyticity of R(¢, 7, 1), analytic
bases for & (I) and (1) will be introduced, as in Coddington [5],
related to an arbitrary {,, Im 1, > 0.

Matrices ¥_(1)and @,(l) are defined by this process such that the
columns of @ (1) form a basis for & () and the columns of ¥_(I) form
a basis for & (I); thus for some nonsingular matrix 7(1),

v (1) = x-(O)T(1),
and for some nonsingular matrix S(I)

o.(l) =6,.(DS®).
Thus,

O.(t, YBA)1x(z, 1) = D.(t, DS~ OBU(T(D)"1*(z, 1),
= 0 (t, )COY¥ _(z, 1),

where C(l) = ST ()B(I)(T*(1))~*. The matrix @,(I) is analytic in [ and
(1) is analytic in I for any compact subset of Im7 = 0. Thus it
remains to show that C(I) satisfies the same conditions of analyticity.

Let Z be an n x r matrix each of whose columns z, is in .<*(a, b),
k=1,+++,7. Then Z#(l)z, is in & (l) and thus satisfies the boundary
condition (LB),

0 = (ZDz) V(D)

the set {0 = (2 Dz) V. ()), k=1, +++,7} can be written in matrix
form as

0 =2W2) V(1))
Expanding #(l), yields
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0 = M2) V(D> + L(@-OCH(Z, T_(1) V. (D),

also

L@WCOZ, T_(1) Vi(D))> = D () Vi ()OCW(Z, T_(1)).
Thus,

—LZW2) V) = L.V (D)YCO(Z, T_(1)).

The matrix C(l) will be analytic if {(Z(1)Z)V.()> is analytic, and
{0, () V4(@)> and (Z, T_(1)) are each nonsingular and analytic.

First it can be shown that <@.() V.(l)> is nonsingular and analytic.
Next, for (Z, ¥_(1)) to be nonsingular Z must be an # X @~ matrix,
it can be verified that for Z = ¥_(—1), (Z, ¥_(1)) is nonsingular and
analytic. Finally, (¥ _(— 1) V.(l)> is analytic in I for |l — ;| <
Iml,/2. Thus

Cl) = —<2.(O V(> K(ZOF (— DV (DOT (— 9), T_(D)™
is analytic and
D (t, )C()D*(z, 1) = O.(t, ) BO)x*(z, 1)

is analytic in 7 in a compact subset of Iml =0, |1 — [,| < Iml,/2.
Theorem 5.2 is now proved, the generalized resolvent <2 () with kernel
“#(t, T, 1) has been constructed.

6. The spectral matrix.

DEFINITION. A matrix p, (associated with an eigenvalue problem)
is a spectral matrix if it satisfies:

(i) p is Hermitian,

(i) p(4) = p(\) — p() = 0 if A > s, (where 4 = [1,\]),

(iil) o is of bounded variation on every finite A\ interval.
To develop the spectral matrix associated with the problem (L — Du
= 0 with the boundary conditions (LB), and thus associated with the
generalized resolvent .22 and the generalized resolution of the identity
F, the kernel of ZZ(l) will be split into two parts,

R(t,7,1) = By(t, 7, 1) + Rit, 7, 1)

where R, (t,7,l) is a certain fundamental matrix for (L — l)u = 0.
Once again, let @ be a fundamental matrix for (L — l)u = 0, satisfying
@(c,l) = I, for some ¢,a < ¢ < b. Then, as shown in §3,

[2(@t, ho(t, 1)] = @*(t, DA, 1) = D7,

where D is a nonsingular, constant, skew-Hermitian matrix. Defining
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Ry(t,z,1) by

—21—@(t, )Do*(z, 1), t=r,
Ryt, 7, 0l) = 1
S0 DD*e*(t, 1), #< 7,
then,
Ri(z, t, z) = R, 7, D).
Also,
Ro(t +9 t, l) - Ro(t —, & l) = Ao—l(t)a

which is the same jump that R(¢,7,1) has at ¢t = 7.
Now, let

Rt T, 1) = R(t, 7, 1) — Rylt, 7, D).

Then as a function of ¢, R, has a continuous first derivative, and
(L, — )R.(t, 7, 1) = 0.

From the symmetry property Ri(z, ¢, 1) = R.(t, 7, l) it follows that
for some matrix Z'({)

R(t, 7, 1) = @(t, YT )D*(z, 1).

THEOREM 6.1. The matriz ¥ is analytic for Im1l > 0, T*(l) = ¥ (1),
and ImT(1)/Iml > 0, where Im¥ = (¥ — ¥*)/24.

Proof. The analyticity of ¥ follows from the choice of @(c, ) =

Next,
R.(t, 7, 1) = R¥(z, t, 1),
implying
o(t, YT W)0*(z, 1) = O(¢, YT*(1)0*(z, 1),

and, since @' exists, T'(l) = ¥*(1), or ¥*(l) = ¥(1).
Let

R(t,7,l) — R(t, 7, 1)

H(t, 7, 1) = 5
7

direct computation yields

He, ¢, 1) = Im¥(J).
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The proof for Im¥(l)/Iml = 0 now follows as in the proof of
Theorem 3 of Coddington [5].

THEOREM 6.2. The matrixz o defined by

o) = hm—g Im¥ (v + ie)dy

=40

exists, is nmondecreasing and is of bounded variation on any finite in-
terval.

Proof. This follows directly from Theorem 4 of Coddington [5].
The matrix p is the spectral matrix associated with the generalized
resolvent <Z and the generalized resolution of the identity F'.

7. The generalized resolution of the identity. Let o be the
spectral matrix derived in § 6, let 4 = (¢, ] be a finite interval, and
let F(4) = F(») — F(n).

THEOREM 7.1. Let fe 57 and wvanish outside a closed bounded
subinterval [c, d] of (a, b). If pt and N are continuity points of F, then

FUF®) = | 0t 2do@)(F, o).

Proof. It follows from the relationship

(s, p) = | AL

that

(F)F, f) = lim S (Im B + i6)f, f)dy

at continuity points g, » of F. The generalized resolvent <Z(l) can
be written as Z () = Z,() + #.(l), where Z(l) has kernel R,(t, 7, ),
and . ,(l) has kernel R,(¢,7,1). Then

2Wrt) = | Rt 7, )f@de = | Rt 7 )@

However, (Im ZZ (v + i¢)f, f) tends to zero e — -+ 0, uniformly in
4. Consequently, it follows that

(FF, f) = lim S (Im (v + i6)f, f)dv,
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where

(Im &2,y + €)1, 1)

= (@), H[ FEEE_EE =9 |7, o))

+ O + i€), ATE + #)(F, @ — i) — 0()
+ (@@ + i) — OW), NTE + ie)(f, TO)))
+ %{@(vx HTE — i&)(f, @) — O + ie))

+ (2() — (v — 1¢)), T (v — ie)(f, D(v + 9¢))}
=T+ T, + T,

where T; = T;(v, ¢, f).
In Lemma 3 of Straus [13], it is shown that

lim lg Tyw)dy = 1imlg T,w)dy = 0.
4 4

e—=+0 T e—+0 T
Finally, for T,,

1113% Sd(@(v), AIm T + ie)(f, O))dy

= | @), Naoe)(F, o)

Il

|+ 00)*do)(F, 009,
and therefore,

F@S. 5 = | 0] | o »dow)s, ow) Jat.

Since this representation must hold for all f e 5~ which vanish out-
side closed finite subintervals of (a, b),

F ) = | 0t do@) s, o)

for all such f.

Thus the generalized resolutions of the identity associated with
the first order system of differential operators Lux(t) = A.(t)2'(f) +
A(t)z(t) can be represented explicitly in terms of a certain funda-
mental matrix @ and an associated spectral matrix p.

8. The expansion and completeness relations. Expansion and
completeness relations can be defined in terms of the spectral matrix
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p and the fundamental matrix @. For two vectors &, B, an inner pro-
duct is defined in terms of o by

@, B), = Sl@*(v)dp(u)&(u).
Thus a norm can be defined by
el = @, ay*.
The Hilbert space .&*(0) is defined by
L) = {@:[| &l < o}

Defining a mapping from <*(a, b) into Z*(0) by

7o) = (f, 0w) = S:(I)*(t, V)£ (b,

the expansion and completeness relations have the following form:

F@) = (f, *@), = S:o@(t, v)do(v)f(v) (expansion)

and

Wf 1l =7ll, (completeness).
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