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A square matrix A =[a;;]’ has dominant diagonal if
Vi{lai| > B; = >+ {a:5|}. A more complicated type of dom-
inance is the following. Suppose for each %, there is as-
signed a set I(¢) (subset of {1, ---, n}), 1€ I(1): Define B;; as
the I(¢) X I(t) submatrix of A that uses columns (%), and
rows {I(9)\7, j}, i.e., the set obtained from I(¢) by replacing
the ith row by the jth row. Set b;; = det B;;. Then [b;]} is
a matrix, the elements of which are determinants of minor
matrices of A. In an earlier paper, bounds for det A were
derived in case [b;;] has dominant diagonal in the special
case that {I(¢)}; represents a partitioning of the indices into
disjoint subsets.

In this article the general case is treated; I(¢) can be
any subset of {1, -:--,n} that contains 7. An identity is
derived connecting det [b;;] with det A.

To establish the identity, a general multinomial identity is first
derived, connecting determinants of certain submatrices of an » x 2r
matrix of indeterminates. This result, reminiscent of Sylvester’s de-
terminantal identity, is used to bound det A.

1. Application of a characterization of the determinant
function.

LEemMMA 1.01. Let A = [a;]; be a matric of complex numbers [or
indeterminates]; let a function ¢: A — Clor ¢: A — Cla,,, +--, a,,]] have
the following properties for all n X n matrices A.

(1.02) [1.03] If any row [column] of A is replaced by the sum
of that row [column] and a multiple of another row [column], ¢(A) 1is
unaltered.

(1.04) If any row of A is multiplied (throughout) by a constant
a, ¢(A) is multiplied a’.

Then ¢(A) ts a constant ¢, (independent of a;;) multiplied by the
rth power of det A.
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40 J. L. BRENNER

Proof. The hypotheses (1.02, 1.03) guarantee that ¢(4) is the
same as ¢(B), where B is any matrix obtainable from A by means of
elementary transformations. It is known that B = diag [det 4,1, ---,1]
can be so obtained; see for example [1]. Thus ¢(A) is some function
of det A; the conclusion of lemma 1.01 follows on applying hypothesis
1.04 to the matrix B: If g(ax) = a'é(x), then ¢(x) = c,2", since ¢(x)/x"
is constant.

An application of this result was made in [2], to which the
reader should refer. In slightly changed notation, this application
is as follows.

LEMMA 1.05. Let A = [a;]5-,2=, be an r X 2r matriz of inde-

terminates, let b;; = det AG :“_ Lidl,eee j) be the determi-
nant of the r X r submatriz of A that uses columns {1, ---, r}\i, .

This is the almost-principal submatriz of A in which the ith column

is replaced by the jth colummn. (For j =4, this is AG ;) For

1 <7+ 1< r, this submatrix has determinant 0.)
Then

(1.06) X = det [b;]:2,, ;50 = Gi™Hdet [ag)ily,, 274
where
G, = det [a;;]7] .

Note that in 1.06, the column indices are » + 1, -, 27.

To prove this Lemma, it is only necessary to observe that it is
a multinomial identity, and that the hypotheses of Lemma 1.01 con-
cerning the function X are satisfied.

1° if X is regarded as a function of {a;;,1 <1,5 < r};

2° if X is regarded as a function of {a;;, L < i < r,r <j £ 27}

COROLLARY 1.07. With the same hypothesis, the conclusion
(1.08) Y = det [b;;]il,,5.5 = GI7H det [a;5]il,, e s

is valid, where S 1is any set of r distinct positive integers mot ex-
ceeding 2r.

Proof. Since 1.06 is a multinomial identity, the »* indeterminates
a;;(§ > r) on the right can simply be replaced by the 7* indetemi-
nates a;;(j€S). But this replacement changes not only the range
of j in the set variables {a;;}, but also the range of j in the set
{b;;}, as the definition of b,; shows.
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LEMMA 1.09. Suppose
I(l) = {1}7 1(2) = {1’ 2}, sy I("') = {]—s 2y 00, 7‘} .

Let B = {b;];2.,#, be defined as in 1.05. Then

dons(, , b

r4+1,-4,2r
(L10) = a,det A(73)det A(153) -+ det A(15 1017 T 1)
X detA(,’,_li_’%: :gr) )

REMARK. This is again a multinomial identity in the 2#* indeter-
minates a;;. Therefore 1.09 has the Corollary

(t11) det B(} 1117 ) = o, det A({3) det A(155) - det (1200 7)

in view of the definition of b;;.

Proof of Lemma 1.09. To show that a, is a factor in (1.10), as
shown, a, times the first row is added to the second row. The second
row becomes

(1013) Wy Qgypiyy Wy, piay 0y Ayl pyjy *°

which obviously has a, as a factor.
It is a little more complicated to show det <ana12> is also a factor,

21422

as is asserted in relation (1.10). The trick is to add to the third

row —det <a21a22> times the first row as well as aj'det (g“g‘2> times
31432 31432
the second row (1.13). The new third row is
(1'14) det (gngm)[as,rﬂ’ Qs prz9 * %y Ag,ppjy *° '] y
21422

i.e., every element of that row has the common prefactor indicated.

The formal proof of (1.10) is inductive, as follows. As an in-
duction hypothesis, assume that the left member of (1.10) can be
written in the form

(1.15) 0, det A(13) -+ det A5 11 F T T)det G,

where C, is the » x r matrix, the jth column of which is
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Ayt g

Ayt 5
.

Qpyrt§
Ay oot Ay prj

det | @y - @y, g

Qptrn *°* Ayt
.

This has already been established for & =1,2. The inductive as-

sertion is: the factor det AG% 1]3 splits off from det C,. To prove

this, subtract from the k + 1st row of the matrix C, appropriate
multiples of the preceding rows. The multiple of «,, ; needed is
precisely the cofactor of a;,.; in C, itself.

This completes inductive proof. To establish (1.10) in its entirety,
a final visual check is needed of the circumstance that for k = », the

. . . 1eeep
matrix C, is indeded the matrix A(w L1 27)‘ See (1.05).

2. Some special factorizations.

THEOREM 2.01. Let A = [a;;] be @ matrix with r rows: 1 = 1(1)r, and
27 columms: j = L(V)r < j, < «++» <J,. Suppose, for i=1,2, «+++,r—1,
I(’l:) = {ly 2, e, — 1}; I(T) = {17 2y ] ,r}' For .7 = .7.1!.7.2! ""jr set
I .
Bij = A<IE;§\/L’3‘>) 1= 1(1)/,"
Denote det B;; by b;;; B = [b;;]. Then

L2 r)ic=deta(1)).

(2.02) detB == det a(h% 1 1(1)

Proof. Consider the last row of B. The element b,; in column
“57 of this row is the determinant of the r x = matrix B,;. If this
determinant is expanded by minors of the elements a,;, a,,, @5 =+, .,
of the last row of B,;, the result is

(2-03) brj = iarjc =+ anblj =+ arzsz IO s ar,r—1br—1,j .

Relation (2.03) shows that det B is not altered if every element
b,; of the last row of B is replaced by =+a,,C. (This replacement
would merely omit from the last row of B a linear combination of
the preceding rows.)

At this point it is clear that C is a factor of det B, and that
the other factor has the same first » — 1 rows does B, and has last
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row a,;. The conclusion of the theorem now follows by expanding
det B by its last row and applying Corollary 1.07. See Lemmas 4.3,
4.4 of [2].

COROLLARY 2.04. Suppose
I = (1,2, coe,r — K fori=1,2, coe, 7 — k ;

and IG) ={1,2, «+,7 — k3 for i=r—k+1,--,7. Then (2.02)

holds; where C now means det A(i’ 2’ o ;r - lg)

2.05. Another special case is the case I(1) = {1, 2}, I(2) = {2, 3},
I(8) = {3,1}. The formula
Ay — Qs 0
(2.06) det B=Gdet A, G =det| 0 Ogs — (o
— g 0 A3

can be verified by appropriate devices. A generalization of (2.06) is
the formula

123\ _ . 123
(2.07) det B3 7) = G-des (325,
valid for any 3 x 6 matrix A, with I(¢) defined as above. Among

several valid proofs of this formula, the following is presented. It
proves (2.07) as a special case of a still more general result.

THEOREM 2.08. Let A = [a;;] be an » X 2¢r matriz, © = 1(1)r, 7 =
1(1)2». Let B be the r x r matriz with (1, J) element b;; = det B;;, where

ot B be the Slem
B, = A(j@. it 1), i=1(U)r —1,B,, = A<§1>;3 —r+1(1)2r. Then the
relation
Ay — Ay
3 1Lever B
(2.09) detB=GdetA(; [ ]" ) G =det
—Qpey,r
—Q Ay

holds; G is a bidiagonal matriz with 2r nonzero elements.

REMARK. This is the case I(1) = {1,2},I(2) = {2,8}, ---, I(r) =
{r, 1}.

Proof. Subtract a multiple of the first row of B from the second,
then a multiple of the second from the third, ..., a multiple of the
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r — 1st from the last. The resulting matrix has the same determi-
nant as B, and the multiples mentioned can be chosen so that this re-
sulting matrix is, row by row,

azz[au'] - aqz[azj] eee 1
(@oss/ y2) [au'] — aylas]
(@301 15035) [au'] — agfa.;] R}
(auazz ce arr/alz et Qpyy — arl) [au’] T

Now subtract a multiple of the new last row from each of the
preceding rows; the first » — 1 rows of the new matrix are —a,f[a,;],
—@ylas;], <+ . This matrix obviously has determinant (2.09). ||

3. General factorization of det B. The function ¢ +— I(¢) induces
a (weak) separation of the indices {1, - - -, n} into agglomerated mutually
exclusive sets S(k), as follows.

DEFINITION 3.01. Let 4+ I(7) be a function from the integers

{1, ---, n} to sets of these same integers, with the further property

1¢ I(@) for all 7. In the usual way, the sets I(¢) are now agglomerated

into the smallest possible (minimal) mutually exclusive sets S(k) so that:

Every I(1) is in one or another of the sets S(k). Then S(k) are

the mutually separated sets defined by the function I. For example,
the function

10— {1}, 2——{1,2}, 3——{1,2,3}, 4——{4, 5}, 5+— {5, 6},
6— (6,7}, T— {7}

defines a separation of the indices {1, 2, 3, 4,5, 6, 7} into the mutually
exclusive sets S(1) = {1, 2, 3}, S2) = {4, 5,6, 7}.

Parallel to the separation of Definition 3.01, there is a factorization
of det B into a product of factors, one for each set S(k). The kth factor
is the determinant of a matrix; in general the elements of this matrix
are again determinants of matrices: the elements of these matrices
are elements a;; of the matrix A, where 4,7 S(k). The point is
that the polynomial function det B of the elements of A factors into
the product of multinomial factors; the kth factor is a polynomial
in the indeterminates a;;, where 4, j belong only to the kth set S(k)
of indices. Besides these factors, det A also appears as a factor.

It there are two or more sets S(k) in the separation, then det A4,
but not (det 4)%, is thus a factor of det B. Even when the entire
set {1,2, ---, n} of indices are connected through the sets I (there is

but a single set S), the factor det A appears only to first power “in
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general.” The exact meaning of “in general” is explained below.
The above remarks are summarized in the following theorem. Its
proof, together with a more detailed atatement, unfold in § 4.

THEOREM 3.02. Let A = [a;;] be an n X n matric of indetermsi-
nates; for 1 =1(1)n let 1(2) be a subset of the first n integers with 1 € I(7).
Denote by B;; the minor AG&;\% J) on rows I(1); and on columns I(7),
but with index © replaced by j. Set b;; = det B;;; B = [b;;]. Thus B
is an n X n matriz. Let the function I(7) induce a separation of the
indices {1, ---,n} into s=1 mutually exclusive sets S, S; +++, S,.
Then det B, which is obviously a polynomial function of the n* inde-
terminates a;; with integer coefficients, can be factored in the form

det B=Gdet 4,

where G = MM, -+- M,, and where each M, is a multinomial in those
wndeterminates a;; for which both indices i, 7 belong to the set S,. In
particular, det A is always a factor of det B.

The details of the proof depend on the following lemma.

LemMMA 3.03. Let A = [a;;] be an r X 2r matrix of indeterminates,
1= 1)r, 5 = 1(1)2r. For each 1, let I(1) be a subset of the first r
wntegers. Let B;;, b;; be defined formally as in Theorem 3.02. B, is
the » x r matriz [by], 1< 1< r<j<2r. A is the r X r matrix
la;licigrei<zre (Note the range for j.)

Then the polynomial identity
(3.04) det B, = F-det A,

holds, where F is a multinomial with integer coefficients in the inde-
terminates {a;;, 1 < 4,5 < 7r}.

REMARK 3.05. This lemma is more general than any of previous
ones, since the sets I(7) are more general.

COROLLARY 3.06. Det A, s, but (det A,)? is not a factor of det B,.

Proof. The variables that figure in F are disjoint from those
in B,.

REMARK 3.07. This is the meaning of the phrase “in general”
above.

COROLLARY 3.08. Let A,, B, redefined conformally. That 4is,
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without changing the sets I(i), let the range for j in the definitions of
A, B, be replaced by any range of r distinct integers, including
some or all of the first r integers. Then (3.04) still holds.

Proof. If some of the indices 7 in the polynomial det A, are
changed, the definition of b;; shows that a conformal change is con-
currently made in the polynomial det B,. In other words, the change
amounts solely to a change of the names of the variables in (3.04).
But (3.04) is a polynomial identity.

Under the change a;;—a;; ., b;; — b;;_, in (3.04), the factor
det A, could appear as a factor in F for suitable choice of I(7). For
example, if I(i) = {1,2, ---, 7}, and if j runs through the range 1 <
J =< r, then (3.04) becomes det B, = (det A))".

Proof of Lemma 3.03. To avoid difficulties with an algebraic
sign, the columns of B;; = A({J("(L%)\i ) are to be thought of as written

in a definite order: the jth column a,; first, followed by the other
columns in natural order. For example, if I(1) = {1, 2, 3} then B,; is
the matrix

Qi; Gy Qg

Qz; Ao Qg

A3;  Qgp  Ogg

Without this convention, the formula to be obtained for F would be

determined only up to sign.

It will be instructive to carry through the proof in a special case,
since a rather simple special case already embodies all the points of
difficulty and interest. The case I(1) = {1, 2}, I(2) = {1, 2, 3}, I(3) =
{1,2,8} will serve as an illustration. The matrix B, has as jth
column B,;, where

(3.09) B, =

det | a,; ay, as
[ As; Qg Clgs_ | j=4,5,6.
The first step in the proof is to border the 38 x 3 matrix B, with

3 rows and columns as shown below. The enlarged matrix B, clearly
has the same determinant as B,, except for the factor (—1)". Only
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viation for det [ ].
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The
is an abbre-

r 14, 15, 16, 1, 0, 0
24, 25, 26, 0, 1, 0
34, 35, 36, 0, 0, 1
14 12 15 12 16 12
, : , 0, 0, 0
{24 22] [25 22} [26 22]
r14 11 127 [15 11 137 [16 11 137
24 21 23|, |25 21 23|, |26 21 23|, 0, 0, 0
134 31 33| |35 31 33] |36 31 33
14 11 127 [15 11 127 [16 11 127
24 21 22|, |25 21 22|, |26 21 22|, 0, 0, 0
|34 31 32| |85 31 32] [36 31 32|

To show that the factor det A, splits off from the determinant

of this 6 x 6 matrix, it need only be noted that the matrix can be
A T
[ol F,
tions of the first three rows to each of the last three. This argument

is an alternative to a general argument of Loewy [3], who proved
by another method that if det A, = 0, then necessarily det B, = 0.
In the special case being expounded, det B, = —(det F)(det 4,), where
F, is the 3 x 3 matrix

reduced to the form ] by adding appropriate linear combina-

Qg — Qs 0
21 237 11 137 [11 13
[31 33| {31 33}’ [21 23}
21 22 11 127 [11 12
[31 32}’ _[31 32}’ [21 22}

The argument given above has general applicability. Formula
(3.04) is established. The multinomial F' is in fact the determinant
of an » x » matrix. The (k, 1) element of this matrix is the nega-

tive of the cofactor of a,,.; in b,,., = det AG&;VG ” o l)’ and is thus

Fu = —(=1ps et (TN,
where posl is the position of [ in the set I(k). If l¢ I(k), then
fu = 0, and conversely. For consistency, f,, must be defined as 1
when I(k) = {k}.
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COROLLARIES.

(3.09) det B, = (—1)"(det F,)(det 4,)
3.10 [3] If det A4, = 0, then det B, = 0.

3.11. If F, is a triangular matrix, then

(3.12) det B, = —(—1)"ll(det G")-(det A4,), where
P O\
(3.13) G = A(I(i)\i> .

In particular, relation (1.10) follows; this proof differs from the
first proof.

(8.14) In case I{1)={1,2}, I(2)=1{2,3}, - - -, I(®) = {2, 2-+1}, «++, I(n)=
{n, 1}, then formula

-

— 0y |

all
(3.15) det B, = G-det A, holds, where G = det[ Ayy — Qg J is

the determinant of the bidiagonal matrix shown. This proof is again
different from the earlier proof of (2.09).

3.16. Note that the case I(1) = {1,2,3}, I(2) = {2,3,4}, ++- is
considerably more complicated than the case (3.14); indeed while the
first type of proof is more direct for the hypothesis (3.14), an attempt
to generalize this proof to the case (3.16) is unrewarding.

3.17. Relation (1.06) holds.

The following proof of 1.06 is somewhat less direct than the
original proof. The matrix F, is not triangular, so that the determi-
nant det F, does not factor for this simple reason. However F, is

seen on inspection to be the » — 1st compound of the matrix AGEB),

thus det F', = det AG&

formula

)rHl. This proof requires a knowledge of the

(3.18) det C'” = (det C)°, e = <7£ _ D, where C is the tth com-

pound of the r x » matrix C.

4, General factorization of det B (continued). In this section,
Corollary 3.08 is applied to obtain a general formula for the determi-
nant of the n x » matrix B = [b;;] defined in Theorem 3.02.

Since Theorem 3.02 holds for a matrix A of indeterminates, it
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holds in particular for a matrix A of complex numbers.

Proof of Theorem 3.02. The function ¢+ I(¢) induces a sepa-
ration of the indices {1,2, ---,n} into s =1 mutually exclusive sets
S(k) such that every set I(1) is in exactly one of the sets S(k), and
the sets S(k) cannot be further decomposed without destroying these
properties.

In following the details of the proof, the reader may prefer to
think of the indices of the sets S(1), S(2), -+ as occuring in natural
order.

To continue the proof, the rows of B are partitioned into (mutu-
ally exclusive) sets S(1), S(2), --- and det B is expanded according to
the generalized Laplace expansion on these rows. Corollary 3.08
asserts that the determinants of all the S(1) x S(1) minor matrices
on the set of rows with indices in S(1) have a common factor M.
The corollary asserts further that this common factor is a multino-
mial in the particular variables a;; (¢, 7 € S(1)). Similarly for S(2), - --.
Thus M\M, --- M, is a factor of det B.

Besides the factor common to the determinants of all the S(1) x
S(1) matrices, there is a factor, see (3.04), peculiar to the particular
minor matrix. This peculiar factor is just what is needed, in the
Laplace expansion of det B, to produce det A. The proof of Theorem
3.02 is complete.

Let A be a matrix of indeterminates. If there is more than one
set S(k), then det A is, but (det A4)* is not, a factor of det B.

5. Applications. Theorem 3.02 can be used to obtain bounds
for det A in case the matrix B has dominant diagonal. The details
and results are similar to those of [2]. These results have one re-
markable feature: This is the first occasion on which such bounds
have been obtained for a “partitioning” of a matrix, in which the
sets of rows in the “partitioning” overlap one another.

The results of this paper will be needed in any attempt to obtain
minimal Gersgorin sets related to the Hoffman-Brenner theorem. If
it can be accomplished, this will be an interesting generalization of
the results of [5].
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